With no work in lockdown, tour operators helped find coral bleaching on Western Australia’s remote reefs



Jeremy Tucker, Author provided

James Paton Gilmour, Australian Institute of Marine Science

Significant coral bleaching at one of Western Australia’s healthiest coral reefs was found during a survey carried out in April and May.

The survey took a combined effort of several organisations, together with tour operators more used to taking tourists, but with time spare during the coronavirus lockdown.

WA’s arid and remote setting means many reefs there have escaped some of the pressures affecting parts of the east coast’s Great Barrier Reef), such as degraded water quality and outbreaks of crown of thorns starfish.

The lack of these local pressures reflects, in part, a sound investment by governments and communities into reef management. But climate change is now overwhelming these efforts on even our most remote coral reefs.

Significant coral bleaching has been identified at WA reefs.
Nick Thake, Author provided

When the oceans warmed

This year, we’ve seen reefs impacted by the relentless spread of heat stress across the world’s oceans.

As the 2020 mass bleaching unfolded across the Great Barrier Reef, a vast area of the WA coastline was bathed in hot water through summer and autumn. Heat stress at many WA reefs hovered around bleaching thresholds for weeks, but those in the far northwest were worst affected.

The remoteness of the region and shutdowns due to COVID-19 made it difficult to confirm which reefs had bleached, and how badly. But through these extraordinary times, a regional network of collaborators managed to access even our most remote coral reefs to provide some answers.




Read more:
We just spent two weeks surveying the Great Barrier Reef. What we saw was an utter tragedy


Australia’s Bureau of Meteorology provided regional estimates of heat stress, from which coral bleaching was predicted and surveys targeted.

At reefs along the Kimberley coastline, bleaching was confirmed by WA’s Department of Biodiversity, Conservation and Attractions (DBCA), Bardi Jawi Indigenous rangers, the Kimberley Marine Research Centre and tourist operators.

At remote oceanic reefs hundreds of kilometres from the coastline, bleaching was confirmed in aerial footage provided by Australian Border Force.

Subsequent surveys were conducted by local tourist operators, with no tourists through COVID-19 shutdown and eager to check the condition of reefs they’ve been visiting for many years.

The first confirmation of bleaching on remote coral atolls at Ashmore Reef and the Rowley Shoals was provided in aerial images captured by Australian Border Force.
Australian Border Force, Author provided

The Rowley Shoals

Within just a few days, a tourist vessel chartered by the North West Shoals to Shore Research Program, with local operators and a DBCA officer, departed from Broome for the Rowley Shoals. These three reef atolls span 100km near the edge of the continental shelf, about 260km west-north-west offshore.

One of only two reef systems in WA with high and stable coral cover in the last decade, the Rowley Shoals is a reminder of beauty and value of healthy, well managed coral reefs.

But the in-water surveys and resulting footage confirmed the Rowley Shoals has experienced its worst bleaching event on record.

The most recent heatwave has caused widespread bleaching at the Rowley Shoals, which had previously escaped the worst of the regional heat stress.
Jeremy Tucker, Author provided

All parts of the reef and groups of corals were affected; most sites had between 10% and 30% of their corals bleached. Some sites had more than 60% bleaching and others less than 10%.

The heat stress also caused bleaching at Ashmore Reef, Scott Reef and some parts of the inshore Kimberley and Pilbara regions, all of which were badly affected during the 2016/17 global bleaching event.

This most recent event (2019/20) is significant because of the extent and duration of heat stress. It’s also notable because it occurred outside the extreme El Niño–Southern Oscillation phases – warming or cooling of the ocean’s surface that has damaged the northern and southern reefs in the past.

A reef crisis

The impacts from climate change are not restricted to WA or the Great Barrier Reef – a similar scenario is playing out on reefs around the world, including those already degraded by local pressures.

By global standards, WA still has healthy coral reefs. They provide a critical reminder of what reefs offer in terms of natural beauty, jobs and income from fisheries and tourism.

Despite the most recent bleaching, the Rowley Shoals remains a relatively healthy reef system by global standards. But like all reefs, its future is uncertain under climate change.
James Gilmour, Author provided

But we’ve spent two decades following the trajectories of some of WA’s most remote coral reefs. We’ve seen how climate change and coral bleaching can devastate entire reef systems, killing most corals and dramatically altering associated communities of plants and animals.

And we’ve seen the same reefs recover over just one or two decades, only to again be devastated by mass bleaching – this time with little chance of a full recovery in the future climate.

Ongoing climate change will bring more severe cyclones and mass bleaching, the two most significant disturbances to our coral reefs, plus additional pressures such as ocean acidification.

Reducing greenhouse gas emissions is the only way to alleviate these pressures. In the meantime, scientists will work to slow the rate of coral reef degradation though new collaborations, and innovative, rigorous approaches to reef management.The Conversation

James Paton Gilmour, Research Scientist: Coral Ecology, Australian Institute of Marine Science

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Emissions of methane – a greenhouse gas far more potent than carbon dioxide – are rising dangerously



Sukree Sukplang/Reuters

Pep Canadell, CSIRO; Ann Stavert; Ben Poulter, NASA; Marielle Saunois, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) – Université Paris-Saclay ; Paul Krummel, CSIRO, and Rob Jackson, Stanford University

Fossil fuels and agriculture are driving a dangerous acceleration in methane emissions, at a rate consistent with a 3-4℃ rise in global temperatures this century.

Our two papers published today provide a troubling report card on the global methane budget, and explore what it means for achieving the Paris Agreement target of limiting warming to well below 2℃.

Methane concentration in the atmosphere reached 1,875 parts per billion at the end of 2019 – more than two and a half times higher than pre-industrial levels.

