Heatwaves and flash floods: yes, this is Britain’s ‘new normal’


Hayley J. Fowler, Newcastle University

“It’s hard to believe, isn’t it, that we had a heatwave just last week?”

Those words were spoken by a BBC news presenter, in front of graphic images of fire service rescues, as heavy rain caused floods and landslides which closed many roads and railway lines. In recent days there have dramatic floods across the north of England, particularly around Manchester, the Peak District and Yorkshire.

For me, this is personal, as I am from the worst affected area. I went to high school where people spent the night in their Civic Hall. Three miles away from where I grew up, a dam holding back Toddbrook Reservoir has been at risk of collapse and the town of Whaley Bridge was evacuated. But I’m not surprised that we are seeing flash flooding and I expect it to get worse in the future.

I am a professor at Newcastle University, where I lead a large research group focused on understanding changes to intense rainfall events and flash floods. Over the past eight years we’ve been working closely with colleagues at the UK Met Office to develop new very high-resolution climate models that can simulate these very intense summer storms and therefore predict what might happen in a warming climate.

Our models tell us that by 2080 summers in the UK will be much hotter and drier. Heatwaves will be more common. In fact a report released by the Met Office on the same day as the latest flash floods tells us that heatwaves are already happening more often. When Cambridge recently hit 38.7℃, the UK became one of 12 countries to break its national temperature record this year.

The world is warming. But although UK average summer rainfall is predicted to decrease, our models tell us that when it does rain it will be more intense than has been the case. Flash flooding in the UK is generally caused by intense rainstorms, where more than 30mm falls in an hour. Climate models predict these will happen five times more often by 2080.

Part of the reason for this is the simple fact that warmer air can hold more moisture. But that’s too simple: the availability of moisture also increases in areas close to warm oceans – warmer sea surface temperatures cause more moisture to be evaporated into the atmosphere, providing additional fuel for these intense storms. And here’s the scary bit: the Atlantic Ocean provides a vast source of moisture for storms in the UK.

But that’s not the whole story. Heavy, short rain storms are intensifying more rapidly than would be expected with global warming (what we call the Clausius-Clapeyron relationship). Research also suggests that more intense storms can themselves grow bigger, and with both the intensity of the rainfall and the spatial footprint of the storm increasing, the total rainfall in an “event” could double.

What’s more, the larger storms seem to have an ability to draw in more moisture from the surrounding area and become even more intense: the additional energy (heating) fuelling the uplift of air within the storm’s core draws in even more moisture from the surface, allowing them to grow even larger, with more potential for flooding. These also provide the perfect ingredients for large hail storms.

So, it is entirely consistent that we might expect both more heatwaves and more intense summer thunderstorms in a warmer climate. We also know which areas of the country are already susceptible to these flash floods from our analysis of historical records of flooding. Newspapers have reported on the dramatic impacts of these floods for centuries and this has allowed my team to reconstruct a flash-flooding history of the UK.

Certain parts of the country are highly vulnerable as their rivers respond quickly to rainstorms. These rivers tend to be found in steep, upland catchments underlain by non-permeable rocks, mainly in the north and west of the UK. High-risk catchments also include urban areas where the ground is also non-permeable, for entirely different reasons.

Many of the towns reported to have suffered “biblical” flooding recently have suffered repeated flooding through history, but perhaps not within living memory. For example, Whaley Bridge is mentioned twice in the flood chronologies for events in June 1872 and July 1881:

On 19th [June 1872] the Goyt was 12 to 14 feet above its normal level. At Whaley Bridge houses near the river were completely flooded and people were taken into the chapel and inns … in Macclesfield a woman and child were drowned when the river Bollin overflowed. Two reservoirs burst in the vicinity.

This rich archive of knowledge, including the prevalence of flooding in certain towns, even specific roads, is something we should draw upon in planning both the emergency response to these flash floods and for reducing their future impact. We can learn a lot from the past in how to manage the greater risks of flooding the future will bring.The Conversation

Hayley J. Fowler, Professor of Climate Change Impacts, Newcastle University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

When tree planting actually damages ecosystems



Giraffes prefer the open space and scattered trees of the African savanna.
Volodymyr Burdiak/Shutterstock

Kate Parr, University of Liverpool and Caroline Lehmann, University of Edinburgh

Tree planting has been widely promoted as a solution to climate change, because plants absorb the climate-warming gases from Earth’s atmosphere as they grow. World leaders have already committed to restoring 350m hectares of forest by 2030 and a recent report suggested that reforesting a billion hectares of land could store a massive 205 gigatonnes of carbon – two thirds of all the carbon released into the atmosphere since the Industrial Revolution.

