Geoengineering the Great Barrier Reef needs strong rules



File 20180727 106505 1psdsqe.jpg?ixlib=rb 1.1
Can geoengineering buy the coral reefs more time?
Oregon State University/Flickr, CC BY-SA

Kerryn Brent, University of Tasmania; Brendan Gogarty, University of Tasmania; Jan McDonald, University of Tasmania, and Jeff McGee, University of Tasmania

The Great Barrier Reef has experienced extensive coral bleaching over the past two years. Faced with this reality, scientists are proposing a range of options to save the reef.

A recent conference showcased new possibilities for enhancing Reef resilience, including boosting coral abundance and geoengineering techniques that would manipulate local conditions to reduce ocean temperatures.




Read more:
Great Barrier Reef bleaching would be almost impossible without climate change


These geoengineering approaches carry their own risks, and require careful management, even at the research and field testing stages.

Technology is needed to buy the reef time

Climate change is affecting the reef through bleaching events, species redistribution, and ocean acidification. Stabilising environmental conditions “to protect current reef biodiversity” requires that global temperatures stay below 1.2℃. Yet modelling of the global community’s current commitments under the Paris Climate Agreement suggests that global warming between 2.6-3.2℃ will occur by 2100. This would destroy the Great Barrier Reef as we know it.

Artificial marine clouds already occur as a result of shipping exhaust. Scientists propose simulating this to cool the Reef.
Liam Gumley, Space Science and Engineering Center, University of Wisconsin-Madison

It is not surprising, then, that scientists are looking to buy the reef some time, while the international community works to stabilise and then reduce global greenhouse gas emissions. The Commonwealth and Queensland governments have announced funding for feasibility projects aimed at manipulating surface water temperatures using three different techniques:

  • Creating a reflective surface film that would float on the surface of the water. Made from calcium carbonate (the same mineral as coral), the film would reflect sunlight, thereby lowering water temperatures and ultraviolet radiation exposure.

  • Marine cloud brightening to also reflect more sunlight away from the reef. The plan is to spray microscopic salt particles into clouds using customised vessels or modified snow machines. This increases the concentration of droplets in clouds and encourages smaller, more reflective droplets to form.

  • Water-mixing units with large, slow moving fans that will draw cool water from 10-30 metres deep and deliver it to surface areas to limit coral heat stress. In 2017 this proposal received A$2.2 million in Commonwealth funding, to test eight water-mixing units over a 1km square area of Moore Reef, off the coast of Cairns.

Engineering the climate of Australia’s most iconic natural system carries obvious risks. Indeed, Australia has a history of well-intended attempts to manage nature that have backfired because the risks were not fully understood.




Read more:
Everyone agreed: cane toads would be a winner for Australia


We must be confident that such technological interventions will protect the reef, not contribute to its destruction. This is a problem because scientific trials are supposed to identify and assess risks, so we won’t fully understand what impacts they have until such trials are undertaken.

Governance necessary for public confidence

Building public confidence that potential risks have been identified and addressed is essential to the long-term success of reef geoengineering proposals. Even feasibility studies can be derailed if they lack public support.

We need to develop governance frameworks to ensure we have the best possible chance of saving our most important natural wonder.
Yanguang Lan, Unsplash

The legitimacy and ultimate acceptability of reef geoengineering technologies therefore demands robust and transparent processes for funding, research, field testing and eventual deployment. Drawing on the Oxford Principles for Geoengineering Governance, the minimum governance standards should include:

  • criteria and clear processes for research funding decisions
  • public access to information about planned field testing
  • demonstrated compliance with Australia’s environmental laws.

Current environmental laws do not make special exemptions for scientific research or testing in areas of national environmental significance, such as the Great Barrier Reef. Any geoengineering trial that might have a “significant impact” on those areas is illegal without a permit from the Commonwealth Environment Minister. The Minister is guided by the precautionary principle and World Heritage obligations in issuing such permits.

The Great Barrier Reef Marine Park Act imposes separate approval requirements and makes protection of the reef the highest priority. This would suggest that the standard for environmental assessment for any proposal to run geoengineering trials on the Reef should be high.

It is unclear how the federal environment minister and the Great Barrier Reef Marine Park Authority will evaluate whether the risks of field testing are small enough to justify granting their approval. The position is made more uncertain by the fact that the authority is directly involved in at least one of the projects. This uncertainty risks poor environmental outcomes and erosion of public confidence.

