Even after the rains, Australia’s environment scores a 3 out of 10. These regions are struggling the most


Shutterstock

Albert Van Dijk, Australian National University; Marta Yebra, Australian National University, and Shoshana Rapley, Australian National UniversityImproved weather conditions have pulled Australia’s environment out of its worst state on record, but recovery remains partial and precarious, new research reveals.

Each year, we collate a vast number of measurements on the state of our environment. The data are collected in many different ways – including satellites, field stations and surveys – then combined to produce an overall national score.

A year ago, after prolonged drought and devastating bushfires, Australia’s environment scored a shocking 0.8 out of ten. Our new research shows nature started its long road to recovery in 2020, especially in New South Wales and Victoria. Some of the regions with the poorest scores have high levels of social disadvantage, which risks being further entrenched by environmental disasters such as drought, bushfire and heatwaves.

Nationally, Australia’s environmental condition score increased by 2.6 points last year, to reach a (still very low) score of 3.2. But overall conditions across large swathes of the country remain poor.

Environmental Condition Score for 2020 by state and territory.
ANU Fenner School

Scores rising but still in the red

From a long list of environmental indicators we report on, seven are selected to calculate an overall score for each region, as well as nationally.

These indicators – high temperatures, river flows, wetlands, soil health, vegetation condition, growth conditions and tree cover – are chosen because they allow a comparison against previous years. See the graphic below to find the score for your region.

The largest improvements occurred in NSW and Victoria thanks to good rains. The poorest conditions occurred in the Northern Territory and Western Australia, where there was little solace from dry conditions.

Comparing local government areas, the best conditions occurred in Nillubik Shire on the northern edge of Melbourne. In contrast, the worst conditions occurred in Katherine in the Northern Territory and in the Shire of Ngaanyatjarraku in remote WA.



@media only screen and (max-width: 450px) {
iframe.box {display:none}
}
@media only screen and (min-width: 451px) and (max-width: 1460px) {
iframe.box {display:block}
}

From drought to rain

2020 started as badly as 2019 ended – with extreme temperatures, drought and fires, especially in Australia’s southeast. The Sydney suburb of Penrith was the hottest place on Earth on January 4 and, following the bushfires, Canberra had the most dangerous air quality in the world for several days. Clearly, climate change is already affecting our cities and nature.

By the end of summer, the high temperatures also caused another mass coral bleaching in the Great Barrier Reef – the third such event in five years.

Only in February-March did the weather turn, providing good and in some areas very plentiful rains – for example along the NSW coast. