Australia: Queensland – Electric Vehicle Highway


The link below is to an article that takes a look at Australia’s planned electric vehicle highway in Queensland.

For more visit:
http://e360.yale.edu/digest/australia-is-building-a-1250-mile-highway-for-electric-vehicles

Advertisements

Another attack on the Bureau, but top politicians have stopped listening to climate change denial


Michael J. I. Brown, Monash University

Has the Australian climate change debate changed? You could be forgiven for thinking the answer is no.

Just this week The Australian has run a series of articles attacking the Bureau of Meteorology’s weather observations. Meanwhile, the federal and Queensland governments continue to promote Adani’s planned coal mine, despite considerable environmental and economic obstacles. And Australia’s carbon dioxide emissions are rising again.

So far, so familiar. But something has changed.

Those at the top of Australian politics are no longer debating the existence of climate change and its causes. Instead, four years after the Coalition was first elected, the big political issues are rising power prices and the electricity market. What’s happening?


Read more: No, the Bureau of Meteorology is not fiddling its weather data.


A few years ago, rejection of climate science was part of the Australian political mainstream. In 2013, the then prime minister Tony Abbott repeated a common but flawed climate change denial argument:

Australia has had fires and floods since the beginning of time. We’ve had much bigger floods and fires than the ones we’ve recently experienced. You can hardly say they were the result of anthropic [sic] global warming.

Abbott’s statement dodges a key issue. While fires and floods have always occurred, climate change can still alter their frequency and severity. In 2013, government politicians and advisers, such as Dennis Jensen and Maurice Newman, weren’t shy about rejecting climate science either.

The atmosphere is different in 2017, and I’m not just talking about CO₂ levels. Tony Abbott is no longer prime minister, Dennis Jensen lost preselection and his seat, and Maurice Newman is no longer the prime minister’s business advisor.

Which Australian politician most vocally rejects climate science now? It isn’t the prime minister or members of the Coalition, but One Nation’s Malcolm Roberts. In Australia, open rejection of human-induced climate change has moved to the political fringe.

Roberts has declared climate change to be a “fraud” and a “scam”, and talked about climate records being “manipulated by NASA”. He is very much a conspiracy theorist on climate, as he is on other topics including banks, John F. Kennedy, and citizenship. His approach to evidence is frequently at odds with mainstream thought.

//platform.twitter.com/widgets.js

This conspiratorial approach to climate change is turning up elsewhere too. I was startled by the author list of the Institute of Public Affairs’ new climate change book. Tony Heller (better known in climate circles by the pseudonym Steven Goddard) doesn’t just believe climate change is a “fraud” and a “scam”, but has also promoted conspiracy theories about the Sandy Hook school massacre. This is a country mile from sober science and policy analysis.

So where is the Australian political mainstream? It’s not denying recent climate change and its causes, but instead is now debating the policy responses. This is exemplified by political arguments about the electricity market, power prices, and the Finkel Review.


Read more: What I learned from debating science with trolls


While this is progress, it’s not without serious problems. The debate may have rightly moved on to policy rather than science, but arguments for “clean coal” power are at odds with coal’s high CO₂ emissions and the failure thus far of carbon capture. Even power companies show little interest in new coal-fired power plants to replace those that have closed.

The closure of the Hazelwood power station was politically controversial.
Jeremy Buckingham/flickr

History repeating?

Have those who rejected global warming and its causes changed their tune? In general, no. They still imagine that scientists are up to no good. The Australian’s latest attacks on the Bureau of Meteorology (BoM) illustrate this, especially as they are markedly similar to accusations made in the same newspaper three years ago.

This week, the newspaper’s environment editor Graham Lloyd wrote that the BoM was “caught tampering” with temperature logs, on the basis of measurements of cold temperatures on two July nights at Goulburn and Thredbo. For these nights, discrepant temperatures were in public BoM databases due to automated weather stations that stopped reporting data. The data points were flagged for BoM staff to verify, but in the meantime an amateur meteorologist contacted Lloyd and the Institute of Public Affairs’ Jennifer Marohasy.

