Chief Scientist’s report lays a solid foundation for reforming Australia’s electricity network


Anne Kallies, RMIT University

Chief Scientist Alan Finkel’s preliminary report on the National Electricity Market (NEM), released on Friday, sets the scene for a comprehensive review of the electricity network.

The report identifies that energy and emissions reduction policy must be brought together. There is no doubt that the electricity sector will be central to any emissions-reduction efforts in Australia.

However, the report also appears to see the rise of renewable energy in the electricity system as a disturbance rather than an opportunity.

The report discusses how the NEM should be reformed in response to a changing mix of generators – coal, gas and renewables. But it does not proactively seek to discuss the role of the NEM in achieving the emissions reductions and renewable energy targets of federal and state governments.

Transition doesn’t have to break the grid

The new National Transmission Network Development Plan 2016 by the Australian Energy Market Operator (AEMO) shows what such a proactive approach might look like. It shows that transmission investment within and across state borders will be crucial for Australia’s energy transformation.

International examples can provide insights into what these strategic investment solutions could be. The Finkel report mentions, for instance, the proactive designation and connection of wind zones in Texas. Other examples are the facilitation of offshore network development in the UK, and the German north-south interconnectors.

A similar mechanism could allow the NEM to access renewable energy resources in new areas, as well as upgrade existing networks to increase renewable uptake. As the AEMO plan shows, these types of measures can “smooth the impact of variable renewable energy” and “improve system resilience”.

Efficiency, reliability and reduced emissions

The Finkel report queries whether the National Electricity Objective (NEO) needs to be amended to achieve the integration of energy and emissions-reduction policy. The current objective is:

…to promote efficient investment in, and efficient operation and use of, electricity services for the long-term interests of consumers of electricity with respect to – price, quality, safety, reliability and security of supply of electricity; and the reliability, safety and security of the national electricity system.

The objective sets the parameters for developing electricity market rules and limits the scope of regulatory decision-making.

It reflects the purpose of the NEM at the time it was introduced. The NEM was initially introduced as a market-based governance framework to achieve the public service of electricity as efficiently and reliably as possible.

The report states that we need to find solutions to address the so-called “energy trilemma”. Energy policy needs to strike a balance between “security, affordability and environmental objectives”.

While the first two of these objectives are covered in the electricity objective, the last – environmental objective – is not. The NEO should reflect these changed consumer expectations.

In the age of climate change, we expect our electricity system to be reliable, affordable and green. A rephrasing of the NEO would allow for more innovative approaches to proactively develop market rules to facilitate renewable energy.

Expanding the objective would also see Australia in good company. Both the UK and German regulatory objectives contain express links to emissions reductions (UK) or environmental compatibility and renewable energy (Germany).

Putting the puzzle pieces together

The report argues for a “whole-of-system approach” to developing the energy system. The report discusses especially to what degree states and other institutions in energy markets need to work together to achieve this.

However, we also need national oversight to develop the grid. More advanced energy transition experiences in Europe show such a refocus of market reform.

Coordinated planning across the NEM will be crucial to achieve this whole-of-system perspective. While the market operator, AEMO, has a limited planning role in the NEM – identifying opportunities for network investment – there is currently no mechanism to encourage planning for the reliability and security of the whole of the NEM. Network businesses invest to ensure the reliability within their networks – contained within state borders.

Germany provides an example of how a whole-of-system approach could be achieved. German law compels the different network businesses to cooperatively develop a national grid development plan based on scenario frameworks and overseen and approved by the Federal Network Agency. Similar cooperative mechanisms could be introduced in the NEM regulatory framework.

What about climate adaptation?

The report mentions two examples of the challenges climate change might pose to the network, the black-out in South Australia and the drought in Tasmania. In both cases, a natural event combined with an interconnector (transmitters between states) fault triggered a challenge to energy security. Not mentioned in the report are the 2009 bushfires in Victoria, when a significant number of devastating fires were caused by failed electrical assets.

All of these kinds of extreme weather events can be linked to climate change. The need to adapt to more frequent and more severe weather events should be an essential part of a review into the security and reliability of the electricity sector.

While this is a preliminary report only, it picks up on many pertinent issues. This short analysis covers only some of the issues raised in the report. The prelimiary report is now open to public submissions. This provides an outstanding opportunity to consider and shape the future of the electricity network.

The Conversation

Anne Kallies, Lecturer, RMIT University

This article was originally published on The Conversation. Read the original article.

Advertisements

Methane from food production might be the next wildcard in climate change


Pep Canadell, CSIRO; Ben Poulter, NASA; Marielle Saunois, Institut Pierre-Simon Laplace; Paul Krummel, CSIRO; Philippe Bousquet, Université de Versailles Saint-Quentin en Yvelines – Université Paris-Saclay , and Rob Jackson, Stanford University

Methane concentrations in the atmosphere are growing faster than any time in the past 20 years. The increase is largely driven by the growth in food production, according to the Global Methane Budget released today. Methane is contributing less to global warming than carbon dioxide (CO₂), but it is a very powerful greenhouse gas.

Since 2014, methane concentrations in the atmosphere have begun to track the most carbon-intensive pathways developed for the 21st century by the Intergovernmental Panel on Climate Change (IPCC).

The growth of methane emissions from human activities comes at a time when CO₂ emissions from burning fossil fuels have stalled over the past three years.

If these trends continue, methane growth could become a dangerous climate wildcard, overwhelming efforts to reduce CO₂ in the short term.

Methane concentration pathways from IPCC and observations from the NOAA measuring network (Saunois et al 2016, Environmental Research Letters). The projected global warming range by the year 2100, relative to 1850-1900, is shown for each pathway.

