Labor’s policy can smooth the energy transition, but much more will be needed to tackle emissions


Frank Jotzo, Crawford School of Public Policy, Australian National University

The Labor party’s energy policy platform, released last week, is politically clever and would likely be effective. It includes plans to underwrite renewable energy and storage, and other elements that would help the energy transition along. Its approach to the transition away from coal-fired power is likely to need more work, and it will need to be accompanied by good policy in other sectors of the economy where greenhouse emissions are still climbing.

The politics is quite simple for Labor: support the transition to renewable electricity which is already underway and which a large majority of Australians support, and minimise the risk that its proposed policy instruments will come under effective attack in the lead-up to the 2019 election.




Read more:
Grattan on Friday: Labor’s energy policy is savvy – now is it scare-proof?


By aiming for 50% renewables at 2030, the party has claimed the high ground. That goal and perhaps a lot more is achievable, given that the large investment pipeline in electricity consists almost entirely of wind and solar projects, and that new renewables are now typically the cheapest options to produce energy with new plants.

The question then is what policy instruments Labor would use to facilitate the transition from coal to renewables.

NEG games

The government’s abandoned National Energy Guarantee (NEG) policy is now a political asset for Labor. If the Coalition were to support it under a Labor government, the policy would effectively be immune to political attack. If the Coalition were to block it, Labor could blame many future problems in electricity on the Coalition’s refusal to endorse a policy that it originally devised.

The NEG has many warts. Some of the compromises in its design were necessary to get it through the Coalition party room. That no longer matters, and so it should be possible to make improvements. One such improvement would be to allow for an explicit carbon price in electricity under the NEG, by creating an emissions intensity obligation for electricity generators with traded certificates. This is better than the opaque model of contract obligations on electricity retailers under the original version.

Underwriting renewables

But the real action under a Labor government might well come from a more direct policy approach to push the deployment of renewables. In his energy policy speech last week, Shorten foreshadowed that Labor would “invest in projects and underwrite contracts for clean power generation, as well as firming technologies like storage and gas”.

As interventionist as this sounds, it has some clear advantages over more indirect support mechanisms. First, it brings the costs of new projects down further by making cheap finance available – a tried and tested method in state-based renewables schemes. Second, it allows for a more targeted approach, supporting renewable energy generation where it makes most sense given demand and transmission lines, and prioritising storage where and when it is needed. Third, it channels government support only to new installations, rather than giving free money to wind farms and solar plants that are already in operation.

Managing coal exit

Where renewables rise, coal will fall. Labor’s approach to this issue centres on the affected workers and communities. A “just transition authority” would be created as a statutory authority, to administer redundancies, worker training, and economic diversification.

This is a good approach if it can work effectively and efficiently. But it may not be enough to manage the large and potentially rapid shifts in Australia’s power sector.

Contract prices for new wind farms and solar plants now are similar to or lower than the operating costs of many existing coal plants. The economics of existing coal plants are deteriorating, and many of Australia’s ageing coal power plants may shut down sooner than anticipated.

All that Labor’s policy says on the issue is that all large power plants would be required to provide three years’ notice of closure, as the Finkel Review recommended. But in practice this is unlikely to work.

Without any guiding framework, coal power plants could close very suddenly. If a major piece of equipment fails and repair is uneconomic, then the plant is out, and operators may find it opportune to run the plant right until that point. It’s like driving an old car – it runs sort of OK until the gearbox goes, and it’s off to the wreckers right then. It is unclear how a three-year rule could be enforced.

This is effectively what happened with the Hazelwood plant in Victoria. That closure caused a temporary rise in wholesale power prices, as new supply capacity gradually fills the gap.

One way to deal with this would be to draw up and implement some form of specific exit timetable for coal power plants. This would give notice to local communities, provide time to prepare investment in alternative economic activities, and allow replacement generation capacity to be brought online. Such a timetable would need a mechanism to implement it, probably a system of carrots and sticks.

