Indonesian Dam a Threat to the Tapanuli Orangutan


The link below is to an article that takes a look at the threat to the Tapanuli Orangutan from a proposed Indonesian Dam.

For more visit:
https://news.mongabay.com/2019/03/activists-fighting-to-save-orangutan-habitat-from-dam-unfazed-by-legal-setback/

Botswana’s Elephants Under Threat From Poaching


The link below is to an article that takes a look at the threats to Botswana’s elephants from poaching.

For more visit:
https://news.mongabay.com/2019/03/trouble-in-botswanas-elephant-paradise-as-poaching-said-to-rise/

The dingo is a true-blue, native Australian species


Bradley Smith, CQUniversity Australia; Corey J. A. Bradshaw, Flinders University; Euan Ritchie, Deakin University; Justin W. Adams, Monash University; Kylie M Cairns, UNSW, and Mathew Crowther, University of Sydney

Of all Australia’s wildlife, one stands out as having an identity crisis: the dingo. But our recent article in the journal Zootaxa argues that dingoes should be regarded as a bona fide species on multiple fronts.

This isn’t just an issue of semantics. How someone refers to dingoes may reflect their values and interests, as much as the science.

How scientists refer to dingoes in print reflects their background and place of employment, and the Western Australian government recently made a controversial attempt to classify the dingo as “non-native fauna”.




Read more:
Why the WA government is wrong to play identity politics with dingoes


How we define species – called taxonomy – affects our attitudes, and long-term goals for their conservation.

What is a dog?

Over many years, dingoes have been called many scientific names: Canis lupus dingo (a subspecies of the wolf), Canis familiaris (a domestic dog), and Canis dingo (its own species within the genus Canis). But these names have been applied inconsistently in both academic literature and government policy.

This inconsistency partially reflects the global arguments regarding the naming of canids. For those who adhere to the traditional “biological” species concept (in which a “species” is a group of organisms that can interbreed), one might consider the dingo (and all other canids that can interbreed, like wolves, coyotes, and black-backed jackals) to be part of a single, highly variable and widely distributed species.

Members of the Canis genus: wolf (Canis lupus), coyote (Canis latrans), Ethiopian wolf (Canis simensis), black-backed jackal (Canis mesomelas), dingo (Canis dingo), and a representative of the domestic dog (Canis familiaris).

But the “biological” species concept used to name species came about long before modern genetic tools, or even before many hybrid species were identified by their DNA (such as the “red wolf,” an ancient hybrid of grey wolves and coyotes found in the southeastern United States).

Few people would really argue that a chihuahua, a wolf, and a coyote are the same species. In reality there are many more comprehensive and logical ways to classify a species. In our latest paper we argue that a holistic approach to defining species is essential in the case of the dingo and other canids.

Our work shows conclusively that dingoes are distinct from wild canids and domestic dogs based on many different criteria.

Truly wild

The first criterion is that dingoes are wild animals, and live completely independent from humans. This is fundamentally different to domestic, feral, or wild dogs, which must live near human settlements and rely on humans for food and water in some way to survive.

Yes, the dingo might have arrived in Australia with humans, and we know that Aboriginal Australians have had a close relationship with dingoes following the latter’s arrival. But neither of these observations excludes dingoes from being wild.




Read more:
Dingoes do bark: why most dingo facts you think you know are wrong


For example, a relationship with humans does not constitute the rigorous definitions of domestication. Consider the red fox (Vulpes vulpes), which was also introduced to Australia by people and are now free-ranging: they are also not considered to be domesticated. Neither are wild animals such as birds that we feed in our backyards domesticated simply because they are sometimes fed by us.

Ecological role

In fact, dingoes have been living wild and independently of humans for a very long time — they have a distinct and unique evolutionary past that diverged some 5 to 10 thousand years ago from other canids. This is more than enough time for the dingo to have evolved into a naturalised predator now integral to maintaining the health of many Australian ecosystems.




Read more:
Dingo dinners: what’s on the menu for Australia’s top predator?


