Protecting wetlands helps communities reduce damage from hurricanes and storms



File 20181009 72133 1o1hr7u.jpg?ixlib=rb 1.1
Protecting coastal wetlands, like this slough in Florida’s Everglades National Park, is a cost-effective way to reduce flooding and storm damage.
NPS/C. Rivas

Siddharth Narayan, University of California, Santa Cruz and Michael Beck, University of California, Santa Cruz

2017 was the worst year on record for hurricane damage in Texas, Florida and the Caribbean from Harvey, Irma and Maria. We had hoped for a reprieve this year, but less than a month after Hurricane Florence devastated communities across the Carolinas, Hurricane Michael has struck Florida.

Coastlines are being developed rapidly and intensely in the United States and worldwide. The population of central and south Florida, for example, has grown by 6 million since 1990. Many of these cities and towns face the brunt of damage from hurricanes. In addition, rapid coastal development is destroying natural ecosystems like marshes, mangroves, oyster reefs and coral reefs – resources that help protect us from catastrophes.

In a unique partnership funded by Lloyd’s of London, we worked with colleagues in academia, environmental organizations and the insurance industry to calculate the financial benefits that coastal wetlands provide by reducing storm surge damages from hurricanes. Our study, published in 2017, found that this function is enormously valuable to local communities. It offers new evidence that protecting natural ecosystems is an effective way to reduce risks from coastal storms and flooding.

Coastal wetlands and flood damage reduction: A collaboration between academia, conservation and the risk industry.

The economic value of flood protection from wetlands

Although there is broad understanding that wetlands can protect coastlines, researchers have not explicitly measured how and where these benefits translate into dollar values in terms of reduced risks to people and property. To answer this question, our group worked with experts who understand risk best: insurers and risk modelers.

Using the industry’s storm surge models, we compared the flooding and property damages that occurred with wetlands present during Hurricane Sandy to the damages that would have occurred if these wetlands were lost. First we compared the extent and severity of flooding during Sandy to the flooding that would have happened in a scenario where all coastal wetlands were lost. Then, using high-resolution data on assets in the flooded locations, we measured the property damages for both simulations. The difference in damages – with wetlands and without – gave us an estimate of damages avoided due to the presence of these ecosystems.

Our paper shows that during Hurricane Sandy in 2012, coastal wetlands prevented more than US$625 million in direct property damages by buffering coasts against its storm surge. Across 12 coastal states from Maine to North Carolina, wetlands and marshes reduced damages by an average of 11 percent.

These benefits varied widely by location at the local and state level. In Maryland, wetlands reduced damages by 30 percent. In highly urban areas like New York and New Jersey, they provided hundreds of millions of dollars in flood protection.

Wetland benefits for flood damage reduction during Sandy (redder areas benefited more from having wetlands).
Narayan et al., Nature Scientific Reports 7, 9463 (2017)., CC BY

Wetlands reduced damages in most locations, but not everywhere. In some parts of North Carolina and the Chesapeake Bay, wetlands redirected the surge in ways that protected properties directly behind them, but caused greater flooding to other properties, mainly in front of the marshes. Just as we would not build in front of a seawall or a levee, it is important to be aware of the impacts of building near wetlands.

Wetlands reduce flood losses from storms every year, not just during single catastrophic events. We examined the effects of marshes across 2,000 storms in Barnegat Bay, New Jersey. These marshes reduced flood losses annually by an average of 16 percent, and up to 70 percent in some locations.

Reductions in annual flood losses to properties that have a marsh in front (blue) versus properties that have lost the marshes in front (orange).
Narayan et al., Nature Scientific Reports 7, 9463 (2017)., CC BY

In related research, our team has also shown that coastal ecosystems can be highly cost-effective for risk reduction and adaptation along the U.S. Gulf Coast, particularly as part of a portfolio of green (natural) and gray (engineered) solutions.

Reducing risk through conservation

Our research shows that we can measure the reduction in flood risks that coastal ecosystems provide. This is a central concern for the risk and insurance industry and for coastal managers. We have shown that these risk reduction benefits are significant, and that there is a strong case for conserving and protecting our coastal ecosystems.

The next step is to use these benefits to create incentives for wetland conservation and restoration. Homeowners and municipalities could receive reductions on insurance premiums for managing wetlands. Post-storm spending should include more support for this natural infrastructure. And new financial tools such as resilience bonds, which provide incentives for investing in measures that reduce risk, could support wetland restoration efforts too.

The dense vegetation and shallow waters within wetlands can slow the advance of storm surge and dissipate wave energy.
USACE

Improving long-term resilience

Increasingly, communities are also beginning to consider ways to improve long-term resilience as they assess their recovery options.

There is often a strong desire to return to the status quo after a disaster. More often than not, this means rebuilding seawalls and concrete barriers. But these structures are expensive, will need constant upgrades as as sea levels rise, and can damage coastal ecosystems.

Even after suffering years of damage, Florida’s mangrove wetlands and coral reefs play crucial roles in protecting the state from hurricane surges and waves. And yet, over the last six decades urban development has eliminated half of Florida’s historic mangrove habitat. Losses are still occurring across the state from the Keys to Tampa Bay and Miami.

Protecting and nurturing these natural first lines of defense could help Florida homeowners reduce property damage during future storms. In the past two years our team has worked with the private sector and government agencies to help translate these risk reduction benefits into action for rebuilding natural defenses.

Across the United States, the Caribbean and Southeast Asia, coastal communities face a crucial question: Can they rebuild in ways that make them better prepared for the next storm, while also conserving the natural resources that make these locations so valuable? Our work shows that the answer is yes.