Batteries, energy efficiency and the CEFC

Most public attention was given to a relatively small part of Labor’s energy policy platform: the promise to subsidise home batteries. Batteries can help reduce peak demand, and cut electricity bills for those who also have solar panels. But it is not clear whether home batteries are good value for money in the system overall. And the program would tend to benefit mostly upper middle-income earners.




Read more:
Labor’s battery plan – good policy, or just good politics?


Labor’s platform also foreshadows a renewed emphasis on energy efficiency, which is economically sensible.

Finally, Labor promises to double the Clean Energy Finance Corporation’s endowment with another A$10 billion, to be used for revolving loans. The CEFC is already the world’s biggest “green bank”, co-financing projects that cut emissions and deliver financial returns. Another A$5 billion is promised as a fund for upgrading transmission and distribution infrastructure. These are big numbers, and justifiably so – building our future energy system will need massive investments, and some of these will be best made by government.

Big plans for electricity, but what about the rest?

Overall, Labor’s plan is a solid blueprint to support the electricity transition, with strong ambition made possible by the tremendous technological developments of recent years.

But really it is only the start. Electricity accounts for one-third of national greenhouse emissions. Emissions from the power sector will continue to fall, but emissions from other sectors have been rising. That poses a huge challenge for the economy-wide emissions reductions that are needed not only to achieve the 2030 emissions targets, but the much deeper reductions needed in coming decades.

A national low-carbon strategy will need to look at how to get industry to shift to zero-emission electricity, how to convert road transport to electricity or hydrogen, and how to tackle the difficult question of agricultural emissions. More pre-election announcements are to come. It will be interesting to see how far Labor will be willing to go in the direction of putting a price on carbon, which remains the economically sensible but most politically charged policy option.

As difficult as electricity policy may seem based on the tumultuous politics that have surrounded it, more seismic shifts are waiting in the wings.The Conversation

Frank Jotzo, Director, Centre for Climate Economics and Policy, Crawford School of Public Policy, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

Protecting wetlands helps communities reduce damage from hurricanes and storms



File 20181009 72133 1o1hr7u.jpg?ixlib=rb 1.1
Protecting coastal wetlands, like this slough in Florida’s Everglades National Park, is a cost-effective way to reduce flooding and storm damage.
NPS/C. Rivas

Siddharth Narayan, University of California, Santa Cruz and Michael Beck, University of California, Santa Cruz

2017 was the worst year on record for hurricane damage in Texas, Florida and the Caribbean from Harvey, Irma and Maria. We had hoped for a reprieve this year, but less than a month after Hurricane Florence devastated communities across the Carolinas, Hurricane Michael has struck Florida.

Coastlines are being developed rapidly and intensely in the United States and worldwide. The population of central and south Florida, for example, has grown by 6 million since 1990. Many of these cities and towns face the brunt of damage from hurricanes. In addition, rapid coastal development is destroying natural ecosystems like marshes, mangroves, oyster reefs and coral reefs – resources that help protect us from catastrophes.

In a unique partnership funded by Lloyd’s of London, we worked with colleagues in academia, environmental organizations and the insurance industry to calculate the financial benefits that coastal wetlands provide by reducing storm surge damages from hurricanes. Our study, published in 2017, found that this function is enormously valuable to local communities. It offers new evidence that protecting natural ecosystems is an effective way to reduce risks from coastal storms and flooding.

Coastal wetlands and flood damage reduction: A collaboration between academia, conservation and the risk industry.

The economic value of flood protection from wetlands

Although there is broad understanding that wetlands can protect coastlines, researchers have not explicitly measured how and where these benefits translate into dollar values in terms of reduced risks to people and property. To answer this question, our group worked with experts who understand risk best: insurers and risk modelers.

