Climate explained: how climate change will affect food production and security


Many temperate crops require winter chilling to initiate flowering or fruit ripening, and orchards may need to shift to colder areas.
from http://www.shutterstock.com, CC BY-ND

Julian Heyes, Massey University


CC BY-ND

Climate Explained is a collaboration between The Conversation, Stuff and the New Zealand Science Media Centre to answer your questions about climate change.

If you have a question you’d like an expert to answer, please send it to climate.change@stuff.co.nz

According to the United Nations, food shortages are a threat due to climate change. Are food shortages a major threat to New Zealand due to climate change?

Climate change is altering conditions that sustain food production, with cascading consequences for food security and global economies. Recent research evaluated the simultaneous impacts of climate change on agriculture and marine fisheries globally.

Modelling of those impacts under a business-as-usual carbon emission scenario suggested about 90% of the world’s population – most of whom live in the least developed countries – will experience reductions in food production this century.

New Zealanders are fortunate to live in a part of the world blessed with relatively fertile soils, adequate water supplies and mild temperatures. This gives us a comparative advantage for agriculture and horticulture over many other countries, including our main trading partner, Australia.

New Zealand produces more than enough food for its population. Exports exceed local consumption, and climate-change induced food shortages should not be an imminent risk for New Zealand. But behind every general statement like this lies some rather more troubling detail.




Read more:
Feeding the world: archaeology can help us learn from history to build a sustainable future for food


Overcoming domestic challenges

As residents of a developed country, we are accustomed to accessing the world’s resources through supermarkets. New Zealanders take for granted that most foods (even those we do not produce, like rice or bananas) will be available all year round.

Asparagus, new potatoes and strawberries are examples of foods New Zealanders may expect to see only at particular times of the year, but if apples or kiwifruit are out of stock, people usually complain. Our expectations are based on imports of products when they are out of season in New Zealand. The availability of those imports may be seriously compromised by climate change.

A recent Ministry for the Environment report describes climate impacts, including detailed projections of the average temperature increase and changes in rainfall patterns across New Zealand. The consistent trends are towards wetter conditions in the west, drier in the east and the largest average temperature rises in the north.

Implications for agriculture are manifold. For example, many temperate crops require cool autumn or winter temperatures to initiate flowering or fruit ripening. Orchards may need to be relocated further south, or novel low-chill varieties may need to be bred, as is already happening around the world.




Read more:
Climate explained: regenerative farming can help grow food with less impact


Insect pests and diseases are normally controlled by our low winter temperatures, but they may become more of a problem in the future. Introduced pests and diseases include fruit flies that have a major impact in Australia and other more tropical countries, but struggle to establish breeding colonies in New Zealand. Strong biosecurity controls are our best bet for reducing this risk.

What matters more than the gradual increase in temperature predicted by climate change models, is the greater frequency of extreme weather events. These include droughts, floods and hail, which can lead to total crop losses in particular regions. One obvious mitigation strategy is to expand the provision of irrigation in our drier eastern regions, but concerns over water quality in our rivers mean this is not a popular option with the public – for example on the Heretaunga Plains or in Canterbury.

Risks to imported products

New Zealand is a net exporter of dairy, beef, lamb and many fruit and vegetables, but for some products, we depend heavily on imports. Figures from the US Department of Agriculture are not perfect, but they highlight trade imbalances for major commodities.

New Zealand imports all rice and most of its wheat. It is a net importer of pork products. Horticultural data released annually in Fresh Facts show New Zealand’s major horticultural imports are (in order of value) wine, nuts, processed vegetables, coffee, bananas and table grapes. These imported products come primarily from Australia, China, the US and Ecuador – all countries that may be less resilient to climate change than New Zealand.

As a recent report by the UN Food and Agriculture Organisation (FAO) explains, rising temperatures, rising seas and the increasing frequency of adverse weather events will interact to reduce agricultural and horticultural productivity in many regions around the world. While New Zealand is unlikely to experience food shortages in the near future as a direct result of climate change, the price and availability of imported products may increase significantly.




Read more:
Feeding cities in the 21st century: why urban-fringe farming is vital for food resilience


Food poverty

Unfortunately, there is another important consideration. Some New Zealanders already experience food insecurity. The 2008/9 Adult Nutrition Survey found 14% of New Zealand households reported running out of food often or sometimes due to lack of money.

Perhaps rather than worrying about the future impact of climate change on the price or availability of imported rice or bananas, we should be paying more attention to this social inequity.

As a wealthy agricultural nation and a net exporter of food, it does not seem right that one sector of our society is already regularly experiencing food shortages.The Conversation

Julian Heyes, Head of School of Food and Advanced Technology@ISHS_CMFV, Massey University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Shark nets are destructive and don’t keep you safe – let’s invest in lifeguards



New research says there is no reliable evidence that shark nets protect swimmers.
Ben Rushton/AAP

Leah Gibbs, University of Wollongong; Lachlan Fetterplace, Swedish University of Agricultural Sciences, and Quentin Hanich, University of Wollongong

As Australians look forward to the summer beach season, the prospect of shark encounters may cross their minds. Shark control has been the subject of furious public debate in recent years and while some governments favour lethal methods, it is the wrong route.