In 2014, Lloyd cast doubt on the BoM’s climate record by attacking the process of “homogenisation,” with a particular emphasis on data from weather stations in Rutherglen, Amberley and Bourke. Homogenisation is used to produce a continuous temperature record from measurements that may suffer from artificial discontinuities, such as in the case of weather stations that have been upgraded or moved from, say, a post office to an airport.

The Tuggeranong Automatic Weather Station.
Bidgee/Wikimedia Commons

Lloyd’s articles from this week and 2014 are beat-ups, for similar reasons. The BoM’s ACORN-SAT long-term temperature record is compiled using daily measurements from 112 weather stations. Even Lloyd acknowledges that those 112 stations don’t include Goulburn and Thredbo. While Rutherglen, Amberley and Bourke do contribute to ACORN-SAT, homogenisation of their data (and that of other weather stations) does little to change the warming trend measured across Australia. Australia has warmed over the past century, and The Australian’s campaigns won’t change that.

In 2014, the government responded to The Australian’s campaign by commissioning the Technical Advisory Forum, which has since reviewed ACORN-SAT and found it to be a “well-maintained dataset”. Prime Minister Abbott also considered a taskforce to investigate BoM, but was dissuaded by the then environment minister Greg Hunt.

The ConversationHow will Malcolm Turnbull’s government respond to The Australian’s retread of basically the same campaign? Perhaps that will be the acid test for whether the climate debate really has changed.

Michael J. I. Brown, Associate professor, Monash University

This article was originally published on The Conversation. Read the original article.

Solar is now the most popular form of new electricity generation worldwide


Andrew Blakers, Australian National University

Solar has become the world’s favourite new type of electricity generation, according to global data showing that more solar photovoltaic (PV) capacity is being installed than any other generation technology.

Worldwide, some 73 gigawatts of net new solar PV capacity was installed in 2016. Wind energy came in second place (55GW), with coal relegated to third (52GW), followed by gas (37GW) and hydro (28GW).

https://datawrapper.dwcdn.net/tCtqa/1/

Together, PV and wind represent 5.5% of current energy generation (as at the end of 2016), but crucially they constituted almost half of all net new generation capacity installed worldwide during last year.

It is probable that construction of new coal power stations will decline, possibly quite rapidly, because PV and wind are now cost-competitive almost everywhere.

Hydro is still important in developing countries that still have rivers to dam. Meanwhile, other low-emission technologies such as nuclear, bio-energy, solar thermal and geothermal have small market shares.

PV and wind now have such large advantages in terms of cost, production scale and supply chains that it is difficult to see any other low-emissions technology challenging them within the next decade or so.

That is certainly the case in Australia, where PV and wind comprise virtually all new generation capacity, and where solar PV capacity is set to reach 12GW by 2020. Wind and solar PV are being installed at a combined rate of about 3GW per year, driven largely by the federal government’s Renewable Energy Target (RET).

This is double to triple the rate of recent years, and a welcome return to growth after several years of subdued activity due to political uncertainty over the RET.

If this rate is maintained, then by 2030 more than half of Australian electricity will come from renewable energy and Australia will have met its pledge under the Paris climate agreement purely through emissions savings within the electricity industry.

To take the idea further, if Australia were to double the current combined PV and wind installation rate to 6GW per year, it would reach 100% renewable electricity in about 2033. Modelling by my research group suggests that this would not be difficult, given that these technologies are now cheaper than electricity from new-build coal and gas.

Renewable future in reach

The prescription for an affordable, stable and achievable 100% renewable electricity grid is relatively straightforward:

  1. Use mainly PV and wind. These technologies are cheaper than other low-emission technologies, and Australia has plenty of sunshine and wind, which is why these technologies have already been widely deployed. This means that, compared with other renewables, they have more reliable price projections, and avoid the need for heroic assumptions about the success of more speculative clean energy options.

  2. Distribute generation over a very large area. Spreading wind and PV facilities over wide areas – say a million square kilometres from north Queensland to Tasmania – allows access to a wide range of different weather, and also helps to smooth out peaks in users’ demand.