Using the industry’s storm surge models, we compared the flooding and property damages that occurred with wetlands present during Hurricane Sandy to the damages that would have occurred if these wetlands were lost. First we compared the extent and severity of flooding during Sandy to the flooding that would have happened in a scenario where all coastal wetlands were lost. Then, using high-resolution data on assets in the flooded locations, we measured the property damages for both simulations. The difference in damages – with wetlands and without – gave us an estimate of damages avoided due to the presence of these ecosystems.

Our paper shows that during Hurricane Sandy in 2012, coastal wetlands prevented more than US$625 million in direct property damages by buffering coasts against its storm surge. Across 12 coastal states from Maine to North Carolina, wetlands and marshes reduced damages by an average of 11 percent.

These benefits varied widely by location at the local and state level. In Maryland, wetlands reduced damages by 30 percent. In highly urban areas like New York and New Jersey, they provided hundreds of millions of dollars in flood protection.

Wetland benefits for flood damage reduction during Sandy (redder areas benefited more from having wetlands).
Narayan et al., Nature Scientific Reports 7, 9463 (2017)., CC BY

Wetlands reduced damages in most locations, but not everywhere. In some parts of North Carolina and the Chesapeake Bay, wetlands redirected the surge in ways that protected properties directly behind them, but caused greater flooding to other properties, mainly in front of the marshes. Just as we would not build in front of a seawall or a levee, it is important to be aware of the impacts of building near wetlands.

Wetlands reduce flood losses from storms every year, not just during single catastrophic events. We examined the effects of marshes across 2,000 storms in Barnegat Bay, New Jersey. These marshes reduced flood losses annually by an average of 16 percent, and up to 70 percent in some locations.

Reductions in annual flood losses to properties that have a marsh in front (blue) versus properties that have lost the marshes in front (orange).
Narayan et al., Nature Scientific Reports 7, 9463 (2017)., CC BY

In related research, our team has also shown that coastal ecosystems can be highly cost-effective for risk reduction and adaptation along the U.S. Gulf Coast, particularly as part of a portfolio of green (natural) and gray (engineered) solutions.

Reducing risk through conservation

Our research shows that we can measure the reduction in flood risks that coastal ecosystems provide. This is a central concern for the risk and insurance industry and for coastal managers. We have shown that these risk reduction benefits are significant, and that there is a strong case for conserving and protecting our coastal ecosystems.

The next step is to use these benefits to create incentives for wetland conservation and restoration. Homeowners and municipalities could receive reductions on insurance premiums for managing wetlands. Post-storm spending should include more support for this natural infrastructure. And new financial tools such as resilience bonds, which provide incentives for investing in measures that reduce risk, could support wetland restoration efforts too.

The dense vegetation and shallow waters within wetlands can slow the advance of storm surge and dissipate wave energy.
USACE

Improving long-term resilience

Increasingly, communities are also beginning to consider ways to improve long-term resilience as they assess their recovery options.

There is often a strong desire to return to the status quo after a disaster. More often than not, this means rebuilding seawalls and concrete barriers. But these structures are expensive, will need constant upgrades as as sea levels rise, and can damage coastal ecosystems.

Even after suffering years of damage, Florida’s mangrove wetlands and coral reefs play crucial roles in protecting the state from hurricane surges and waves. And yet, over the last six decades urban development has eliminated half of Florida’s historic mangrove habitat. Losses are still occurring across the state from the Keys to Tampa Bay and Miami.

Protecting and nurturing these natural first lines of defense could help Florida homeowners reduce property damage during future storms. In the past two years our team has worked with the private sector and government agencies to help translate these risk reduction benefits into action for rebuilding natural defenses.

Across the United States, the Caribbean and Southeast Asia, coastal communities face a crucial question: Can they rebuild in ways that make them better prepared for the next storm, while also conserving the natural resources that make these locations so valuable? Our work shows that the answer is yes.

