Why do shark bites seem to be more deadly in Australia than elsewhere?



File 20171031 18735 19idlu0.jpg?ixlib=rb 1.1
White sharks’ ability to stay warm in cold water makes them efficient long-range hunters.
Denice Askebrink

Blake Chapman, The University of Queensland

The first thing to say about shark attack deaths is that they are very rare, with only about two per year in Australia. But still, every year without fail, people die from shark bites, both here and around the world.

According to official statistics, the United States records by far the most unprovoked shark bites – an average of 45 per year over the past decade. However, only 1.3% of these incidents were fatal – 0.6 deaths per year.

Australia records fewer bites than the US (an average of 14 per year), but a much greater proportion of them are deadly: (1.5 per year, or close to 11%). So what is it that (relatively speaking) makes Australia more prone to deadly shark attacks?


Read more: Not just nets: how to stop shark attacks without killing sharks


My new book Shark Attacks: Myths, Misunderstandings and Human Fear addresses this and other questions about sharks, with the aim of dispelling common myths and providing the knowledge needed for decisions made on science rather than fear and emotion.

A perfect storm

In a way, Australia has a “perfect storm” of conditions for serious shark attacks. The first reason is that Australians (and visitors to Australia) love the ocean. Some 85% of Australians live within 50km of the coast, and Australian coastal areas account for the most prominent growth outside of capital cities. Beaches are also favoured recreational destinations in Australia and coastal locations are heavily targeted in tourism, attracting nearly 60% of international tourists.

Next, the sharks themselves. Australia has the world’s highest diversity of sharks and rays, including roughly 180 of the 509 known shark species.

But neither of these factors, even taken together, is enough to explain why deaths are more prevalent in Australia. What we really need to look at is dangerous sharks.

Only 26 shark species have been definitively identified as biting humans without provocation, although the true number is likely to be somewhat higher. Of these 26 species, 22 (85%) are found in Australian waters.

All 11 of the species known to have caused fatal unprovoked bites on humans can be found in Australian waters. And crucially, Australia’s coastal waters are home to all of the “big three” deadly species: white sharks, tiger sharks, and bull sharks.

Australia’s waters are home to all three of the ‘big three’ shark species.
Denice Askebrink

These species account for all but three of the 27 fatal shark attacks worldwide from 1982-2011. All of the big three species are inquisitive, regularly frequent coastal environments, and are formidably big and strong.

They also have complex, unpredictable behaviour. But despite this difficulty, we can identify factors that make them more likely to swim in areas routinely used by humans.

Warming to it

White sharks have a physiological adaptation that allows them to maintain a vast global distribution, and hence are responsible for the northernmost and southernmost recorded shark bites on humans.

Most fish are ectothermic, or cold-blooded, with body temperatures very close to that of the surrounding water. This restricts their range to places where the water temperature is optimal.

In contrast, white sharks and a few other related species can retain the heat generated by their muscles predominantly during swimming, enabling them to be swift and agile predators even in cold water. They do this with the help of bunches of parallel arteries and veins in their brains, eyes, muscles and stomachs that function as “heat exchangers” between incoming and outgoing blood, allowing them to keep these crucial organs warm.

White sharks are so good at retaining heat that their core body temperature can be up to 14.3℃ above the surrounding water temperature. This allows them to move seasonally up and down Australia’s east and west coasts, presumably following migrating prey species.

Getting salty

Bull sharks, meanwhile, are the only sharks known to withstand wide variations in water salinity. This means they can easily move from salty oceans to brackish estuaries and even travel thousands of kilometres up river systems. As a result they can overlap with human use areas such as canals, estuaries, rivers and even some lakes. One female bull shark was observed making a 4,000km round-trip to give birth in a secluded Madagascan estuary rather than the open ocean.

As a result, most bull sharks found in river systems are juveniles, but these areas may also be home to large, pregnant females who need to eat more prey to sustain themselves. As rivers are often clouded by sediment, there is an increased risk that a human may be mistaken for prey in this low-visibility environment.

Bull sharks can roam in rivers as well as oceans.
Albert Kok/Wikimedia Commons

Opportunistic tigers

Tiger sharks mainly stay in coastal waters, although they also venture into the open ocean. Their movements are unpredictable, they eat a wide range of prey, are naturally curious and opportunistic, and can be aggressive to humans.

Tiger sharks are clever too – they are thought to use “cognitive maps” to navigate between distant foraging areas, and have hunting ranges that span hundreds of thousands of square kilometres so as to maintain the element of surprise. As a result, tiger sharks’ distribution in Australian waters covers all but the country’s southern coast.

Tiger sharks like to keep their prey guessing.
Albert Kok/Wikimedia Commons, CC BY-SA

Read more: Finally, a proven way to keep great white sharks at arm’s length


Taken together, it’s clear that Australia’s waters are home to three predators that can pose a real danger, even if only an accidental one, to humans.

But remember that shark attacks are incredibly rare events, and fatal ones even rarer still. There are also lots of tips we can use to minimise the risk of having a negative encounter with a shark.

The ConversationDon’t swim in murky, turbid or dimly lit water, as sharks may not be able to see you properly (and you may not be able to see them). Avoid swimming in canals, or far from the shore, or along dropoffs. Swim in designated areas and with others, and avoid swimming where baitfish (or bait) may be present. And of course, always trust your instincts.

