Climate Council: climate, health and economics are against Carmichael mine



File 20170518 12226 108eqzi
Many banks are worried that coal investments could be left stranded on their asset books.
Rasta777/Shutterstock.com

Will Steffen, Australian National University and Hilary Bambrick, Queensland University of Technology

Despite the overwhelming evidence that fossil fuels are killing the Great Barrier Reef and making many extreme weather events worse; despite the emphatic thumbs-down from the finance sector; and despite the growing awareness of the serious health impacts of coal, the proposed Carmichael coal mine staggers on, zombie-like, amid reports it has been offered a deferment of A$320 million in royalty payments. The Conversation

A new Climate Council report, Risky Business: Health, Climate and Economic Risks of the Carmichael Coalmine, makes an emphatic case against development of the proposed mine, or of any other coal deposits in Queensland’s Galilee Basin, or indeed elsewhere around the world.

Burning coal is a major contributor to climate change. Australia is already reeling from the escalating impacts of a warming climate. Heatwaves and other extreme weather events are worsening. The Great Barrier Reef has suffered consecutive mass bleaching events in 2016 and 2017. Climate change is likely making drought conditions worse in the agricultural belts of southwest and southeast Australia. Our coastal regions are increasingly exposed to erosion and flooding as sea level rises.

If we are to slow these disturbing trends and stabilise the climate at a level with which we might be able to cope, only a relatively small amount of the world’s remaining coal, oil and gas reserves can actually be used.

The majority must be left unburned in the ground, without developing vast new coal deposits such as those in the Galilee Basin.

On budget

The amount of fossil fuels we can burn for a given temperature target (such as the 1.5℃ and 2℃ targets of the Paris climate agreement) is known as the “carbon budget”.

To give ourselves just a 50% chance of staying within the 2℃ Paris target, we can burn only 38% of the world’s existing fossil fuel reserves. When this budget is apportioned among the various types of fossil fuels, coal is the big loser, because it is more emissions-intensive than other fuels. Nearly 90% of the world’s existing coal reserves must be left in the ground to stay within the 2℃ budget.

When the carbon budget is apportioned by region to maximise the economic benefit of the remaining budget, Australian coal in particular is a big loser. More than 95% of Australia’s existing coal reserves cannot be burned, and the development of new deposits, such as the Galilee Basin, is ruled out.

The health case

Exploiting coal is very harmful to human health, with serious impacts all the way through the process from mining to combustion. Recently the life-threatening “black lung” (coal workers’ pneumoconiosis) has re-emerged in Queensland, with 21 reported cases. Across Australia, the estimated costs of health damages associated with the combustion of coal amount to A$2.6 billion per year.

In India, the country to which coal from the proposed Carmichael mine would likely be exported, coal combustion already takes a heavy toll. An estimated 80,000-115,000 deaths, as well as 20 million cases of asthma, were attributed to pollutants emitted from coal-fired power stations in 2010-11. Up to 10,000 children under the age of five died because of coal pollution in 2012 alone.

Compared with the domestic coal resources in India, Carmichael coal will not reduce these health risks much at all. Galilee Basin coal is of poorer quality than that from other regions of Australia. Its estimated ash content of about 26% is double the Australian benchmark.

This is bad news for children in India or in any other country that ends up burning it.

The economics

The economic case for the Carmichael mine doesn’t stack up either. Converging global trends all point to rapidly reducing demand for coal.

The cost of renewable energy is plummeting, and efficient and increasingly affordable storage technologies are emerging. Coal demand in China is dropping as it ramps up the rollout of renewables. India is moving towards energy independence, and is eyeing its northern neighbour’s push towards renewables.

All of these trends greatly increase the risk that any new coal developments will become stranded assets. It’s little wonder that the financial sector has turned a cold shoulder to the Carmichael mine, and Galilee Basin coal development in general. Some 17 banks worldwide, including the “big four” in Australia, have ruled out any investment in the Carmichael mine.

From any perspective – climate, health, economy – the proposed mine is hard to justify. And yet the project keeps on keeping on.

Will Steffen, Emeritus professor, Fenner School of Environment and Society, Australian National University and Hilary Bambrick, Head of School, School of Public Health and Social Work, Queensland University of Technology

This article was originally published on The Conversation. Read the original article.

Advertisement

Maybe we can, but should we? Deciding whether to bring back extinct species



File 20170518 24725 1kmsqco
Immortalised on a stamp, New Zealand’s stout-legged wren went extinct in the 1990s.
Boris15/www.shutterstock.com

Gwenllian Iacona, The University of Queensland and Iadine Chadès, CSIRO

De-extinction – the science of reviving species that have been lost – has moved from the realm of science-fiction to something that is now nearly feasible. Some types of lost mammals, birds or frogs may soon be able to be revived through de-extinction technologies. The Conversation

But just because we can, does it mean we should? And what might the environmental and conservation impacts be if we did?