This is an updated version of an article originally published on Sept. 25, 2017.The Conversation

Siddharth Narayan, Postdoctoral Fellow, Coastal Flood Risk, University of California, Santa Cruz and Michael Beck, Research professor, University of California, Santa Cruz

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Tassie devils’ decline has left a feast of carrion for feral cats



File 20181127 76737 frgu15.jpg?ixlib=rb 1.1
Healthy Tasmanian devil populations have cornered the market on carrion.
Menna Elizabeth Jones, Author provided

Calum Cunningham, University of Tasmania; Christopher Johnson, University of Tasmania; Menna Elizabeth Jones, University of Tasmania, and Tracey Hollings, University of Melbourne

The decline of Tasmanian devils is having an unusual knock-on effect: animal carcasses would once have been gobbled up in short order by devils are now taking many days longer to disappear.

We made the discovery, published today in the journal Proceedings of the Royal Society B, by placing carcasses in a range of locations and watching what happened. We found that reduced scavenging by devils results in extra food for less efficient scavengers, such as feral cats.

Tasmanian devils have struggled for two decades against a typically fatal transmissible cancer, called devil facial tumour disease. The disease has caused devil populations to plummet by about 80% on average, and by up to 95% in some areas.

DFTD has spread across most of Tasmania over a 20-year period. Dashed lines show the estimated disease front.
Calum Cunningham/Menna Jones

Scavengers are carnivores that feed on dead animals (carrion). Almost all carnivores scavenge to a greater or lesser degree, but the devil is Tasmania’s dominant scavenger. Since the extinction of the Tasmanian tiger, it is also the island’s top predator.

A scavenging experiment

In our study, we put out carcasses of the Tasmanian pademelon (a small wallaby weighing roughly 5kg) in a variety of places, ranging from disease-free areas with large devil populations, to long-diseased areas where devil numbers are very low. We then used motion-sensor cameras to record all scavenger species that fed on the carcasses.

The Carnivores of Tasmania: a Scavenging Experiment.

Unsurprisingly, much less carrion was consumed by devils in areas where devil populations have declined. This has increased the availability of carrion for other species, such as the invasive feral cat, spotted-tailed quoll, and forest raven. All of these species significantly increased their scavenging in places with fewer devils.

Consumption of experimentally placed carcasses.
Proceedings of the Royal Society B

The responses of native scavengers (quolls and ravens) were subtly different to those of feral cats. The amount of feeding by quolls and ravens depended simply on how much of each carcass had already been consumed by devils. Ravens and quolls are smaller and less efficient than devils at consuming carcasses, so they get the chance to feed only when devils have not already monopolised a carcass.




Read more:
Tasmanian devils reared in captivity show they can thrive in the wild


In contrast, feral cats tended to scavenge only at sites where devils were at very low abundance. This suggests that healthy devil populations create a “landscape of fear” that causes cats to avoid carcasses altogether in areas where they are likely to encounter a devil. It seems that the life of a feral cat is now less scary in the absence of devils.

Predator prevalence

By looking at 20 years of bird surveys from BirdLife Australia, we also found that the odds of encountering a raven in Tasmania have more than doubled from 1998 to 2017. However, we were unable to directly link this with devil declines. It is likely the raven population is growing in response to a range of factors that includes land-use change and agricultural intensification, as well as reduced competition with devils.

Other studies have shown that cats have also become more abundant in areas where devils have declined. This highlights the potential for devils to act as a natural biological control on cats. Cats are a major threat to small native animals and are implicated in most Australian mammal extinctions.

Carcass concerns

Although smaller scavengers consumed more carrion as devils declined, they were unable to consume them as rapidly as devils. This has resulted in the accumulation of carcasses that would previously have been quickly and completely eaten by devils.

In places with plenty of devils, carcasses were completely eaten within an average of five days, compared with 13 days in places where devil facial tumour disease is rife. That means carcasses last much longer where devils are rare.

DFTD has spread across most of Tasmania over a 20-year period. Dashed lines show the estimated disease front.
Calum Cunningham/Menna Jones

Around 2 million medium-sized animals are killed by vehicles or culled in Tasmania each year, and most are simply left to decompose where they fall. With devils consuming much less carrion, it is likely that carcasses are accumulating across Tasmania. It is unclear how much of a disease risk they pose to wildlife and livestock.