Blake Chapman, Adjunct Research Fellow, Science Communicator, The University of Queensland

This article was originally published on The Conversation. Read the original article.

Advertisements

Citizen scientists count nearly 2 million birds and reveal a possible kookaburra decline


Kerryn Herman, Deakin University

The fourth Aussie Backyard Bird Count has just ended, with nearly 2 million birds from 635 species submitted to the BirdLife Australia app. The count, which is in its fourth year, has created a national database of birds found in our backyards.

We don’t know yet exactly how many people participated this year, but more than 60,000 people submitted checklists in 2016. Participants span the whole country, though participation is highest in our urban areas. By surveying our backyards (rather than “good” bird spots), these citizen scientists provide ecologists – like me – with information from urban areas we would not otherwise sample.

This includes data on a range of common bird species that are not frequently analysed because these species are believed to be secure. One of the most surprising results is a decline in the frequency of occurrence of the laughing kookaburra across southeast Australia.

Counting birds

Everyone has a bird story – and fortunately for ecologists, everyone is willing to share them. With 85% of Australia’s population living in cities and towns, birds are an important connection to our natural environment.


BirdLife Australia

But birds are also good environmental indices. They’re generally easy to measure, they respond quickly to environmental change and we know a reasonable amount about the ecology of most species.

Between 1998 and 2014, BirdLife Australia volunteers collected a significant amount of data. This was used to develop a terrestrial bird index in 2015 – a bird “Dow Jones” to track our biodiversity. It was here that the decline in kookaburras was first identified.

The data were drawn from BirdLife Australia’s ongoing atlas project, now called Birdata. However, there are biases in this data set, as people obviously like to go birdwatching where they will see more birds. This may inflate the frequency of encountering some species and decrease the chances of encountering others – particularly rare and cryptic species.

For the last four years, we’ve asked volunteers to add to this data by counting birds around their home for a week in October, when many birds are highly active and visible. These counts complement the data already available in Birdata by allowing access to backyards across Australia, which are generally poorly represented in the larger data set.

While there are still limitations in the Backyard Bird Count data, such as the risk of mis-identification, for common species like the laughing kookaburra we can generally be confident that the identification is correct. Even if the same bird is counted multiple times, our models report only a species’ presence or absence, so inflated numbers don’t affect the trend.

Are kookaburras really declining?

The below figures show modelled trends for the kookaburra across metropolitan Melbourne and Sydney. These figures are derived from the volunteer-collected Birdata, much of which comes from green spaces and remnant vegetation in these landscapes.

I wondered whether these declines are true changes in the populations, or reflect a change in the way kookaburras are using the landscape, possibly moving into the matrix of urban backyards that just don’t get surveyed. Looking solely at the backyard count data, I found similar trends in the reporting rates of kookaburras as those in the models, supporting that this decline is at the population level. What started out in 2014 as a way of engaging the broader community with their birds is now collecting useful ecological data.

Further exploration of the ABBC data across other capital cities found some interesting things. In both Perth and Hobart, where the kookaburra is considered an introduced species, the birds are recorded more frequently than in Melbourne and across the ACT. In Perth, increases in 2016 compared to previous years suggest an increase in the species there.

Modelled trends for Kookaburras from 1998-2014. The figure on the left is for Melbourne, and on the right is for Sydney. The reporting rate shows the percentage of surveys where kookaburras were recorded as present. The thick black line is the modelled trend (with confidence intervals in dashed line), the pink line shows the statistically significant linear trend, the thin black line shows the monthly calculated reporting rate, and the green spots show acceleration (or a favourable change) in the trend. Note that due to modelling method, the ends of figures tend to blow out as there is no data from which to predict trend.
Unpublished models/K. Herman/BirdLife Australia, Author provided

While three years does not make a trend, Aussie Backyard Bird Count data from heavily urbanised areas suggest we are seeing a decline in this iconic species in the eastern capitals. Likely reasons for this are the loss of nesting hollows and possibly reductions in the availability of prey as we increasingly modify our urban landscapes. We don’t really know as this is not an area that has been researched.

We need citizen scientists

Collecting enough data (especially from the backyards of towns and cities) to detect these kinds of changes can be an overwhelming task. This is where citizen science programs like the Aussie Backyard Bird Count can help.

As well as helping ecologists track large-scale biodiversity trends, it also gives people the chance to connect with their natural environment and gain a greater appreciation of our unique fauna.

As with all citizen science projects, there are limitations in the data being collected. However, the Backyard Bird app has been designed to make counting as simple and standardised as possible, providing confidence in the tally of common and “iconic” species, and filling in the gaps found in other data sets.

The good old kookaburra is neither rare or cryptic. If anything, if people are seeking out “good” bird habitat to survey we would expect that kookaburras would be one of those species subject to inflated reporting. But this is not what we encountered.

The ConversationIf we are starting to see declines in species that we have traditionally considered secure, what does this mean for those that are already at risk? Once all the data from the Aussie Backyard Bird Count have been collated and vetted we will continue to explore the developing trends in Australia’s urban birds. Increasing engagement and awareness in our communities can help ensure our backyard birds are still around to count next year.

Kerryn Herman, Research Ecologist, Deakin University

This article was originally published on The Conversation. Read the original article.