We need a strong framework for assessing and managing the risks of geoengineering, to address legitimate public concerns.

The ConversationAs the stewards of the reef, the Marine Park Authority is ideally placed to take the lead on developing this framework, to ensure we have the best possible chance of saving our most important natural wonder.

Kerryn Brent, Lecturer, Faculty of Law, University of Tasmania; Brendan Gogarty, Senior Lecturer in Law, University of Tasmania; Jan McDonald, Professor of Environmental Law, University of Tasmania, and Jeff McGee, Senior Lecturer in Climate Change, Marine and Antarctic Law Faculty of Law and Institute for Marine and Antarctic Studies, University of Tasmania

This article was originally published on The Conversation. Read the original article.

Advertisement

New map shows that only 13% of the oceans are still truly wild


File 20180731 176698 1vumezv.jpg?ixlib=rb 1.1
Tuna are among the most vulnerable species to human pressures.
Rich Carey/Shutterstock

Kendall Jones, The University of Queensland; Alan Friedlander, University of Hawaii; Benjamin Halpern, University of California, Santa Barbara; Caitlin Kuempel, The University of Queensland; Carissa Klein, The University of Queensland; Hedley Grantham, The University of Queensland; Hugh Possingham, The University of Queensland; James Watson, The University of Queensland; Nicole Shumway, and Oscar Venter, University of Northern British Columbia

Just 13% of the world’s oceans are now free from intense human activities such as fishing, according to a new map of ocean wilderness areas.

Our research, published in the journal Current Biology, shows that only 55 million square km of the global ocean can still be classified as “wilderness”, out of a total of 500 million square km.

There is almost no wilderness left in coastal seas, where human activities are most intense. Much of the remaining marine wilderness is clustered around the poles or near remote Pacific island nations with low populations.

Marine wilderness in exclusive economic zones (light blue), in areas outside national jurisdiction (dark blue), and marine protected areas (green).
Jones et al. Current Biology 2018

Humans rely on the ocean for food, livelihoods, and almost three-quarters of atmospheric oxygen. We use the ocean for the vast majority of global trade, and more than 2.8 billion people rely on seafood as an important protein source. It’s little wonder that more than eight in ten Australians live within 50km of the coast.

Earth’s ocean wilderness areas are home to unparalleled levels of marine life and are some of the only places where large predators are still found in historical numbers. Top predators such as sharks and tuna depend on these areas, as their slow reproduction rates make them particularly susceptible to decline even at mild levels of fishing.

Even the strictest, best-managed marine reserves cannot sustain the same levels of wildlife diversity as wilderness areas. This is either because reserves are too small, or because human activities in neighbouring areas impact wildlife as soon as they swim outside of reserve boundaries. According to our research, only 4.9% of marine wilderness is currently within marine protected areas.

There is evidence that wilderness areas are more resilient to rising sea temperatures and coral bleaching – stressors that cannot be halted without globally coordinated efforts to reduce emissions. These areas also give scientists a true baseline for system health, providing important information for restoring degraded marine ecosystems.

Threats to wilderness

Human impacts on marine ecosystems are becoming more intense and widespread
each year, threatening wilderness areas across the planet. Fishing is
now one of the most widespread activities by which humans harvest natural
resources. Industrial fishing covers 55% of the ocean, an area four times larger than is used for terrestrial agriculture. In many places, fishing has become so intense that large predators and charismatic species such as sea turtles have almost been wiped out.

Technological improvements have allowed humans to fish in the
farthest reaches of international waters. In the high Arctic, places that were once safe because of year-round ice cover are now open to fishing and shipping as warming seas melt the ice.

Even in nations with world-class fisheries management, such as Australia and the
United States, marine environments are being severely impacted by sediment and
nutrient runoff due to poor land management and deforestation. Sediment runoff onto the once pristine Great Barrier Reef is now five to ten times higher than historical levels, contributing to declining coral diversity and more frequent crown-of-thorns starfish outbreaks, and reducing the resilience of reefs against climate change.

Can we save the last of the wild?