Conserving carnivores

Large carnivores are declining throughout the world, with knock-on effects such as increasing abundance of smaller predators. In recent years, some large carnivores have begun returning to their former ranges, bringing hope that their lost ecological roles may be restored.

Carnivores are declining for many reasons, but an underlying cause is that humans do not necessarily appreciate their pivotal role in the health of entire ecosystems. One way to change this is to recognise the beneficial services they provide.




Read more:
Tasmanian devils are evolving rapidly to fight their deadly cancer


Our research highlights one of these benefits. It supports arguments that we should help the devil population recover, not just for their own sake but for other species too, including those threatened by feral cats.

The devil seems to be solving the disease problem itself, rapidly evolving resistance to facial tumours. Any management plan will need to help this process, and not hinder it. Potentially, returning devils to mainland Australia could provide similar benefit to wildlife threatened by feral predators.The Conversation

Calum Cunningham, PhD candidate, University of Tasmania, University of Tasmania; Christopher Johnson, Professor of Wildlife Conservation and ARC Australian Professorial Fellow, University of Tasmania; Menna Elizabeth Jones, Associate professor, University of Tasmania, and Tracey Hollings, Senior Scientist, Ecological Modelling at Arthur Rylah Institute for Environmental Research, and Honorary Research Fellow, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Four ways our cities can cut transport emissions in a hurry: avoid, shift, share and improve


File 20181122 161615 146fgwv.jpg?ixlib=rb 1.1
Urgent and radical change in urban transport policies and practices will benefit the planet and future generations.
blurAZ/Shutterstock

Hussein Dia, Swinburne University of Technology

The UN Intergovernmental Panel on Climate Change recently warned that global warming could reach 1.5℃ as early as 2030. The landmark report by leading scientists urged nations to do more to avert an impending crisis.

We have 12 years, the report said, to contain greenhouse gas emissions. This includes serious efforts to reduce transport emissions.




Read more:
New UN report outlines ‘urgent, transformational’ change needed to hold global warming to 1.5°C


In Australia, transport is the third-largest source of greenhouse gases, accounting for around 17% of emissions.
Passenger cars account for around half of our transport emissions.

The transport sector is also one of the strongest factors in emissions growth in Australia. Emissions from transport have increased nearly 60% since 1990more than any other sector. Australia is ranked 20th out of 25 of the largest energy-using countries for transport energy efficiency.

Cities around the world have many opportunities to reduce emissions. But this requires renewed thinking and real commitment to change.

Our planet can’t survive our old transport habits

Past (and still current) practices in urban and transport planning are fundamental causes of the transport problems we face today.

Over the past half-century, cities worldwide have grown rapidly, leading to urban sprawl. The result was high demand for motorised transport and, in turn, increased emissions.

The traffic gridlock on roads and motorways was the catalyst for most transport policy responses during that period. The solution prescribed for most cities was to build out of congestion by providing more infrastructure for private vehicles. Limited attention was given to managing travel demand or improving other modes of transport.




Read more:
Stuck in traffic: we need a smarter approach to congestion than building more roads


Equating mobility with building more roads nurtured a tendency towards increased motorisation, reinforcing an ever-increasing inclination to expand the road network. The result was a range of unintended adverse environmental, social and economic consequences. Most of these are rooted in the high priority given to private vehicles.

What are the opportunities to change?

The various strategies to move our cities in the right direction can be grouped into four broad categories: avoid, shift, share, and improve. Major policy, behaviour and technology changes are required to make these strategies work.

Avoid strategies aim to slow the growth of travel. They include initiatives to reduce trip lengths, such as high-density and mixed land use developments. Other options decrease private vehicle travel – for example, through car/ride sharing and congestion pricing. And teleworking and e-commerce help people avoid private car trips altogether.




