San Francisco just banned gas in all new buildings. Could it ever happen in Australia?



Shutterstock

Madeline Taylor, University of Sydney and Susan M Park, University of Sydney

Last week San Francisco became the latest city to ban natural gas in new buildings. The legislation will see all new construction, other than restaurants, use electric power only from June 2021, to cut greenhouse gas emissions.

San Francisco has now joined other US cities in banning natural gas in new homes. The move is in stark contrast to the direction of energy policy in Australia, where the Morrison government seems stuck in reverse: spruiking a gas-led economic recovery from the COVID-19 pandemic.

Natural gas provides about 26% of energy consumed in Australia — but it’s clearly on the way out. It’s time for a serious rethink on the way many of us cook and heat our homes.

Cutting out gas

San Francisco is rapidly increasing renewable-powered electricity to meet its target of 100% clean energy by 2030. Currently, renewables power 70% of the city’s electricity.

The ban on gas came shortly after San Francisco’s mayor London Breed announced all commercial buildings over 50,000 square feet must run on 100% renewable electricity by 2022.

Buildings are particularly in focus because 44% of San Franciscos’ citywide emissions come from the building sector alone.




Read more:
4 reasons why a gas-led economic recovery is a terrible, naïve idea


Following this, the San Francisco Board of Supervisors unanimously passed the ban on gas in buildings. They cited the potency of methane as a greenhouse gas, and recognised that natural gas is a major source of indoor air pollution, leading to improved public health outcomes.

From January 1, 2021, no new building permits will be issued unless constructing an “All-Electric Building”. This means installation of natural gas piping systems, fixtures and/or infrastructure will be banned, unless it is a commercial food service establishment.

Switching to all-electric homes

In the shift to zero-emissions economies, transitioning our power grids to renewable energy has been the subject of much focus. But buildings produce 25% of Australia’s emissions, and the sector must also do some heavy lifting.

A report by the Grattan Institute this week recommended a moratorium on new household gas connections, similar to what’s been imposed in San Francisco.

The report said natural gas will inevitably decline as an energy source for industry and homes in Australia. This is partly due to economics — as most low-cost gas on Australia’s east coast has been burnt.




Read more:
A third of our waste comes from buildings. This one’s designed for reuse and cuts emissions by 88%


There’s also an environmental imperative, because Australia must slash its fossil fuel emissions to address climate change.

While acknowledging natural gas is widely used in Australian homes, the report said “this must change in coming years”. It went on:

This will be confronting for many people, because changing the cooktops on which many of us make dinner is more personal than switching from fossil fuel to renewable electricity.

The report said space heating is by far the largest use of gas by Australian households, at about 60%. In the cold climates of Victoria and the ACT, many homes have central gas heaters. Homes in these jurisdictions use much more gas than other states.

By contrast, all-electric homes with efficient appliances produce fewer emissions than homes with gas, the report said.

A yellow triangle sign that says 'no coal or coal seam gas' on a wooden fence.
Natural gas produces methane, a greenhouse gas that’s far more potent than carbon dioxide.
Shutterstock

Zero-carbon buildings

Australia’s states and territories have much work to do if they hope to decarbonise our building sector, including reducing the use of gas in homes.

In 2019, Australia’s federal and state energy ministers committed to a national plan towards zero-carbon buildings for Australia. The measures included “energy smart” buildings with on-site renewable energy generation and storage and, eventually, green hydrogen to replace gas.

The plan also involved better disclosure of a building’s energy performance. To date, Australia’s states and territories have largely focused on voluntary green energy rating tools, such as the National Australian Built Environment Rating System. This measures factors such as energy efficiency, water usage and waste management in existing buildings.

But in 2020, just 2% of buildings in Australia achieved the highest six-star rating. Clearly, the voluntary system has done little to encourage the switch to clean energy.

The National Construction Code requires mandatory compliance with energy efficiency standards for new buildings. However, the code takes a technology neutral approach and does not require buildings to install zero-carbon energy “in the absence of an explicit energy policy commitment by governments regarding the future use of gas”.

An economically sensible move

An estimated 200,000 new homes are built in Australia each year. This represents an opportunity for states and territories to create mandatory clean energy requirements while reaching their respective net-zero emissions climate targets.

Under a gas ban, the use of zero-carbon energy sources in buildings would increase, similar to San Francisco. This has been recognised by Environment Victoria, which notes

A simple first step […] to start reducing Victoria’s dependence on gas is banning gas connections for new homes.

Creating incentives for alternatives to gas may be another approach, such as offering rebates for homes that switch to electrical appliances. The ACT is actively encouraging consumers to transition from gas.




Read more:
Australia has plenty of gas, but our bills are ridiculous. The market is broken


Banning gas in buildings could be an economically sensible move. As the Grattan Report found, “households that move into a new all-electric house with efficient appliances will save money compared to an equivalent dual-fuel house”.

Meanwhile, ARENA confirmed electricity from solar and wind provide the lowest levelised cost of electricity, due to the increasing cost of east coast gas in Australia.

Future-proofing new buildings will require extensive work, let alone replacing exiting gas inputs and fixtures in existing buildings. Yet efficient electric appliances can save the average NSW homeowner around A$400 a year.

Learning to live sustainability, and becoming resilient in the face of climate change, is well worth the cost and effort.

Should we be cooking with gas?

Recently, a suite of our major gas importers — China, South Korea and Japan — all pledged to reach net-zero emissions by either 2050 or 2060. This will leave our export-focused gas industry possibly turning to the domestic market for new gas hookups.

But continuing Australia’s gas production will increase greenhouse gas emissions, and few Australians support an economic recovery pinned on gas.

