Here’s how your holiday photos could help save endangered species



Zephyr_p/Shutterstock

Kasim Rafiq, Liverpool John Moores University

Animal populations have declined on average by 60% since 1970, and it’s predicted that around a million species are at risk of extinction. As more of the Earth’s biodiversity disappears and the human population grows, protected landscapes that are set aside to conserve biodiversity are increasingly important. Sadly, many are underfunded – some of Africa’s most treasured wildlife reserves operate in funding deficits of hundreds of millions of dollars.

In unfenced wilderness, scientists rarely have an inventory on the exact numbers of species in an area at a particular time. Instead they make inferences using one of many different survey approaches, including camera traps, track surveys, and drones. These methods can estimate how much and what kind of wildlife is present, but often require large amounts of effort, time and money.

Camera traps are placed in remote locations and activated by movement. They can collect vast quantities of data by taking photographs and videos of passing animals. But this can cost tens of thousands of dollars to run and once in the wild, cameras are at the mercy of curious wildlife.

Track surveys rely on specialist trackers, who aren’t always available and drones, while promising, have restricted access to many tourism areas in Africa. All of this makes wildlife monitoring difficult to carry out and repeat over large areas. Without knowing what’s out there, making conservation decisions based on evidence becomes almost impossible.

Citizen science on Safari

Tourism is one of the fastest growing industries in the world – 42m people visited sub-Saharan Africa in 2018 alone. Many come for the unique wildlife and unknowingly collect valuable conservation data with their phones and cameras. Photographs on social media are already being used to help track the illegal wildlife trade and how often areas of wilderness are visited by tourists.

Despite this, tourists and their guides are still an overlooked source of information. Could your holidays snaps help monitor endangered wildlife? In a recent study, we tested exactly this.

Partnering with a tour operator in Botswana, we approached all guests passing through a safari lodge over three months in the Okavango Delta and asked them if they were interested in contributing their photographs to help with conservation. We provided those interested with a small GPS logger – the type commonly used for tracking pet cats – so that we could see where the images were being taken.

We then collected, processed, and passed the images through computer models to estimate the densities of five large African carnivore species – lions, spotted hyaenas, leopards, African wild dogs and cheetahs. We compared these densities to those from three of the most popular carnivore survey approaches in Africa – camera trapping, track surveys, and call-in stations, which play sounds through a loudspeaker to attract wildlife so they can be counted.

The tourist photographs provided similar estimates to the other approaches and were, in total, cheaper to collect and process. Relying on tourists to help survey wildlife saved up to US$840 per survey season. Even better, it was the only method to detect cheetahs in the area – though so few were sighted that their total density couldn’t be confirmed.

Thousands of wildlife photographs are taken every day, and the study showed that we can use statistical models to cut through the noise and get valuable data for conservation. Still, relying on researchers to visit tourist groups and coordinate their photograph collection would be difficult to replicate across many areas. Luckily, that’s where wildlife tour operators could come in.

Tour operators could help collect tourist images to share with researchers. If the efforts of tourists were paired with AI that could process millions of images quickly, conservationists could have a simple and low-cost method for monitoring wildlife.

Tourist photographs are best suited for monitoring large species that live in areas often visited by tourists – species that tend to have high economic and ecological value. While this method perhaps isn’t as well suited to smaller species, it can still indirectly support their conservation by helping protect the landscapes they live in.

The line between true wilderness and landscapes modified by humans is becoming increasingly blurred, and more people are visiting wildlife in their natural habitats. This isn’t always a good thing, but maybe conservationists can use these travels to their advantage and help conserve some of the most iconic species on our planet.The Conversation

Kasim Rafiq, Postdoctoral Researcher in Wildlife Ecology and Conservation, Liverpool John Moores University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Exaggerating how much CO₂ can be absorbed by tree planting risks deterring crucial climate action



A long way to go…
Amenic181/Shutterstock

Duncan McLaren, Lancaster University

Planting almost a billion hectares of trees worldwide is the “biggest and cheapest tool” for tackling climate change, according to a new study. The researchers claimed that reforestation could remove 205 gigatonnes of carbon from the atmosphere – equivalent to about 20 years’ worth of the world’s current emissions. This has criticised as an exaggeration. It could actually be dangerous.