This is an updated version of an article originally published on Sept. 25, 2017.The Conversation

Siddharth Narayan, Postdoctoral Fellow, Coastal Flood Risk, University of California, Santa Cruz and Michael Beck, Research professor, University of California, Santa Cruz

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Tassie devils’ decline has left a feast of carrion for feral cats



File 20181127 76737 frgu15.jpg?ixlib=rb 1.1
Healthy Tasmanian devil populations have cornered the market on carrion.
Menna Elizabeth Jones, Author provided

Calum Cunningham, University of Tasmania; Christopher Johnson, University of Tasmania; Menna Elizabeth Jones, University of Tasmania, and Tracey Hollings, University of Melbourne

The decline of Tasmanian devils is having an unusual knock-on effect: animal carcasses would once have been gobbled up in short order by devils are now taking many days longer to disappear.

We made the discovery, published today in the journal Proceedings of the Royal Society B, by placing carcasses in a range of locations and watching what happened. We found that reduced scavenging by devils results in extra food for less efficient scavengers, such as feral cats.

Tasmanian devils have struggled for two decades against a typically fatal transmissible cancer, called devil facial tumour disease. The disease has caused devil populations to plummet by about 80% on average, and by up to 95% in some areas.

DFTD has spread across most of Tasmania over a 20-year period. Dashed lines show the estimated disease front.
Calum Cunningham/Menna Jones

Scavengers are carnivores that feed on dead animals (carrion). Almost all carnivores scavenge to a greater or lesser degree, but the devil is Tasmania’s dominant scavenger. Since the extinction of the Tasmanian tiger, it is also the island’s top predator.

A scavenging experiment

In our study, we put out carcasses of the Tasmanian pademelon (a small wallaby weighing roughly 5kg) in a variety of places, ranging from disease-free areas with large devil populations, to long-diseased areas where devil numbers are very low. We then used motion-sensor cameras to record all scavenger species that fed on the carcasses.

The Carnivores of Tasmania: a Scavenging Experiment.

Unsurprisingly, much less carrion was consumed by devils in areas where devil populations have declined. This has increased the availability of carrion for other species, such as the invasive feral cat, spotted-tailed quoll, and forest raven. All of these species significantly increased their scavenging in places with fewer devils.

Consumption of experimentally placed carcasses.
Proceedings of the Royal Society B

The responses of native scavengers (quolls and ravens) were subtly different to those of feral cats. The amount of feeding by quolls and ravens depended simply on how much of each carcass had already been consumed by devils. Ravens and quolls are smaller and less efficient than devils at consuming carcasses, so they get the chance to feed only when devils have not already monopolised a carcass.




Read more:
Tasmanian devils reared in captivity show they can thrive in the wild


In contrast, feral cats tended to scavenge only at sites where devils were at very low abundance. This suggests that healthy devil populations create a “landscape of fear” that causes cats to avoid carcasses altogether in areas where they are likely to encounter a devil. It seems that the life of a feral cat is now less scary in the absence of devils.

Predator prevalence

By looking at 20 years of bird surveys from BirdLife Australia, we also found that the odds of encountering a raven in Tasmania have more than doubled from 1998 to 2017. However, we were unable to directly link this with devil declines. It is likely the raven population is growing in response to a range of factors that includes land-use change and agricultural intensification, as well as reduced competition with devils.

Other studies have shown that cats have also become more abundant in areas where devils have declined. This highlights the potential for devils to act as a natural biological control on cats. Cats are a major threat to small native animals and are implicated in most Australian mammal extinctions.

Carcass concerns

Although smaller scavengers consumed more carrion as devils declined, they were unable to consume them as rapidly as devils. This has resulted in the accumulation of carcasses that would previously have been quickly and completely eaten by devils.

In places with plenty of devils, carcasses were completely eaten within an average of five days, compared with 13 days in places where devil facial tumour disease is rife. That means carcasses last much longer where devils are rare.

DFTD has spread across most of Tasmania over a 20-year period. Dashed lines show the estimated disease front.
Calum Cunningham/Menna Jones

Around 2 million medium-sized animals are killed by vehicles or culled in Tasmania each year, and most are simply left to decompose where they fall. With devils consuming much less carrion, it is likely that carcasses are accumulating across Tasmania. It is unclear how much of a disease risk they pose to wildlife and livestock.

Conserving carnivores

Large carnivores are declining throughout the world, with knock-on effects such as increasing abundance of smaller predators. In recent years, some large carnivores have begun returning to their former ranges, bringing hope that their lost ecological roles may be restored.

Carnivores are declining for many reasons, but an underlying cause is that humans do not necessarily appreciate their pivotal role in the health of entire ecosystems. One way to change this is to recognise the beneficial services they provide.




Read more:
Tasmanian devils are evolving rapidly to fight their deadly cancer


Our research highlights one of these benefits. It supports arguments that we should help the devil population recover, not just for their own sake but for other species too, including those threatened by feral cats.

The devil seems to be solving the disease problem itself, rapidly evolving resistance to facial tumours. Any management plan will need to help this process, and not hinder it. Potentially, returning devils to mainland Australia could provide similar benefit to wildlife threatened by feral predators.The Conversation

Calum Cunningham, PhD candidate, University of Tasmania, University of Tasmania; Christopher Johnson, Professor of Wildlife Conservation and ARC Australian Professorial Fellow, University of Tasmania; Menna Elizabeth Jones, Associate professor, University of Tasmania, and Tracey Hollings, Senior Scientist, Ecological Modelling at Arthur Rylah Institute for Environmental Research, and Honorary Research Fellow, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.