Marine wilderness is overlooked in both global and national conservation strategies, as these areas are often assumed to be free from threatening processes and are therefore not a priority for conservation efforts. Our results show that this is a myth – wilderness areas in the ocean and on land are being rapidly lost, and protecting what remains is crucial. The Arctic, once thought of as untouched, is now likely to see new shipping channels, fisheries, and mining operations as sea ice disappears.

Protecting wilderness will require a combination of national and international efforts, but the fundamental goal must be to curb the impacts of current threats such as commercial fishing, shipping, resource extraction, and land-based runoff.

In nations like Australia and Canada, which still have substantial wilderness remaining within their national waters, using marine protected areas or fishery management regulations to protect wilderness will be crucial. Because even low levels of human activity can severely impact vulnerable species such as sharks and tuna, these areas should be strictly protected and cannot allow activities like commercial fishing.

However, current government plans to almost halve the area of strict protection in the Australian marine reserve system do not bode well for the future of wilderness protection.




Read more:
Australia’s new marine parks plan is a case of the Emperor’s new clothes


While protecting wilderness within national waters is legally straightforward,
preserving wilderness on the high seas will likely prove much more challenging, as no country has jurisdiction over these areas. One option may be to harness existing international and regional agreements, such as Regional Fisheries Management Organisations – international agencies formed by countries to manage shared fishing interests in a certain area. These organisations are already accustomed to set fishing limits, and have been used to close large areas of the high seas to damaging bottom-trawl fishing. An extension of their powers to create high seas conservation areas is certainly feasible, but this is likely to require substantial lobbying from member nations.




Read more:
New laws for the high seas: four key issues the UN talks need to tackle


The need for improved high-seas management is also now being recognised by the international community, with the UN currently negotiating a “Paris Agreement for the Ocean” – a legally binding high-seas conservation treaty to be established under the existing Law of the Sea Convention. Australia, as a wealthy nation and a signatory to fishing agreements in the Pacific, Indian and Southern Oceans, has the potential to be a world leader in marine wilderness conservation if it so chooses.

The ConversationJust like wilderness on land, pristine oceans are difficult to restore once lost. Our research should be a clarion call for immediate action to protect the world’s remaining wild oceans so that future generations can see the sea as it once was.

Kendall Jones, PhD candidate, Geography, Planning and Environmental Management, The University of Queensland; Alan Friedlander, Researcher, University of Hawaii; Benjamin Halpern, Professor, University of California, Santa Barbara; Caitlin Kuempel, PhD Candidate in Conservation Science, The University of Queensland; Carissa Klein, Postdoctoral research fellow in conservation biology, The University of Queensland; Hedley Grantham, Research Associate, The University of Queensland; Hugh Possingham, Professor, The University of Queensland; James Watson, Professor, The University of Queensland; Nicole Shumway, PhD Candidate, The University of Queensland, and Oscar Venter, Associate Professor and FRBC/West Fraser research chair, Ecosystem Science and Management Progam, University of Northern British Columbia

This article was originally published on The Conversation. Read the original article.

What’s wrong with big solar in cities? Nothing, if it’s done right



File 20180724 76263 9i8ydz.jpg?ixlib=rb 1.1
Residents near big solar projects are often concerned they cause glare and noise.
Electrical and Mechanical Services Department Headquarters rooftop solar, Hong Kong/Wikimedia Commons

Jason Byrne, University of Tasmania

Many of us are familiar with developments of big solar farms in rural and regional areas. These are often welcomed as a positive sign of our transition towards a low-carbon economy. But do large-scale solar installations have a place in our cities?

The City of Fremantle in Western Australia is considering a proposal to use a former landfill site for a large-scale solar farm. The reportedly 4.9 megawatt solar power station on an eight-hectare site would be, it’s said, Australia’s largest urban solar farm. The initiative is part of Fremantle’s ambition to be powered by 100% clean energy within a decade.




Read more:
Solar is now the most popular form of new electricity generation worldwide


The proposal is facing some community opposition, however. Residents are reportedly alarmed by the potential public health consequences of building on a rubbish dump, which risks releasing toxic contaminants such as asbestos into the environment. Other concerns include glare from the solar panels, or excessive noise.

Similar complaints about solar panels in cities are being seen all over the world, with opponents generally of the view “they do not belong in residential areas”. So what are the planning issues associated with large-scale solar installations in cities? And should we be concerned about possible negative impacts?

What is large-scale solar?

