Explainer: how does the sea ‘disappear’ when a hurricane passes by?


Darrell Strauss, Griffith University

You may have seen the media images of bays and coastlines along Hurricane Irma’s track, in which the ocean has eerily “disappeared”, leaving locals amazed and wildlife stranded. What exactly was happening?

//platform.twitter.com/widgets.js

These coastlines were experiencing a “negative storm surge” – one in which the storm pushes water away from the land, rather than towards it.


Read more: Irma and Harvey: very different storms, but both affected by climate change


Most people are familiar with the idea that the sea is not at the same level everywhere at the same time. It is an uneven surface, pulled around by gravity, such as the tidal effects of the Moon and Sun. This is why we see tides rise and fall at any given location.

At the same time, Earth’s atmosphere has regions where the air pressure is higher or lower than average, in ever-shifting patterns as weather systems move around. Areas of high atmospheric pressure actually push down on the ocean surface, lowering sea level, while low pressure allows the sea to rise slightly.

This is known as the “inverse barometer effect”. Roughly speaking, a 1 hectopascal change in atmospheric pressure (the global average pressure is 1,010hPa) causes the sea level to move by 1cm.

When a low-pressure system forms over warm tropical oceans under the right conditions, it can intensify to become a tropical depression, then a tropical storm, and ultimately a tropical cyclone – known as a hurricane in the North Atlantic or a typhoon in the northwest Pacific.

As this process unfolds, the atmospheric pressure drops ever lower and wind strength increases, because the pressure difference with surrounding areas causes more air to flow towards the storm.

In the northern hemisphere tropical cyclones rotate anticlockwise and officially become hurricanes once they reach a maximum sustained wind speed of around 120km per hour. If sustained wind speeds reach 178km per hour the storm is classed as a major hurricane.

Surging waters

A “normal” storm surge happens when a tropical cyclone reaches shallow coastal waters. In places where the wind is blowing onshore, water is pushed up against the land. At the same time the cyclone’s incredibly low air pressure allows the water to rise higher than normal. On top of all this, the high waves whipped up by the wind mean that even more water inundates the coast.

The anticlockwise rotation of Atlantic hurricanes means that the storm’s northern side produces winds blowing from the east, and its southern side brings westerly winds. In the case of Hurricane Irma, which tracked almost directly up the Florida panhandle, this meant that as it approached, the east coast of the Florida peninsula experienced easterly onshore winds and suffered a storm surge that caused severe inundation and flooding in areas such as Miami.

The negative surge

In contrast, these same easterly winds had the opposite effect on Florida’s west coast (the Gulf Coast), where water was pushed offshore, leading to a negative storm surge. This was most pronounced in areas such as Fort Myers and Tampa Bay, which normally has a relatively low tide range of less than 1m.

//platform.twitter.com/widgets.js

The negative surge developed over a period of about 12 hours and resulted in a water level up to 1.5m below the predicted low tide level. Combined with the fact that the sea is shallow in these areas anyway, it looked as if the sea had simply disappeared.


Read more: Predicting disaster: better hurricane forecasts buy vital time for residents.


As tropical cyclones rapidly lose energy when moving over land, the unusually low water level was expected to rapidly rise, which prompted authorities to issue a flash flood warning to alert onlookers to the potential danger. The negative surge was replaced by a storm surge of a similar magnitude within about 6 hours at Fort Myers and 12 hours later at Tampa Bay.

The ConversationRising waters are the deadliest aspect of hurricanes – even more than the ferocious winds. So while it may be tempting to explore the uncovered seabed, it’s certainly not wise to be there when the sea comes rushing back.

Darrell Strauss, Senior Research Fellow, Griffith University

This article was originally published on The Conversation. Read the original article.

Advertisement

How Antarctic ice melt can be a tipping point for the whole planet’s climate


File 20170912 26996 15apq9m
Melting Antarctic ice can trigger effects on the other side of the globe.
NASA/Jane Peterson

Chris Turney, UNSW; Jonathan Palmer, UNSW; Peter Kershaw, Monash University; Steven Phipps, University of Tasmania, and Zoë Thomas, UNSW

Melting of Antarctica’s ice can trigger rapid warming on the other side of the planet, according to our new research which details how just such an abrupt climate event happened 30,000 years ago, in which the North Atlantic region warmed dramatically.

This idea of “tipping points” in Earth’s system has had something of a bad rap ever since the 2004 blockbuster The Day After Tomorrow purportedly showed how melting polar ice can trigger all manner of global changes.