The window to address dangerous climate change is fast closing. We must urgently seek alternatives to burning fossil fuels, and there’s no better place to start that change than in our own homes.




Read more:
No, Prime Minister, gas doesn’t ‘work for all Australians’ and your scare tactics ignore modern energy problems


The Conversation


Madeline Taylor, Lecturer, University of Sydney and Susan M Park, Professor of Global Governance, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Ships moved more than 11 billion tonnes of our stuff around the globe last year, and it’s killing the climate. This week is a chance to change



Shutterstock

Christiaan De Beukelaer, University of Melbourne

The shipping of goods around the world keeps economies going. But it comes at an enormous environmental cost – producing more CO₂ than the aviation industry. This problem should be getting urgent international attention and action, but it’s not.

This week, all 174 member states of the International Maritime Organisation (IMO) will discuss a plan to meet an emissions reduction target. But the target falls far short of what’s needed, and the plan to get there is also weak.

As other industries clean up their act, shipping’s share of the global emissions total will only increase. New fuels and ship design, and even technology such as mechanical sails, may go some way to decarbonising the industry – but it won’t be enough.

It’s high time the international shipping industry radically curbed its emissions. The industry must set a net-zero target for 2050 and a realistic plan to meet it.

Cargo ships waiting offshore with plane wing in foreground
The shipping industry accounts for more carbon emissions than aviation.
Shutterstock

Shipping: by the numbers

Globally, more than 50,000 merchant ships ship about 11 billion tonnes of goods a year. In 2019 they covered nearly 60 trillion tonne-miles, which refers to transporting one tonne of goods over a nautical mile.

Per tonne-mile, carbon dioxide emissions from shipping are among the lowest of all freight transport options. But in 2018, shipping still emitted 1,060 million tonnes of CO₂ – 2.89% of global emissions. By comparison, the aviation industry contributed 918 million tonnes of CO₂, or 2.4% of the total.

And as international trade increases and other sectors decarbonise, global shipping is expected to contribute around 17% of human-caused emissions by 2050.

An emissions pariah

The IMO, which regulates the global shipping industry, did not set meaningful emissions reduction targets until April 2018. This is despite being requested to reduce emissions as far back as 1997 under the Kyoto Protocol.

The IMO has pledged to halve shipping emissions between 2008 and 2050 while aiming for full decarbonisation. By 2030, the carbon intensity (or emissions per tonne-mile) of individual ships should fall by 40%, compared with 2008 levels.

The IMO’s Marine Environment Protection Committee, is devising binding rules for the industry to achieve these emissions goals. Draft measures being considered this week focus solely on reducing the carbon intensity of individual ships. The plan has been slammed by critics because emissions reductions are not in line with Paris Agreement commitments of limiting global warming to 1.5℃ or 2℃ by 2100.




Read more:
The shipping sector is finally on board in the fight against climate change


There are two main issues with the 40% emissions intensity target.

First, it’s not ambitious enough. Research suggests limiting warming to 1.5℃ requires the shipping industry to reach net-zero emissions. Merely reducing the carbon intensity of ships will barely make a dent in current emissions. Worse, even the best-case scenario will likely lead to a 14% emissions increase compared to 2008.

Second, the IMO has yet to say how it will meet its targets. The plan up for discussion this week is weak: not least because it lacks enforcement mechanisms.

Exterior of IMO building
The IMO dragged its feet on setting an emissions target for the industry.
Shutterstock

So how do we fix the problem?

Earlier this year, I sailed on the Avontuur. This 100-year-old two-masted schooner under German flag sailed from Germany to the Caribbean and Mexico to load 65 tonnes of coffee and cacao, then ship it under sail to Hamburg.

The round-trip took more than six months and 15 crew members. Roughly 169 million ships like the Avontuur would be needed to transport the 11 billion tonnes of goods moved by sea each year. It would require 2.5 billion crew, compared with 1.5 million today. Clearly, that is not realistic.

So how, then, do we solve the international shipping problem? Clean transport advocates say we must reduce demand for cargo transport by using what’s locally available, and generally consuming less and moving to a post-growth economy.




Read more:
Plain sailing: how traditional methods could deliver zero-emission shipping


Some scientists concur, arguing either carbon intensity or shipping demand must come down – and probably both.

Ships can significantly reduce their emissions simply by slowing down. Carbon emissions increase exponentially when ships travel above cruising speed. But the industry seems unwilling to pick this low-hanging fruit, perhaps because it would compromise just-in-time supply chains.

Ships commonly burn huge amounts of heavy fuel oil. Emerging fuels, such as hydrogen and ammonia, have the potential to cut emissions from ships. But producing these fuels may create substantial emissions, and adopting new fuels would require building new ships or retrofitting existing ones.

Existing vessels can also be retrofitted with more efficient propulsion mechanisms. They could also be fitted with wind-assist technologies such as sails, rotors, kites, and suction wings. Research suggests these technologies could reduce a ship’s emissions by 10–60%.

And new designs for sail-powered cargo vessels are emerging. But these ships are yet to be built and it may be a long time before they are widely used.

An artist impression of the Neoline sail-powered cargo ship.
Sail-powered cargo vessels can help slash global emissions.
Neoline

Looking ahead

Technological solutions on their own will not bring the necessary emissions reductions. New technologies must be embraced immediately, and ambitious regulation is necessary. Industry and consumer demand for shipped goods must fall as well.

Earth’s remaining carbon budget is fast shrinking and all industry sectors must do their fair share. At this point in the climate crisis, further delays and weak targets are inexcusable.The Conversation

Christiaan De Beukelaer, Senior Lecturer, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.