Read more:
City-wide trial shows how road use charges can reduce traffic jams


Shanghai’s Hongqiao transport hub is a unique example of an integrated air, rail and mixed land use development. It combines Hongqiao’s airport, metro subway lines, and regional high-speed rail. A low-carbon residential and commercial precinct surrounds the hub.

Layout of Shanghai Hongqiao integrated transport hub.
Peng & Shen (2016)/Researchgate, CC BY

Shift strategies encourage travellers to switch from private vehicles to public transport, walking and cycling. This includes improving bus routes and service frequency.

Pricing strategies that discourage private vehicles and encourage other modes of transport can also be effective. Policies that include incentives that make electric vehicles more affordable have been shown to encourage the shift.

Norway is an undisputed world leader in electric vehicle uptake. Nearly a third of all new cars sold in 2017 were a plug-in model. The electric vehicle market share was expected to be as much as 40% within a year.

An electric vehicle charging station in the Norwegian capital Oslo.
Softulka/Shutterstock



Read more:
The new electric vehicle highway is a welcome gear shift, but other countries are still streets ahead


Share strategies affect car ownership. New sharing economy businesses are already moving people, goods and services. Shared mobility, rather than car ownership, is providing city dwellers with a real alternative.

This trend is likely to continue and will pose significant challenges to car ownership models.

Uber claims that its carpooling service in Mumbai saved 936,000 litres of fuel and reduced greenhouse gas emissions by 2,662 metric tonnes within one year. It also reports that UberPool in London achieved a reduction of more than 1.1 million driving kilometres in just six months.

UberPool is available in inner Melbourne suburbs. Trip must begin and end in this area.
Uber

Improve strategies promote the use of technologies to optimise performance of transport modes and intelligent infrastructure. These include intelligent transport systems, urban information technologies and emerging solutions such as autonomous mobility.

Our research shows that sharing 80% of autonomous vehicles will reduce net emissions by up to 20%. The benefits increase with wider adoption of autonomous shared electric vehicles.

Autonomous vehicles can offer first- and last-kilometre solutions, especially in outer suburbs with limited public transport services.
Monopoly919/Shutterstock



Read more:
Utopia or nightmare? The answer lies in how we embrace self-driving, electric and shared vehicles


The urgency and benefits of steering our cities towards a path of low-carbon mobility are unmistakable. This was recognised in the past but progress has been slow. Today, the changing context for how we build future cities – smart, healthy and low-carbon – presents new opportunities.

If well planned and implemented, these four interventions will collectively achieve transport emission reduction targets. They will also improve access to the jobs and opportunities that are preconditions for sound economic development in cities around the world.The Conversation

Hussein Dia, Chair, Department of Civil and Construction Engineering, Swinburne University of Technology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Greenland: how rapid climate change on world’s largest island will affect us all



File 20170818 7937 vmrbcz.jpg?ixlib=rb 1.1

Dan Bach Kristensen / shutterstock

Kathryn Adamson, Manchester Metropolitan University

The largest wildfire ever recorded in Greenland was recently spotted close to the west coast town of Sisimiut, not far from Disko Island where I research retreating glaciers. The fire has captured public and scientific interest not just because its size and location came as a surprise, but also because it is yet another signpost of deep environmental change in the Arctic.

Greenland is an important cog in the global climate system. The ice sheet which covers 80% of the island reflects so much of the sun’s energy back into space that it moderates temperatures through what is known as the “albedo effect”. And since it occupies a strategic position in the North Atlantic, its meltwater tempers ocean circulation patterns.

Most of Greenland is covered by more than a kilometre of ice.
Eric Gaba / NGDC, CC BY-SA

But Greenland is especially vulnerable to climate change, as Arctic air temperatures are currently rising at twice the global average rate. Environmental conditions are frequently setting new records: “the warmest”, “the wettest”, “the driest”.

Despite its size, the fire itself represents only a snapshot of Greenland’s fire history. It alone cannot tell us about wider Arctic climate change.