But while the movie certainly exaggerated the speed and severity of abrupt climate change, we do know that many natural systems are vulnerable to being pushed into different modes of operation. The melting of Greenland’s ice sheet, the retreat of Arctic summer sea ice, and the collapse of the global ocean circulation are all examples of potential vulnerability in a future, warmer world.


Read more: Chasing ice: how ice cores shape our understanding of ancient climate.


Of course it is notoriously hard to predict when and where elements of Earth’s system will abruptly tip into a different state. A key limitation is that historical climate records are often too short to test the skill of our computer models used to predict future environmental change, hampering our ability to plan for potential abrupt changes.

Fortunately, however, nature preserves a wealth of evidence in the landscape that allows us to understand how longer time-scale shifts can happen.

Core values

One of the most important sources of information on past climate tipping points are the kilometre-long cores of ice drilled from the Greenland and Antarctic ice sheets, which preserve exquisitely detailed information stretching back up to 800,000 years.

The Greenland ice cores record massive, millennial-scale swings in temperature that have occurred across the North Atlantic region over the past 90,000 years. The scale of these swings is staggering: in some cases temperatures rose by 16℃ in just a few decades or even years.

Twenty-five of these major so-called Dansgaard–Oeschger (D-O) warming events have been identified. These abrupt swings in temperature happened too quickly to have been caused by Earth’s slowly changing orbit around the Sun. Fascinatingly, when ice cores from Antarctica are compared with those from Greenland, we see a “seesaw” relationship: when it warms in the north, the south cools, and vice versa.

Attempts to explain the cause of this bipolar seesaw have traditionally focused on the North Atlantic region, and include melting ice sheets, changes in ocean circulation or wind patterns.

But as our new research shows, these might not be the only cause of D-O events.

Our new paper, published today in Nature Communications, suggests that another mechanism, with its origins in Antarctica, has also contributed to these rapid seesaws in global temperature.

Tree of knowledge

The 30,000-year-old key to climate secrets.
Chris Turney, Author provided

We know that there have been major collapses of the Antarctic ice sheet in the past, raising the possibility that these may have tipped one or more parts of the Earth system into a different state. To investigate this idea, we analysed an ancient New Zealand kauri tree that was extracted from a peat swamp near Dargaville, Northland, and which lived between 29,000 and 31,000 years ago.

Through accurate dating, we know that this tree lived through a short D-O event, during which (as explained above) temperatures in the Northern Hemisphere would have risen. Importantly, the unique pattern of atmospheric radioactive carbon (or carbon-14) found in the tree rings allowed us to identify similar changes preserved in climate records from ocean and ice cores (the latter using beryllium-10, an isotope formed by similar processes to carbon-14). This tree thus allows us to compare directly what the climate was doing during a D-O event beyond the polar regions, providing a global picture.

The extraordinary thing we discovered is that the warm D-O event coincided with a 400-year period of surface cooling in the south and a major retreat of Antarctic ice.

When we searched through other climate records for more information about what was happening at the time, we found no evidence of a change in ocean circulation. Instead we found a collapse in the rain-bearing Pacific trade winds over tropical northeast Australia that was coincident with the 400-year southern cooling.


Read more: Two centuries of continuous volcanic eruption may have triggered the end of the ice age.


To explore how melting Antarctic ice might cause such dramatic change in the global climate, we used a climate model to simulate the release of large volumes of freshwater into the Southern Ocean. The model simulations all showed the same response, in agreement with our climate reconstructions: regardless of the amount of freshwater released into the Southern Ocean, the surface waters of the tropical Pacific nevertheless warmed, causing changes to wind patterns that in turn triggered the North Atlantic to warm too.

The ConversationFuture work is now focusing on what caused the Antarctic ice sheets to retreat so dramatically. Regardless of how it happened, it looks like melting ice in the south can drive abrupt global change, something of which we should be aware in a future warmer world.

Chris Turney, Professor of Earth Sciences and Climate Change, UNSW; Jonathan Palmer, Research Fellow, School of Biological, Earth and Environmental Sciences., UNSW; Peter Kershaw, Emeritus Professor, Earth, Atmosphere and Environment, Monash University; Steven Phipps, Palaeo Ice Sheet Modeller, University of Tasmania, and Zoë Thomas, Research Associate, UNSW

This article was originally published on The Conversation. Read the original article.