While the paper itself included no costings, the researchers suggested a best-case estimate of just US$300 billion to plant trees on 0.9 billion hectares. That’s just 40 US cents per tonne of carbon dioxide (CO₂) removed. More detailed studies on the costs of carbon removal through reforestation put the figure closer to US$20-50 per tonne – and even this may be optimistic at such large scales.




Read more:
Reforesting an area the size of the US needed to help avert climate breakdown, say researchers – are they right?


Our research suggests that the promises implied in such studies could actually set back meaningful action on climate change. This is because of what we call “mitigation deterrence” – promises of cheap and easy CO₂ removal in future make it less likely that time and money will be invested in reducing emissions now.

Why would anyone expect governments or the finance sector to invest in renewable energy, or mass transit like high-speed rail, at costs of tens or hundreds of dollars a tonne if they – and shareholders and voters – are told that huge amounts of CO₂ can be absorbed from the atmosphere for a few dollars a tonne by planting trees?

Why should anyone expect energy companies and airlines to reduce their emissions if they anticipate being able to pay to plant trees to offset everything they emit, for the paltry price of less than 50 cents a tonne. If studies like this suggest removing carbon is cheap and easy, the price of emitting carbon for businesses – in emissions trading schemes – will remain very low, rather than rising to the levels needed to trigger more challenging, yet urgently needed, forms of emission reduction.

Tree planting is cheaper but less effective at reducing emissions than building zero-carbon infrastructure like electric high-speed rail.
Pedrosala/Shutterstock

A false carbon economy

The promises of cheap and powerful tech fixes help to sideline thorny issues of politics, economics and culture. But when promises that look great in models and spreadsheets meet the real world, failure is often more likely. This has been seen before in the expectations around carbon capture and storage.

Despite promises of its future potential in the early 2000s, commercial development of the technology has scarcely progressed in the last decade. That’s despite many modelled pathways for limiting global warming still assuming – increasingly optimistically – that it will be deployed at a large scale in coming decades.




Read more:
George Monbiot Q + A – How rejuvenating nature could help fight climate change


This model of tackling climate change goes hand in hand with another tool – pricing carbon emissions. This potentially allows companies to go on emitting by paying someone else to cut emissions or remove CO₂ elsewhere – an approach called climate offsetting. But offsetting makes exaggerated promises of carbon removal even more risky.

Tree planting financed through offset markets would guarantee the polluter could continue emitting carbon, but the market couldn’t guarantee removals to match those emissions. Trees might be planted and subsequently lost to wildfire or logging, or never planted at all.

Trusting in trees to remove carbon in future is particularly dangerous because trees are slow to grow and how much carbon they absorb is hard to measure. They’re also less likely to be able to do this as the climate warms. In many regions of the world but particularly in the tropics, growth rates are predicted to fall as the climate warms and devastating wildfires become more frequent.

Relying on trees to absorb CO₂ from the atmosphere in the future also appears misleadingly cheap because of the effects of economic discounting. Economists discount the current value of costs or benefits more deeply, the further in the future they occur. Models which determine the cheapest mix of policies available all use some form of discounting.

When researchers add carbon removal options like tree planting to these models, they tend to generate pathways for slowing temperature rise which reduce the role of short term action and replace it with imaginary removals late in the century.

This is because discounting over 30 to 60 years makes the removal options look incredibly cheap in today’s prices. Priming models to focus on minimising cost causes them to maximise the use of discounted future removals and reduce the use of more expensive near term emissions reduction.

I am not arguing against reforestation, nor for a purely technological response to climate change. Trees can help for many reasons – reducing flooding, shading and cooling communities, and providing habitat for biodiversity. Incentives for reforestation are important, and so are incentives for removing carbon. But we shouldn’t make trees or technology carry the whole burden of tackling climate change. That demands moving beyond technical questions, to deliver immediate political action to cut emissions, and to begin to transform economies and societies.

This article was amended on July 13 2019 to clarify the proposed costs of carbon removal by reforestation.The Conversation

Duncan McLaren, Professor in Practice, Lancaster University

This article is republished from The Conversation under a Creative Commons license. Read the original article.