But when we superimpose these extraordinary events onto longer-term environmental records, we can see important trends emerging.

The ice sheet is melting

Between 2002 and 2016 the ice sheet lost mass at a rate of around 269 gigatonnes per year. One gigatonne is one billion tonnes. One tonne is about the weight of a walrus.

Leave my weight out of this.
BMJ / shutterstock

During the same period, the ice sheet also showed some unusual short-term behaviour. The 2012 melt season was especially intense – 97% of the ice sheet experienced surface melt at some point during the year. Snow even melted at its summit, the highest point in the centre of the island where the ice is piled up more than 3km above sea level.

Change in total mass of the Greenland Ice Sheet (in Gt) from 2002 to 2016. Red crosses indicate the values every April.
NOAA

In April 2016 Greenland saw abnormally high temperatures and its earliest ever “melt event” (a day in which more than 10% of the ice sheet has at least 1mm of surface melt). Early melting doesn’t usher in a period of complete and catastrophic change – the ice won’t vanish overnight. But it does illustrate how profoundly and rapidly the ice sheet can respond to rising temperatures.

Permafrost is thawing

Despite its icy image, the margins of Greenland are actually quite boggy, complete with swarms of mosquitoes. This is the “active layer”, made up of peaty soil and sediment up to two metres thick, which temporarily thaws during the summer. The underlying permafrost, which can reach depths of 100m, remains permanently frozen.

Fighting off the mosquitos in boggy Greenland.
Kathryn Adamson, Author provided

In Greenland, like much of the Arctic, rising temperatures are thawing the permafrost. This means the active layer is growing by up to 1.5cm per year. This trend is expected to continue, seeing as under current IPCC predictions, Arctic air temperatures will rise by between 2.0°C and 7.5°C this century.

Arctic permafrost contains more than 1,500 billion tonnes of dead plants and animals (around 1,500 billion walrus equivalent) which we call “organic matter”. Right now, this stuff has been frozen for thousands of years. But when the permafrost thaws this organic matter will decay, releasing carbon and methane (another greenhouse gas) into the atmosphere.

If thawing continues, it’s estimated that by 2100 permafrost will emit 850-1,400 billion tonnes of CO₂ equivalent (for comparison: total global emissions in 2012 was 54 billion tonnes of CO₂ equivalent). All that extra methane and carbon of course has the potential to enhance global warming even further.

With this in mind, it is clear to see why the recent wildfire, which was burning in dried-out peat in the active layer, was especially interesting to researchers. If Greenland’s permafrost becomes increasingly degraded and dry, there is the potential for even bigger wildfires which would release vast stores of greenhouse gases into the atmosphere.

Species are adapting to a changing ecosystem

Major changes in the physical environment are already affecting the species that call Greenland home. Just look at polar bears, the face of Arctic climate change. Unlike other bears, polar bears spend most of their time at sea, which explains their Latin name Ursus maritimus. In particular they rely on sea ice as it gives them a deep-water platform from which to hunt seals.

However, since 1979 the extent of sea ice has decreased by around 7.4% per decade due to climate warming, and bears have had to adjust their habitat use. With continued temperature rise and sea ice disappearance, it’s predicted that populations will decline by up to 30% in the next few decades, taking the total number of polar bears to under 9,000.

Where are you, seals?
Mario_Hoppmann / shutterstock

I have considered only a handful of the major environmental shifts in Greenland over the past few decades, but the effects of increasing temperatures are being felt in all parts of the earth system. Sometimes these are manifest as extreme events, at others as slow and insidious changes.

The different parts of the environmental jigsaw interact, so that changes in one part (sea ice decline, say) influence another (polar bear populations). We need to keep a close eye on the system as a whole if we are to make reliable interpretations – and meaningful plans for the future.The Conversation

Kathryn Adamson, Senior Lecturer in Physical Geography, Manchester Metropolitan University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Dynasties: Lions may disappear without urgent funding for conservation


Niki Rust, Newcastle University

In part three of the BBC’s new nature series Dynasties, the protagonists, Charm and Sienna, show us how hard it is to be a successful lioness in a land filled with enemies.