Once emitted, methane stays in the atmosphere for about nine years – a far shorter period than carbon dioxide. However its global warming potential is 86 times higher than carbon dioxide when averaged over 20 years and 28 times higher over 100 years.

In Australia, methane emissions from fossil fuels are rising due to expansion of the natural gas industry, while agriculture emissions are falling.

Agriculture and fossil fuels are driving the rise in methane emissions.
EPA

Balancing the global methane budget

We produced a methane “budget” in which we tracked both methane sources and sinks. Methane sources include human activities such as agriculture and burning fossil fuels, as well as natural sources such as wetlands. Sinks refer to the destruction of methane in the atmosphere and soils.

Our data show methane emissions grew almost 10% from the decade of 2000-2006 to the most recent year of the study, 2017.




Read more:
Climate Explained: what Earth would be like if we hadn’t pumped greenhouse gases into the atmosphere


Atmospheric methane is increasing by around 12 parts per billion each year – a rate consistent with a scenario modelled by the Intergovernmental Panel on Climate Change under which Earth warms by 3-4℃ by 2100.

From 2008-2017, 60% of methane emissions were man-made. These include, in order of contribution:

  • agriculture and waste, particularly emissions from ruminant animals (livestock), manure, landfills, and rice farming
  • the production and use of fossil fuels, mainly from the oil and gas industry, followed by coal mining
  • biomass burning, from wood burning for heating, bushfires and burning biofuels.
2000 years of atmospheric methane concentrations. Observations taken from ice cores and atmosphere. Source: BoM/CSIRO/AAD.

The remaining emissions (40%) come from natural sources. In order of contribution, these include:

  • wetlands, mostly in tropical regions and cold parts of the planet such as Siberia and Canada
  • lakes and rivers
  • natural geological sources on land and oceans such as gas–oil seeps and mud volcanoes
  • smaller sources such as tiny termites in the savannas of Africa and Australia.

So what about the sinks? Some 90% of methane is ultimately destroyed, or oxidised, in the lower atmosphere when it reacts with hydroxyl radicals. The rest is destroyed in the higher atmosphere and in soils.

Increasing methane concentrations in the atmosphere could, in part, be due to a decreasing rate of methane destruction as well as rising emissions. However, our findings don’t suggest this is the case.

Measurements show that methane is accumulating in the atmosphere because human activity is producing it at a much faster rate than it’s being destroyed.

NASA video showing sources of global methane.

Source of the problem

The biggest contributors to the methane increase were regions at tropical latitudes, such as Brazil, South Asia and Southeast Asia, followed by those at the northern-mid latitude such as the US, Europe and China.

In Australia, agriculture is the biggest source of methane. Livestock are the predominant cause of emissions in this sector, which have declined slowly over time.

The fossil fuel industry is the next biggest contributor in Australia. Over the past six years, methane emissions from this sector have increased due to expansion of the natural gas industry, and associated “fugitive” emissions – those that escape or are released during gas production and transport.




Read more:
Intensive farming is eating up the Australian continent – but there’s another way


Tropical emissions were dominated by increases in the agriculture and waste sector, whereas northern-mid latitude emissions came mostly from burning fossil fuels. When comparing global emissions in 2000-2006 to those in 2017, both agriculture and fossil fuels use contributed equally to the emissions growth.

Since 2000, coal mining has contributed most to rising methane emissions from the fossil fuel sector. But the natural gas industry’s rapid growth means its contribution is growing.

Some scientists fear global warming will cause carbon-rich permafrost (ground in the Arctic that is frozen year-round) to thaw, releasing large amounts of methane.

But in the northern high latitudes, we found no increase in methane emissions between the last two decades. There are several possible explanations for this. Improved ground, aerial and satellite surveys are needed to ensure emissions in this vast region are not being missed.

More surveys are needed into thawing permafrost in the high northern latitudes.
Pikist

Fixing our methane leaks

Around the world, considerable research and development efforts are seeking ways to reduce methane emissions. Methods to remove methane from the atmosphere are also being explored.

Europe shows what’s possible. There, our research shows methane emissions have declined over the past two decades – largely due to agriculture and waste policies which led to better managing of livestock, manure and landfill.

Livestock produce methane as part of their digestive process. Feed additives and supplements can reduce these emissions from ruminant livestock. There is also research taking place into selective breeding for low emissions livestock.




Read more:
Carbon pricing works: the largest-ever study puts it beyond doubt


The extraction, processing and transport of fossil fuels contributes to substantial methane emissions. But “super-emitters” – oil and gas sites that release a large volume of methane – contribute disproportionately to the problem.

This skewed distribution presents opportunities. Technology is available that would enable super-emitters to significantly reduce emissions in a very cost effective way.

Clearly, current upward trends in methane emissions are incompatible with meeting the goals of the Paris climate agreement. But methane’s short lifetime in the atmosphere means any action taken today would bring results in just nine years. That provides a huge opportunity for rapid climate change mitigation.The Conversation

Pep Canadell, Chief research scientist, CSIRO Oceans and Atmosphere; and Executive Director, Global Carbon Project, CSIRO; Ann Stavert, Project Scientist; Ben Poulter, Research scientist, NASA; Marielle Saunois, Enseignant-chercheur, Laboratoire des sciences du climat et de l’environnement (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ) – Université Paris-Saclay ; Paul Krummel, Research Group Leader, CSIRO, and Rob Jackson, Chair, Department of Earth System Science, and Chair of the Global Carbon Project, globalcarbonproject.org, Stanford University

This article is republished from The Conversation under a Creative Commons license. Read the original article.