Dogs do not have the brain power or body adaptations to survive in the wild, and they cannot play the same ecological role as dingoes. From this ecological perspective alone, the two species are not interchangeable. Dingoes are Australia’s only large (between 15-20 kg), land-based predator, and as such play a vital role in Australia’s environment.

Shape and size

Viewed alone, the overall shape of the body and skull does not easily distinguish wild canids from dogs, mainly because of the sheer diversity among different breeds of domestic dogs.

But there are some important body differences between free-ranging dogs and dingoes, mainly in the skull region (as shown here and here).

Cranial 3-D reconstructions of a dingo (bottom) and a free-ranging dog (top), highlighting the differences in cranial morphology mentioned in the text.

Behaviour

Dingoes (and other truly wild canids) have some fundamentally unique behaviours that set them apart from dogs (although like shape, there are often exceptions among the artificial dog breeds). For example, dingoes have significantly different reproductive biology and care-giving strategies.

There are also differences in brain function, such as in the way the two species solve problems, and dingoes and dogs communicate differently with humans.




Read more:
Why do dingoes attack people, and how can we prevent it?


Genetics

While dingoes and dogs obviously share an ancestral relationship, there is a lot of genetic data to support the distinction between dingoes and dogs.

While dingoes share ancestry with ancient Asian dogs from 10,000 years ago, the dingo has been geographically isolated from all other canids for many thousands of years, and genetic mixing has only been occurring recently, most probably driven by human intervention.

Since the 1990s, genetic markers have been in widespread use by land managers, conservation groups, and researchers to differentiate dingoes from domestic dogs.

A summary of the evolutionary relationships among wolves, dingoes and modern domestic dogs. Dingoes and other ancient lineages of dog such as New Guinea singing dogs form a distinct lineage separate from modern domestic dogs that have undergone successive generations of artificial selection.

What’s at stake?

Even acknowledging the dingo’s uncertain and distant past, lumping dingoes and dogs together is unjustified.

Labelling dingoes as “feral domestic dogs” or some other misnomer ignores their unique, long, and quintessentially wild history in Australia.




Read more:
Why do some graziers want to retain, not kill, dingoes?


Inappropriate naming also has serious implications for their treatment. Any label less than “dingo” can be used to justify their legal persecution.

Further loss of dingoes could have serious, negative ecological consequences, including potentially placing other Australian native animals at increased risk of extinction.The Conversation

Bradley Smith, Senior Lecturer in Psychology, CQUniversity Australia; Corey J. A. Bradshaw, Matthew Flinders Fellow in Global Ecology, Flinders University; Euan Ritchie, Associate Professor in Wildlife Ecology and Conservation, Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University; Justin W. Adams, Senior Lecturer, Department of Anatomy and Developmental Biology, Monash University; Kylie M Cairns, Adjunct associate lecturer, UNSW, and Mathew Crowther, Associate professor, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

For the first time, we can measure the human footprint on Antarctica



File 20190304 110110 1o2c5ev.jpg?ixlib=rb 1.1
The Casey Station is part of Australia’s permanent outpost in Antarctica.
Shaun Brooks, Author provided

Shaun Brooks, University of Tasmania and Julia Jabour, University of Tasmania

Most people picture Antarctica as a frozen continent of wilderness, but people have been living – and building – there for decades. Now, for the first time, we can reveal the human footprint across the entire continent.

Our research, published today in the journal Nature Sustainability, found that while buildings and disturbance cover a small portion of the whole continent, it has an outsized impact on Antartica’s ecosystem.




Read more:
Explainer: what any country can and can’t do in Antarctica, in the name of science


Our data show 76% of buildings in Antarctica are within just 0.06% of the continent: the ice-free areas within 5km of the coast. This coastal fringe is particularly important as it provides access to the Southern Ocean for penguins and seals, as well as providing a typically wetter climate suitable for plant life.

A hard question to answer

How much land we collectively impact with infrastructure in Antarctica has been a question raised for decades, but until now has been difficult to answer. The good news is it’s a relatively small area. The bigger issue is where it is. Together with our colleagues Dana Bergstrom and John van den Hoff, we have made the first measurement of the “footprint” of buildings and disturbed ice-free ground across Antarctica.

