NSW has approved Snowy 2.0. Here are six reasons why that’s a bad move



Lucas Coch/AAP

Bruce Mountain, Victoria University and Mark Lintermans, University of Canberra

The controversial Snowy 2.0 project has mounted a major hurdle after the New South Wales government today announced approval for its main works.

The pumped hydro venture in southern NSW will pump water uphill into dams and release it when electricity demand is high. The federal government says it will act as a giant battery, backing up intermittent energy from by wind and solar.

We and others have criticised the project on several grounds. Here are six reasons we think Snowy 2.0 should be shelved.

1. It’s really expensive

The federal government announced the Snowy 2.0 project without a market assessment, cost-benefit analysis or indeed even a feasibility study.

When former Prime Minister Malcolm Turnbull unveiled the Snowy expansion in March 2017, he said it would cost A$2 billion and be commissioned by 2021. This was revised upwards several times and in April last year, Snowy Hydro awarded a A$5.1 billion contract for partial construction.

Snowy Hydro has not costed the transmission upgrades on which the project depends. TransGrid, owner of the grid in NSW, has identified options including extensions to Sydney with indicative costs up to A$1.9 billion. Massive extensions south, to Melbourne, will also be required but this has not been costed.

The Tumut 3 scheme, with which Snowy 2.0 will share a dam.
Snowy Hydro Ltd

2. It will increase greenhouse gas emissions

Both Snowy Hydro Ltd and its owner, the federal government, say the project will help expand renewable electricity generation. But it won’t work that way. For at least the next couple of decades, analysis suggests Snowy 2.0 will store coal-fired electricity, not renewable electricity.

Snowy Hydro says it will pump the water when a lot of wind and solar energy is being produced (and therefore when wholesale electricity prices are low).




Read more:
Snowy 2.0 is a wolf in sheep’s clothing – it will push carbon emissions up, not down


But wind and solar farms produce electricity whenever the resource is available. This will happen irrespective of whether Snowy 2.0 is producing or consuming energy.

When Snowy 2.0 pumps water uphill to its upper reservoir, it adds to demand on the electricity system. For the next couple of decades at least, coal-fired electricity generators – the next cheapest form of electricity after renewables – will provide Snowy 2.0’s power. Snowy Hydro has denied these claims.

Khancoban Dam, part of the soon-to-be expanded Snowy Hydro scheme.
Snowy Hydro Ltd

3. It will deliver a fraction of the energy benefits promised

Snowy 2.0 is supposed to store renewable energy for when it is needed. Snowy Hydro says the project could generate electricity at its full 2,000 megawatt capacity for 175 hours – or about a week.

But the maximum additional pumped hydro capacity Snowy 2.0 can create, in theory, is less than half this. The reasons are technical, and you can read more here.

It comes down to a) the amount of time and electricity required to replenish the dam at the top of the system, and b) the fact that for Snowy 2.0 to operate at full capacity, dams used by the existing hydro project will have to be emptied. This will result in “lost” water and by extension, lost electricity production.



The Conversation, CC BY-ND

4. Native fish may be pushed to extinction

Snowy 2.0 involves building a giant tunnel to connect two water storages – the Tantangara and Talbingo reservoirs. By extension, the project will also connect the rivers and creeks connected to these reservoirs.

A small, critically endangered native fish, the stocky galaxias, lives in a creek upstream of Tantangara. This is the last known population of the species.

The stocky galaxias.
Hugh Allan

An invasive native fish, the climbing galaxias, lives in the Talbingo reservoir. Water pumped from Talbingo will likely transfer this fish to Tantangara.

From here, the climbing galaxias’ capacity to climb wet vertical surfaces would enable it to reach upstream creeks and compete for food with, and prey on, stocky galaxias – probably pushing it into extinction.

Snowy 2.0 is also likely to spread two other problematic species – redfin perch and eastern gambusia – through the headwaters of the Murrumbidgee, Snowy and Murray rivers.




Read more:
Snowy 2.0 threatens to pollute our rivers and wipe out native fish


5. It’s a pollution risk

Snowy Hydro says its environmental impact statement addresses fish transfer impacts, and potentially serious water quality issues.