Prominent conservation biologist Stuart Pimm has been one of the vocal opponents of de-extinction because, among other concerns,

Without an answer to “where do we put them?” — and to the further question, “what changed in their original habitat that may have contributed to their extinction in the first place?” — efforts to bring back species are a colossal waste.

These are valid concerns, and difficult to consider in light of the many competing factors involved.

We’ve recently outlined a deliberate way to tackle this problem. Our new paper shows that an approach known as “decision science” can help examine the feasibility of de-extinction and its likely impact on existing environmental and species management programs.

Applied to the question of possible de-extinction programs in New Zealand, this approach showed that it would take money away from managing extant (still alive) species, and may lead to other species going extinct.

Solving complex problems

The potential to reverse species extinction is exciting from both a science and a curiosity perspective. But there is also great concern that in the passionate rush to implement new technology, we don’t properly consider environmental, economic and social issues.

Balancing these multiple objectives requires decision makers to understand how various project endpoints relate to all the different project goals.

Decision science methods simplify complex problems into parts that describe the benefit, cost and feasibility of the different possible solutions. They allow for “apples to apples” comparisons to be made about different but essential aspects of the projects being considered.

Decision science in action

When applied to de-extinction projects, decision science lets researchers:

  • compare different possible outcomes of de-extinction approaches
  • better understand future expected costs and benefits, and
  • see impacts of using de-extinction technology on other species that we care about.

New Zealand and New South Wales are home to more than 1,100 threatened species of conservation concern between them.

Over the past decade their management agencies have built on a decision science approach to prioritise their conservation efforts, and increase the number of species they are able to put on the road to recovery.

New Zealand in particular is a prime candidate for considering de-extinction because they have had many recent extinctions, such as the huia.

The New Zealand native bird ‘huia’ went extinct in 1907.
Photographed by Kendrick, J. L. and with thanks from NZ Department of Conservation, Author provided

These lost species fit many of the criteria for species appropriate for de-extinction technologies.

A recent study took the process that was developed to rank New Zealand species according to priority for action, and included 11 possible candidates for de-extinction in the ranking process. These were birds, frogs and plants, including the little bush moa, Waitomo frog and laughing owl.

By applying a decision science process, the authors found that adding these species to the management worklist would reduce their ability to adequately fund up to three times the number of currently managed species, and essentially could lead to additional species going extinct.

The study also showed that private agencies wishing to sponsor the return of resurrected extinct species into the wild, could instead use the money to fund conservation of over eight times as many species, potentially saving them from extinction.

Crucially, this study could not examine the initial costs of using genetic technology to resurrect extinct species, which is unknown but likely to be substantial. If it could have included such costs, de-extinction would have come out as an even less efficient option.

The laughing owl went extinct in New Zealand in 1914.
Photographed by Kendrick, J. L. and with thanks from NZ Department of Conservation, Author provided

Could de-extinction ever be the right option?

The New Zealand example is not a particularly rosy picture, but it may not always be the case that de-extinction is a terrible idea for conservation.

Hypothetically, there are situations where the novelty and excitement of a de-extinct species could act as a “flagship species” and actually attract public interest or funding to a conservation project.

There also is an interesting phenomenon where even just the possibility of having a management action such as de-extinction may change how conservation problems are formulated.

Conservation management currently aims to do the best it can, while operating under the constraint that biodiversity is a non-renewable resource. With this constraint we can apply theory that is used for managing the extraction of non-renewable resources like oil or diamonds to determine the best strategy for management.

However, if extinction was no longer forever, the problem could be considered as one that would be managing a renewable resource, like trees or fish.

Of course, the ability to revive species is nowhere near as simple as regrowing trees, and a species being revived does not necessarily equate to conservation.

But changing the way that conservation managers think about the problem could present conservation gains in addition to losses.

Theoretically, different methods may be used for conservation benefit and there may be different strategies to produce the best outcomes. For example, species that could easily be de-extinct may get less funding attention that the ones for which the de-extinction technology isn’t available, or are too costly to produce.

This research does not advocate for or against de-extinction, rather, it provides strategies to deal with alternatives from the start with a clear representation of the trade-offs.

This work aims to step back and take a realistic look at the implications of new technology, including its costs and its risks, within the context of other conservation actions. Decision theory helps to do just that.

Gwenllian Iacona, Postdoctoral Research Fellow, The University of Queensland and Iadine Chadès, Leader of the Conservation Decisions Team and Senior research scientist, CSIRO

This article was originally published on The Conversation. Read the original article.