Our study, published today in People and Nature, presents further evidence that lethal shark hazard management damages marine life and does not keep people safe.

We examined the world’s longest-running lethal shark management program, the New South Wales Shark Meshing (Bather Protection) Program, introduced in 1937. We argue it is time to move on from shark nets and invest further in lifeguard patrol and emergency response.

A scalloped hammerhead caught in a shark net off Palm Beach in Sydney, in March 2019.
HSI-AMCS-N McLachlan

Managing shark bite

In NSW, 51 beaches between Newcastle and Wollongong are netted. The nets don’t provide an enclosure for swimmers. They are 150 metres long and suspended 500 metres offshore. In the process of catching targeted sharks they also catch other animals including turtles, rays, dolphins, and harmless sharks and fish.

Catching and killing sharks might seem a commonsense solution to the potential risk of shark bite to humans. But the story is not so simple.




Read more:
Poor Filipino fishermen are making millions protecting whale sharks


A young tiger shark cruising near Coffs Harbour, NSW.
EPA

Multiple factors influence shark bite incidence, including climate change, prey species distribution and abundance, water quality, human population, beach-use patterns, and lifeguard patrols.

Most research and public debate focuses on human safety or marine conservation. Our research sought to bring the two into conversation. We considered a range of factors that contribute to safety and conservation outcomes. This included catch of target and non-target species in nets, damage to marine ecosystems, global pressures on oceans, changing beach culture, human population growth and changes in lifeguarding and emergency response. Here’s what we found.

Fewer sharks, fewer bites

As the graph below shows, shark catch in the NSW netting program has fallen since the 1950s. This includes total shark numbers and numbers of three key target species: white shark (also known as great white or white pointer), tiger shark and bull shark.

Total shark catch per 100 net days 1950-2019.
Authors

This suggests there are fewer sharks in the water, which is cause for alarm. The three target species are recognised by Australian and international institutions as threatened or near-threatened.

Our analysis shows shark bite incidence is also declining over the long term. The trend isn’t smooth; trends rarely are. The last two decades have seen more shark bites than the previous two. This is not surprising given Australia’s beach use has again grown rapidly in recent decades.

But if we take a longer term view, we see that shark bite incidence relative to population is substantially lower from the mid-20th century than during the decades before.

The decline in shark bite incidence is great news. But key points are frequently overlooked when society tries to make sense of the figures.

Shark bite incidents in NSW per million people per decade, including fatalities and injuries.
Authors

Lifeguard patrol and emergency response are key

In NSW, lifeguard beach patrol grew over the same time period as the shark meshing program. More people swam and surfed in the ocean from the early 20th century as public bathing became legal. The surf lifesaving and professional lifeguard movements grew rapidly in response.

Today, 50 of the 51 beaches netted through the shark meshing program are also patrolled by lifeguards or lifesavers. Yet improved safety is generally attributed to the mesh program. The role of beach patrol is largely overlooked.




Read more:
Some sharks have declined by 92% in the past half-century off Queensland’s coast


So, claims that shark bite has declined at netted beaches might instead be interpreted as decline at patrolled beaches. In other words, reduced shark interactions may be the result of beach patrol.

More good news is that since the mid-20th century the proportion of shark bites leading to fatality has plummeted. This is most likely the result of enormous improvements in beach patrol, emergency and medical response.

A surfer treated by paramedics after a shark bite near Ballina in NSW.

It’s time to move on from shark nets

Debate over shark management is often polarised, pitting human safety against marine conservation. We have brought together expertise from the social sciences, biological sciences and fisheries, to move beyond a “people vs sharks” debate.

There is no reliable evidence that lethal shark management strategies are effective. Many people oppose them, institutions are moving away from them, and threatened species are put at risk.




Read more:
SharkSpotter combines AI and drone technology to spot sharks and aid swimmers on Australian beaches


The NSW Department of Primary Industries, manager of the shark meshing program, is investing strongly in new non-lethal strategies, including shark tagging, drone and helicopter patrol, personal deterrents, social and biophysical research and community engagement. Our study provides further evidence to support this move.

Investing in lifeguard patrol and emergency response makes good sense. The measures have none of the negative impacts of lethal strategies, and are likely responsible for the improved safety we enjoy today at the beach.The Conversation

More lifeguards would help prevent shark bite.
AAP

Leah Gibbs, Senior Lecturer in Geography, University of Wollongong; Lachlan Fetterplace, Environmental Assessment Specialist, Swedish University of Agricultural Sciences, and Quentin Hanich, Associate Professor, University of Wollongong

This article is republished from The Conversation under a Creative Commons license. Read the original article.