Four million tonnes of rock excavated to build Snowy 2.0 would be dumped into the two reservoirs. The rock will contain potential acid-forming minerals and other harmful substances, which threaten to pollute water storages and rivers downstream.

When the first stage of the Snowy Hydro project was built, comparable rocks were dumped in the Tooma River catchment. Research in 2006 suggested the dump was associated with eradication of almost all fish from the Tooma River downstream after rainfall.

Snowy 2.0 threatens to pollute pristine Snowy Mountains rivers.
Schopier/Wikimedia

6. Other options were not explored

Many competing alternatives can provide storage far more flexibly for a fraction of Snowy 2.0’s price tag. These alternatives would also have far fewer environmental impacts or development risks, in most cases none of the transmission costs and all could be built much more quickly.

Expert analysis in 2017 identified 22,000 potential pumped hydro energy storage sites across Australia.

Other alternatives include chemical batteries, encouraging demand to follow supply, gas or diesel generators, and re-orienting more solar capacity to capture the sun from the east or west, not just mainly the north.

Where to now?

The federal government, which owns Snowy Hydro, is yet to approve the main works.

Given the many objections to the project and how much has changed since it was proposed, we strongly believe it should be put on hold, and scrutinised by independent experts. There’s too much at stake to get this wrong.




Read more:
Five gifs that explain how pumped hydro actually works


The Conversation


Bruce Mountain, Director, Victoria Energy Policy Centre, Victoria University and Mark Lintermans, Associate professor, University of Canberra

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia, it’s time to talk about our water emergency



Dean Lewins/AAP

Quentin Grafton, Crawford School of Public Policy, Australian National University; Matthew Colloff, Australian National University; Paul Wyrwoll, Australian National University, and Virginia Marshall, Australian National University

The last bushfire season showed Australians they can no longer pretend climate change will not affect them. But there’s another climate change influence we must also face up to: increasingly scarce water on our continent.

Under climate change, rainfall will become more unpredictable. Extreme weather events such as cyclones will be more intense. This will challenge water managers already struggling to respond to Australia’s natural boom and bust of droughts and floods.

Thirty years since Australia’s water reform project began, it’s clear our efforts have largely failed. Drought-stricken rural towns have literally run out of water. Despite the recent rains, the Murray Darling river system is being run dry and struggles to support the communities that depend on it.

We must find another way. So let’s start the conversation.

It’s time for a new national discussion about water policy.
Joe Castro/AAP

How did we get here?

Sadly, inequitable water outcomes in Australia are not new.

The first water “reform” occurred when European settlers acquired water sources from First Peoples without consent or compensation. Overlaying this dispossession, British common law gave new settlers land access rights to freshwater. These later converted into state-owned rights, and are now allocated as privately held water entitlements.

Some 200 years later, the first steps towards long-term water reform arguably began in the 1990s. The process accelerated during the Millennium Drought and in 2004 led to the National Water Initiative, an intergovernmental water agreement. This was followed in 2007 by a federal Water Act, upending exclusive state jurisdiction over water.




Read more:
While towns run dry, cotton extracts 5 Sydney Harbours’ worth of Murray Darling water a year. It’s time to reset the balance


Under the National Water Initiative, state and territory water plans were to be verified through water accounting to ensure “adequate measurement, monitoring and reporting systems” across the country.

This would have boosted public and investor confidence in the amount of water being traded, extracted and recovered – both for the environment and the public good.

This vision has not been realised. Instead, a narrow view now dominates in which water is valuable only when extracted, and water reform is about subsidising water infrastructure such as dams, to enable this extraction.

The National Water Initiative has failed.
Dean Lewins/AAP

Why we should all care

In the current drought, rural towns have literally run out of fresh drinking water. These towns are not just dots on a map. They are communities whose very existence is now threatened.

In some small towns, drinking water can taste unpleasant or contain high levels of nitrate, threatening the health of babies. Drinking water in some remote Indigenous communities is not always treated, and the quality rarely checked.

In the Murray-Darling Basin, poor management and low rainfall have caused dry rivers, mass fish kills, and distress in Aboriginal communities. Key aspects of the basin plan have not been implemented. This, coupled with bushfire damage, has caused long-term ecological harm.

How do we fix the water emergency?