This equates to more than 390,000 square metres of buildings on the icy continent, with a further 5,200,000m² of disturbance just to ice-free land. To put it another way, there is more than 1,100m² of disturbed ground per person in Antarctica at its most populated in summer. This is caused primarily by the 30 nations with infrastructure in Antarctica, along with some presence from the tourism industry.

Figure Building footprint density.
Nature Sustainability

It has taken until now to find the extent of our impact because of difficulty in gathering the data. Because so many countries are active in Antarctica, getting them to provide data on their infrastructure has been very slow. As two-thirds of research stations were built before the adoption of the Protocol on Environmental Protection to the Antarctic Treaty, they did not require environmental impact assessments or monitoring, so it is quite likely many of the operators do not have accessible data on their footprints. In addition, due to the inherent difficulty in accessing Antarctica, and the vast distances between each station, it is not possible to conduct field measurements on a continental scale.

To address these problems, our team took an established approach to measuring a single station’s footprint, and applied it to 158 locations across the continent using satellite imagery. The majority of images used were freely sourced from Google Earth, enabled by continually increasing improvements in resolution and coverage.

This process took hours of painstaking “digitisation” – where the spatially accurate images of buildings and disturbed ground were manually mapped within a computer program to create the data.

Davis Station, one of Australia’s three permanent research outposts in Antartica. Researchers used Google Earth images to map the footprint of human infrastructure across the continent.
Shaun Brooks, Author provided

Interestingly, one of the most difficult sites was the United States’ Amundsen-Scott Station. As this station is located on the geographic South Pole, very few satellites pass overhead. This problem was eventually solved by trawling through thousands of aerial images produced by NASA’s Operation IceBridge, where we found their aircraft had flown over the station in 2010. After capturing these data, we then compared our measurements against existing known building sizes and found our accuracy was within 2%.

Unlike buildings, we didn’t have measurements to compare for disturbed ground such as roadways, airstrips, quarries and the like. We believe we have produced a significant underestimate, due to factors including snow cover and insufficient image resolution obscuring smaller features such as walking tracks.




Read more:
Antarctic seas host a surprising mix of lifeforms – and now we can map them


Location, location, location

After mapping the footprint of buildings and ground disturbance our data has yielded some interesting results. For practical reasons, most stations in Antarctica are located within the small ice-free areas spread across the continent, particularly around the coast. In addition to being attractive to us, these areas are essential for much of Antarctica’s biodiversity by providing nesting sites for seabirds and penguins, substrate for mosses, lichens, and two vascular plants, and habitat for the continent’s invertebrate species.

Adelie penguins need ice-free areas to access the ocean.
Shaun Brooks, Author provided

Another interesting finding from these data is what they tell us about wilderness on the continent. Although the current footprint covers a very small fraction of the more than 12 million square kilometres of Antarctica, we found disturbance is present in more than half of all large ice-free areas along the coast. Furthermore, by using the building data we captured, along with existing work by Rupert Summerson, we were also able to estimate the visual footprint, which amounts to an area similar in size to the total ice-free land across the whole continent.

The release of this research is timely, with significant increases in infrastructure proposed for Antarctica. Currently there are new stations proposed by several nations, major rebuilding projects of existing stations underway (including the US’s McMurdo and New Zealand’s Scott Base), and Italy is building a new runway in ice-free areas.

Australia has proposed Antarctica’s first concrete runway, which if built would be the continent’s largest.




Read more:
Why Antarctica’s sea ice cover is so low (and no, it’s not just about climate change)


Until now, decisions on expanding infrastructure have been without the context of how much is already present. We hope informed decisions can now be made by the international community about how much building in Antarctica is appropriate, where it should occur, and how to manage the future of the last great wilderness.The Conversation

Shaun Brooks, PhD Candidate, University of Tasmania and Julia Jabour, Leader, Ocean and Antarctic Governance Research Program, University of Tasmania

This article is republished from The Conversation under a Creative Commons license. Read the original article.