Many of those trees could be planted in tropical grassy biomes according to the report. These are the savannas and grasslands that cover large swathes of the globe and have a grassy ground layer and variable tree cover. Like forests, these ecosystems play a major role in the global carbon balance. Studies have estimated that grasslands store up to 30% of the world’s carbon that’s tied up in soil. Covering 20% of Earth’s land surface, they contain huge reserves of biodiversity, comparable in areas to tropical forest. These are the landscapes with lions, elephants and vast herds of wildebeest.

Gorongosa, Mozambique. The habitat here is open, well-lit and with few trees.
Caroline Lehmann, Author provided

Savannas and grasslands are home to nearly one billion people, many of whom raise livestock and grow crops. Tropical grassy biomes were the cradle of humankind – where modern humans first evolved – and they are where important food crops such as millet and sorghum originated, which millions eat today. And, yet among the usual threats of climate change and wildlife habitat loss, these ecosystems face a new threat – tree planting.

It might sound like a good idea, but planting trees here would be damaging. Unlike forests, ecosystems in the tropics that are dominated by grass can be degraded not only by losing trees, but by gaining them too.




Read more:
Reforesting an area the size of the US needed to help avert climate breakdown, say researchers – are they right?


Where more trees isn’t the answer

Increasing the tree cover in savanna and grassland can mean plant and animal species which prefer open, well-lit environments are pushed out. Studies from South Africa, Australia and Brazil indicate that unique biodiversity is lost as tree cover increases.

This is because adding trees can alter how these grassy ecosystems function. More trees means fires are less likely, but regular fire removes vegetation that shades ground layer plants. Not only do herbivores like zebra and antelope that feed on grass have less to eat, but more trees may also increase their risk of being eaten as predators have more cover.

A mosaic of grassland and forest in Gabon.
Kate Parr, Author provided

More trees can also reduce the amount of water in streams and rivers. As a result of humans suppressing wildfires in the Brazilian savannas, tree cover increased and the amount of rain reaching the ground shrank. One study found that in grasslands, shrublands and cropland worldwide where forests were created, streams shrank by 52% and 13% of all streams dried up completely for at least a year.

Grassy ecosystems in the tropics provide surface water for people to drink and grazing land for their livestock, not to mention fuel, food, building materials and medicinal plants. Tree planting here could harm the livelihoods of millions.

Losing ancient grassy ecosystems to forests won’t necessarily be a net benefit to the climate either. Landscapes covered by forest tend to be darker in colour than savanna and grassland, which might mean they also absorb more heat. As drought and wildfires become more frequent, grasslands may be a more reliable carbon sink than forests.




Read more:
Exaggerating how much CO₂ can be absorbed by tree planting risks deterring crucial climate action


Redefine forests

How have we reached the point where the unique tropical savannas and grasslands of the world are viewed as suitable for wholesale “restoration” as forests?

At the root of the problem is that these grassy ecosystems are fundamentally misunderstood. The Food and Agricultural Organisation of the UN defines any area that’s half a hectare in size with more than 10% tree cover as forest. This assumes that landscapes like an African savanna are degraded because they have fewer trees and so need to be reforested. The grassy ground layer houses a unique range of species, but the assumption that forests are more important threatens grassy ecosystems across the tropics and beyond, including in Madagascar, India and Brazil.

A flowering aloe in Madagascan grassland.
Caroline Lehmann, Author provided

“Forest” should be redefined to ensure savannas and grasslands are recognised as important systems in their own right, with their own irreplaceable benefits to people and other species. It’s essential people know what degradation looks like in open, sunlit ecosystems with fewer trees, so as to restore ecosystems that are actually degraded with more sensitivity.

Calls for global tree planting programmes to cool the climate need to think carefully about the real implications for all of Earth’s ecosystems. The right trees need to be planted in the right places. Otherwise, we risk a situation where we miss the savanna for the trees, and these ancient grassy ecosystems are lost forever.The Conversation

Kate Parr, Professor of Tropical Ecology, University of Liverpool and Caroline Lehmann, Senior Lecturer in Biogeography, University of Edinburgh

This article is republished from The Conversation under a Creative Commons license. Read the original article.