Rivers, lakes and wetlands must have enough water at the right time. Only then will the needs of humans and the environment be met equitably – including access to and use of water by First Peoples.

Water for the environment and water for irrigation is not a zero-sum trade-off. Without healthy rivers, irrigation farming and rural communities cannot survive.

A national conversation on water reform is needed. It should recognise and include First Peoples’ values and knowledge of land, water and fire.

Our water brief, Water Reform For All,
proposes six principles to build a national water dialogue:

  1. establish shared visions and goals
  2. develop clarity of roles and responsibilities
  3. implement adaptation as a way to respond to an escalation of stresses, including climate change and governance failures
  4. invest in advanced technology to monitor, predict and understand changes in water availability
  5. integrate bottom-up and community-based adaptation, including from Indigenous communities, into improved water governance arrangements
  6. undertake policy experiments to test new ways of managing water for all
The Darling River is in poor health.
Dean Lewins/AAP

Ask the right questions

As researchers, we don’t have all the answers on how to create a sustainable, equitable water future. No-one does. But in any national conversation, we believe these fundamental questions must be asked:

  1. who is responsible for water governance? How do decisions and actions of one group affect access and availability of water for others?

  2. what volumes of water are extracted from surface and groundwater systems? Where, when, by whom and for what?

  3. what can we predict about a future climate and other long-term drivers of change?

  4. how can we better understand and measure the multiple values that water holds for communities and society?

  5. where do our visions for the future of water align? Where do they differ?

  6. what principles, protocols and processes will help deliver the water reform needed?

  7. how do existing rules and institutions constrain, or enable, efforts to achieve a shared vision of a sustainable water future?

  8. how do we integrate new knowledge, such as water availability under climate change, into our goals?

  9. what restitution is needed in relation to water and Country for First Peoples?

  10. what economic sectors and processes would be better suited to a water-scarce future, and how might we foster them?

Water reform for all

These questions, if part of a national conversation, would reinvigorate the water debate and help put Australia on track to a sustainable water future.

Now is the time to start the discussion. Long-accepted policy approaches in support of sustainable water futures are in question. In the Murray-Darling Basin, some states even question the value of catchment-wide management. The formula for water-sharing between states is under attack.




Read more:
It’s official: expert review rejects NSW plan to let seawater flow into the Murray River


Even science that previously underpinned water reform is being questioned

We must return to basics, reassess what’s sensible and feasible, and debate new ways forward.

We are not naive. All of us have been involved in water reform and some of us, like many others, suffer from reform fatigue.

But without a fresh debate, Australia’s water emergency will only get worse. Reform can – and must – happen, for the benefit of all Australians.


The following contributed to this piece and co-authored the report on which it was based: Daniel Connell, Katherine Daniell, Joseph Guillaume, Lorrae van Kerkoff, Aparna Lal, Ehsan Nabavi, Jamie Pittock, Katherine Taylor, Paul Tregoning, and John WilliamsThe Conversation

Quentin Grafton, Director of the Centre for Water Economics, Environment and Policy, Crawford School of Public Policy, Australian National University; Matthew Colloff, Honorary Senior Lecturer, Australian National University; Paul Wyrwoll, Research fellow, Australian National University, and Virginia Marshall, Inaugural Indigenous Postdoctoral Fellow, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

A pretty good start but room for improvement: 3 experts rate Australia’s emissions technology plan



James Gourley/AAP

Jake Whitehead, The University of Queensland; Chris Greig, and Simon Smart, The University of Queensland

Energy Minister Angus Taylor yesterday released his government’s emissions reduction technology plan, setting out priorities for meeting Australia’s climate targets while growing the economy.

The long-awaited Technology Investment Roadmap examined more than 140 technologies for potential investment between now and 2050. They include electric vehicles, biofuels, batteries, hydrogen, nuclear and carbon capture and storage.




Read more:
Morrison government dangles new carrots for industry but fails to fix bigger climate policy problem


The discussion paper builds on the need for a post-pandemic recovery plan. It sets a positive tone, and highlights Australia’s enormous opportunities to support investment in low-emission technologies, while increasing prosperity.

But it’s not clear whether the government grasps the sheer scale of infrastructure and behaviour change required to meet our climate goals – nor the urgency of the task.