Under constant threat of marauding hyenas and cub-killing male lions, the two mothers have to fight for their lives to ensure their offspring have a chance of making it to adulthood. But the episode also shows us that the biggest enemy of lions isn’t other wild predators – it’s humans.

Down from as many as 200,000 lions a century ago, some experts believe that we could now have as few as 20,000 individuals remaining in the wild – and that number is likely to be falling by the day. Worryingly, the general public are mostly unaware of their precarious conservation status. We have done a bad job of showing the perilous state of these big cats.

The lion’s kingdom under siege

Lions face attack by humans on many fronts. Panthera, a wild cat conservation organisation, believes the most serious causes for their decline include habitat loss, humans killing them to protect their livestock, wild prey depletion, accidental snaring, poorly managed trophy hunting and the illegal wildlife trade.

Since their threats are so varied, there is no single solution for protecting lions and overcoming these threats will be no mean feat. It will require locally-tailored solutions that fit each specific context. For instance, for lions that reside alongside people in areas outside national parks, research has shown that it is absolutely vital to reduce the perceived costs of lions to local people, like livestock depredation, while increasing their benefits, such as income from photographic tourism or trophy hunting.

Tourists gather to spot lions on safari in the Maasai Mara park.
Wikimedia Commons/Bjørn Christian Tørrissen., CC BY-SA

For lions inside protected areas, some experts argue that we must fence lions in to stop them causing problems with people. However, this has earned criticism from others, who believe that fences incur significant ecological and economic costs by disrupting the migration of herbivores. The issue over “to fence or not to fence” has turned into a bit of cat fight and shows the political nuances and ecological complexities of conserving such a charismatic species.

In a bold attempt to reunite conservationists, Pride, the Lion Conservation Alliance, has brought together five lion NGOs to pool their efforts and share funding. It may come as no surprise that, like the species they’re fighting to conserve, they have realised the benefits of coming together and working as a team rather than competing.

A lion always pays his debts

Focusing on lion populations in Kenya, Mozambique, Tanzania and Zambia, their community conservation efforts empower locals to be stewards of wildlife. By turning lion poachers into guardians, their initiatives have reduced lion killing by up to 99% in some of the areas in which they work.

By building on the cultural significance of lion hunts, young warriors that would usually show their bravery by killing lions are now employed to track lions and monitor their activities. They also inform their community if lions are approaching so that farmers can guard their livestock.

While TV shows such as Dynasties are helping to raise the profile of this threatened carnivore, what the lion needs now more than anything is funding. Conserving lions is an expensive business: one recent paper showed that to effectively manage the protected areas where lions currently reside would require a whopping US$0.9 billion to US$2.1 billion in additional income per year – on top of the money that is already raised.

The areas where lions are known to have lived in the past (red) versus where they survive today (blue).
Wikimedia Commons/Tommyknocker.

Where this cash comes from remains a bit of a mystery. We have to go beyond financing conservation from the meagre income of photographic tourism in national parks. Solutions could involve more corporate partnerships and financially linking lion lovers in the West to Africans living with lions.

An idea from Sir David Attenborough himself argues that companies that use lions in their marketing should pay for lion conservation. What is abundantly clear is that if we want lions to have a future, we must start stumping up the cash for their conservation.

Many commentators have suggested BBC’s Dynasties takes on the gripping, conflict-ridden format of storytelling that Game of Thrones perfected. If this is the case, humans would surely play the vicious and selfish King Joffrey. It is us, after all, who terrorise lions the most. But it is us, too, who have the power to guarantee their survival.The Conversation

Niki Rust, Postdoctoral Researcher, Newcastle University

This article is republished from The Conversation under a Creative Commons license. Read the original article.