According to the Australian Clean Energy Regulator, large-scale solar refers to “a device with a kilowatt (kW) rating of more than 100 kilowatts”. A kilowatt is a measure of power – the rate of energy delivery at a given moment – whereas a kilowatt-hour (kWh) is a measure of the total energy produced (so a 100kW device operating for one hour would produce 100kWh of electricity).

Device here refers to not only the photovoltaic (PV) panels – the actual panels used in solar energy – but also to the infrastructure “behind the electricity meter”. So interconnected panels may still constitute a single device.

By this definition, there may already be large-scale solar installations in Australian cities. In Sydney for example, the recently opened system on top of the Alexandra Canal Transport Depot is by all accounts a large-scale solar system. It combines around 1,600 solar panels with enough battery storage for 500kWh of electricity.




Read more:
Sydney’s closer to being a zero-carbon city than you think


But this is not Sydney’s largest solar installation. That honour is presently held by the Sydney Markets in Flemington, among Australia’s largest rooftop solar installations, which generates around 3 megawatts (that’s 3,000kW). To date, there have been no publicly disclosed complaints received about these facilities.

Large-scale solar (sometimes called “big solar”) can also refer to solar arrays that use mirrors to concentrate sunlight onto solar PV panels. This is different to concentrated thermal solar, which uses mirrors to focus sunlight onto the top of a tower to heat salt, oil or other materials that can then be used to generate steam to power turbines for electricity generation.

What’s the problem with solar in cities?

Internationally, there is increasing recognition cities could be ideal locations for large-scale solar installations due to the amounts of unused land. This includes land alongside freeways and main roads, flood-prone land, and rooftops on factories, warehouses and residences. And locating big solar in cities can also reduce the energy losses that occur with transmitting electricity over long distances.

Australia’s combined rooftop solar installations already supply the equivalent of enough power for all the homes in Sydney. And even former landfill sites – which have few uses other than parkland and are often too contaminated to sustain other land uses such as residential development – can be a good use of space for solar farms. But such sites would need to be carefully managed so contaminants are not released during construction.

Large-scale solar installations can present some challenges for urban planning. For instance, mirrors can cause problems with glare, or even damage if they were misaligned (problems thus far have been in solar thermal plants). Maintenance vehicles may increase traffic in neighbourhoods. Installing solar panels could cause temporary problems with noise and lighting. And views could potentially be disrupted if adjoining residents overlook a large-scale solar installation.




Read more:
Pace of renewable energy shift leaves city planners struggling to keep up


But not all of these impacts would be long-term, and they can all potentially be managed through planning approval, permitting processes and development conditions. Installing screens or trees can improve views, for instance. Glare is a potential problem but again can be managed via screening (at the site or on overlooking buildings) or protective films on the panels.

The issue with the proposed solar farm in Fremantle is the fact it’s planned atop a former landfill site, known to contain harmful substances including asbestos, hydrocarbons and heavy metals. Unless carefully managed, construction of the solar farm could disturb these materials and potentially expose nearby residents to health impacts.

Most state environmental protection agencies recognise risks if the use of potentially contaminated land is to be changed, and have developed stringent guidelines for landfill management.

The Algarve Lagos solar farm in Portugal shows how empty land in cities can be used to host energy efficiency platforms.
Wikimedia Commons

The City of Fremantle has approved the proposed development, subject to the preparation of a site management plan among other conditions. Depending on site management, and the characteristics of surrounding neighbourhoods, poorly managed big solar on landfill sites could become an environmental justice issue. From this perspective, residents’ concerns are understandable, and the City of Fremantle will need to ensure it carefully monitors construction.




Read more:
Infrasound phobia spreads … to solar energy cells! What’s next?


Lessons for planning

It is reasonable to expect that cities will increasingly host large-scale solar installations. With careful site selection and management, the multiple benefits of clean energy can accrue to urban residents. Otherwise leftover or marginal land can derive an economic return.

The ConversationOf course care will need to be taken to minimise potential habitat loss or off site impacts such as visual intrusion, noise, and glare. But solar farms also have the potential to provide new habitats both via physical infrastructure (sites for nesting) and as part of site rehabilitation and management.

Jason Byrne, Professor of Human Geography and Planning, University of Tasmania

This article was originally published on The Conversation. Read the original article.