In two papers published today (see here and here), we bring together the most comprehensive ensemble of data and models to build a complete picture of methane and where it is going – the global methane budget. This includes all major natural and human sources of methane, and the places where it ends up in methane “sinks” such as the atmosphere and the land.

This work is a companion effort to the global CO₂ budget published annually, both by international scientists under the Global Carbon Project.

Where does all the methane go?

Methane is emitted from multiple sources, mostly from land, and accumulates in the atmosphere. In our greenhouse gas budgets, we look at two important numbers.

First, we look at emissions (which activities are producing greenhouse gases).

Second, we look at where this gas ends up. The important quantity here is the accumulation (concentration) of methane in the atmosphere, which leads to global warming. The accumulation results from the difference between total emissions and the destruction of methane in the atmosphere and uptake by soil bacteria.

CO₂ emissions take centre stage in most discussions to limit climate change. The focus is well justified, given that CO₂ is responsible for more than 80% of global warming due to greenhouse gases. The concentration of CO₂ in the atmosphere (now around 400 parts per million) has risen by 44% since the Industrial Revolution (around the year 1750).

While CO₂ in the atmosphere has increased steadily, methane concentrations grew relatively slowly throughout the 2000s, but since 2007 have grown ten times faster. Methane increased faster still in 2014 and 2015.

Remarkably, this growth is occurring on top of methane concentrations that are already 150% higher than at the start of the Industrial Revolution (now around 1,834 parts per billion).

The global methane budget is important for other reasons too: it is less well understood than the CO₂ budget and is influenced to a much greater extent by a wide variety of human activities. About 60% of all methane emissions come from human actions.

These include living sources – such as livestock, rice paddies and landfills – and fossil fuel sources, such as emissions during the extraction and use of coal, oil and natural gas.

We know less about natural sources of methane, such as those from wetlands, permafrost, termites and geological seeps.

Biomass and biofuel burning originates from both human and natural fires.

Global methane budget 2003-2012 based on Saunois et al. 2016, Earth System Science Data. See the Global Carbon Atlas at http://www.globalcarbonatlas.org.

Given the rapid increase in methane concentrations in the atmosphere, what factors are responsible for its increase?

Uncovering the causes

Scientists are still uncovering the reasons for the rise. Possibilities include: increased emissions from agriculture, particularly from rice and cattle production; emissions from tropical and northern wetlands; and greater losses during the extraction and use of fossil fuels, such as from fracking in the United States. Changes in how much methane is destroyed in the atmosphere might also be a contributor.

Our approach shows an emerging and consistent picture, with a suggested dominant source along with other contributing secondary sources.

First, carbon isotopes suggest a stronger contribution from living sources than from fossil fuels. These isotopes reflect the weights of carbon atoms in methane from different sources. Methane from fossil fuel use also increased, but evidently not by as much as from living sources.

Second, our analysis suggests that the tropics were a dominant contributor to the atmospheric growth. This is consistent with the vast agricultural development and wetland areas found there (and consistent with increased emissions from living sources).

This also excludes a dominant role for fossil fuels, which we would expect to be concentrated in temperate regions such as the US and China. Those emissions have increased, but not by as much as from tropical and living sources.

Third, state-of-the-art global wetland models show little evidence for any significant increase in wetland emissions over the study period.

The overall chain of evidence suggests that agriculture, including livestock, is likely to be a dominant cause of the rapid increase in methane concentrations. This is consistent with increased emissions reported by the Food and Agriculture Organisation and does not exclude the role of other sources.

Remarkably, there is still a gap between what we know about methane emissions and methane concentrations in the atmosphere. If we add all the methane emissions estimated with data inventories and models, we get a number bigger than the one consistent with the growth in methane concentrations. This highlights the need for better accounting and reporting of methane emissions.

We also don’t know enough about emissions from wetlands, thawing permafrost and the destruction of methane in the atmosphere.

The way forward

At a time when global CO₂ emissions from fossil fuels and industry have stalled for three consecutive years, the upward methane trend we highlight in our new papers is unwelcome news. Food production will continue to grow strongly to meet the demands of a growing global population and to feed a growing global middle class keen on diets richer in meat.

However, unlike CO₂, which remains in the atmosphere for centuries, a molecule of methane lasts only about 10 years.

This, combined with methane’s super global warming potency, means we have a massive opportunity. If we cut methane emissions now, this will have a rapid impact on methane concentrations in the atmosphere, and therefore on global warming.

There are large global and domestic efforts to support more climate-friendly food production with many successes, ample opportunities for improvement, and potential game-changers.

However, current efforts are insufficient if we are to follow pathways consistent with keeping global warming to below 2℃. Reducing methane emissions needs to become a prevalent feature in the global pursuit of the sustainable future outlined in the Paris Agreement.

The Conversation

Pep Canadell, CSIRO Scientist, and Executive Director of the Global Carbon Project, CSIRO; Ben Poulter, Research scientist, NASA; Marielle Saunois, Enseignant chercheur à l’Université de Versailles Saint Quentin; chercheur au Laboratoire des Sciences du Climat et de l’Environnement, Institut Pierre-Simon Laplace; Paul Krummel, Research Group Leader, CSIRO; Philippe Bousquet, Professeur à l’université de Versailles Saint-Quentin en Yvelines, chercheur au Laboratoire des sciences du climat et de l’environnement (LSCE), membre de l’Institut de France, auteur contributif d’un chapitre des deux derniers rapports du GIEC, Université de Versailles Saint-Quentin en Yvelines – Université Paris-Saclay , and Rob Jackson, Professor, Earth System Science and Chair of the Global Carbon Project, Stanford University

This article was originally published on The Conversation. Read the original article.