So let’s take a closer look at where the report hits the mark, and where there’s room for improvement.

The University of Queensland’s 78 megawatt solar farm at Warwick.
Author provided

Positive signs

The paper gives a reasonably comprehensive overview of new and emerging technologies, and builds on a significant body of prior work and investment. This includes the CSIRO’s Low Emissions Technology Roadmap and ARENA’s Commercial Readiness Index.

Crucially, the paper recognises the need for government funding to help share the financial risks of deploying technologies in their early stages. It also acknowledges the need for partnerships between government, industry and research institutions to drive innovation.

Encouragingly, the paper recognises Australia’s responsibility to support our neighbours across the Indo-Pacific, to help reduce international emissions.




Read more:
Coronavirus is a ‘sliding doors’ moment. What we do now could change Earth’s trajectory


The paper is a “living” document, designed to be updated in response to future developments in technology, domestic demand, international markets and so on. Progress will be reported through annual “low emissions technology statements”, and the roadmap can be adjusted as certain technologies flourish and others fail.

This process recognises the considerable uncertainties around the performance and costs of future technologies. It will allow ongoing assessment of where future technologies should be deployed, and can ultimately deliver the greatest emission reduction benefit.

The paper considers the role of both coal and natural gas in Australia’s transition to net-zero emissions. We don’t object to the inclusion of these energy sources, as long as they’re decarbonised, for example using carbon capture and storage or verifiable carbon offsets.

Coal and gas should be decarbonised if they are part of our energy future.
Julian Smith/AAP

Room for improvement

The paper’s emphasis on technology and investment is clear. But what’s less clear is an appreciation of the sheer scale of change needed to support a low- or net-zero emissions future.

The roadmap would benefit from an assessment of the scale of investment and infrastructure needed to meet the long-term emissions goals of the Paris Agreement. This will require nations including Australia to reduce economy-wide emissions to net-zero.

We believe the lack of clarity around mid-century (and intermediate) emissions targets is a significant gap in the roadmap. It obscures the scale and pace of technological change required across all sectors, and has already prompted criticism.

The energy transition must start as soon as possible. It will involve unprecedented levels of behaviour change, infrastructure investment and technology deployment, which must be maintained over several decades.

The deployment of new technologies affects communities and natural landscapes. The paper touches on these issues, such as the use of water resources to produce renewable hydrogen.

But it does not sufficiently emphasise the need to consult a broad range of stakeholders, such as community, environment and business groups. This should happen before investment begins, and throughout the transition.

The paper also omits notable low-emission technologies already deployed in Australia. This includes zero-emission electric heavy vehicles such as buses, trackless trams and trucks. Future consultation on the paper will help fill these gaps.

The Brisbane Metro project involves electric buses.

Planning for an uncertain future

The roadmap process should explore the various technology pathways that could plausibly emerge between now and 2050, depending on how technologies progress and costs evolve, levels of public acceptance, and the nature of policies adopted.

The process should also seek to identify and deal with industrial, regulatory and social bottlenecks or constraints that might slow down technological efforts to decarbonise our economy, and those of our trading partners.




Read more:
Wrong way, go back: a proposed new tax on electric vehicles is a bad idea


With Princeton University, we are co-leading such a project. Known as Rapid Switch, the international collaboration will determine the actions needed in various countries to reach net-zero emissions by 2050.

Our work highlights the need for most low-carbon technologies to be deployed at historically unprecedented rates. This wholesale transformation will have dramatic impacts on landscapes, natural resources, industries and current practices.

The road ahead

Overall, the Technology Investment Roadmap is a solid foundation for building a low-emissions future.

It should encourage the right technology investment, if supported by other policy mechanisms. These should include an expanded Renewable Energy Target and low-carbon fuel and material standards which, for example, would encourage the production of green hydrogen and steel.

But the divisive nature of Australia’s climate politics over the past decade shows that securing bipartisan support for this plan, and its implementation over the long term, is crucial.

The magnitude of the challenge of transitioning our economy must not be taken for granted. But with a few important changes, this roadmap could help get us there.The Conversation

Jake Whitehead, Advance Queensland Industry Research Fellow & Tritum E-Mobility Fellow, The University of Queensland; Chris Greig, Professor, and Simon Smart, Associate professor, The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.