  3. Build interconnectors. Link up the wide-ranging network of PV and wind with high-voltage power lines of the type already used to move electricity between states.

  4. Add storage. Storage can help match up energy generation with demand patterns. The cheapest option is pumped hydro energy storage (PHES), with support from batteries and demand management.

Australia currently has three PHES systems – Tumut 3, Kangaroo Valley, and Wivenhoe – all of which are on rivers. But there is a vast number of potential off-river sites.

Potential sites for pumped hydro storage in Queensland, alongside development sites for solar PV (yellow) and wind energy (green). Galilee Basin coal prospects are shown in black.
Andrew Blakers/Margaret Blakers, Author provided

In a project funded by the Australian Renewable Energy Agency, we have identified about 5,000 sites in South Australia, Queensland, Tasmania, the Canberra district, and the Alice Springs district that are potentially suitable for pumped hydro storage.

Each of these sites has between 7 and 1,000 times the storage potential of the Tesla battery currently being installed to support the South Australian grid. What’s more, pumped hydro has a lifetime of 50 years, compared with 8-15 years for batteries.

Importantly, most of the prospective PHES sites are located near where people live and where new PV and wind farms are being constructed.

Once the search for sites in New South Wales, Victoria and Western Australia is complete, we expect to uncover 70-100 times more PHES energy storage potential than required to support a 100% renewable electricity grid in Australia.

Potential PHES upper reservoir sites east of Port Augusta, South Australia. The lower reservoirs would be at the western foot of the hills (bottom of the image).
Google Earth/ANU

Managing the grid

Fossil fuel generators currently provide another service to the grid, besides just generating electricity. They help to balance supply and demand, on timescales down to seconds, through the “inertial energy” stored in their heavy spinning generators.

But in the future this service can be performed by similar generators used in pumped hydro systems. And supply and demand can also be matched with the help of fast-response batteries, demand management, and “synthetic inertia” from PV and wind farms.

Wind and PV are delivering ever tougher competition for gas throughout the energy market. The price of large-scale wind and PV in 2016 was A$65-78 per megawatt hour. This is below the current wholesale price of electricity in the National Electricity Market.

Abundant anecdotal evidence suggests that wind and PV energy price has fallen to A$60-70 per MWh this year as the industry takes off. Prices are likely to dip below A$50 per MWh within a few years, to match current international benchmark prices. Thus, the net cost of moving to a 100% renewable electricity system over the next 15 years is zero compared with continuing to build and maintain facilities for the current fossil-fuelled system.

Gas can no longer compete with wind and PV for delivery of electricity. Electric heat pumps are driving gas out of water and space heating. Even for delivery of high-temperature heat for industry, gas must cost less than A$10 per gigajoule to compete with electric furnaces powered by wind and PV power costing A$50 per MWh.

Importantly, the more that low-cost PV and wind is deployed in the current high-cost electricity environment, the more they will reduce prices.

Then there is the issue of other types of energy use besides electricity – such as transport, heating, and industry. The cheapest way to make these energy sources green is to electrify virtually everything, and then plug them into an electricity grid powered by renewables.

A 55% reduction in Australian greenhouse gas emissions can be achieved by conversion of the electricity grid to renewables, together with mass adoption of electric vehicles for land transport and electric heat pumps for heating and cooling. Beyond this, we can develop renewable electric-driven pathways to manufacture hydrocarbon-based fuels and chemicals, primarily through electrolysis of water to obtain hydrogen and carbon capture from the atmosphere, to achieve an 83% reduction in emissions (with the residual 17% of emissions coming mainly from agriculture and land clearing).

Doing all of this would mean tripling the amount of electricity we produce, according to my research group’s preliminary estimate.

The ConversationBut there is no shortage of solar and wind energy to achieve this, and prices are rapidly falling. We can build a clean energy future at modest cost if we want to.

Andrew Blakers, Professor of Engineering, Australian National University

This article was originally published on The Conversation. Read the original article.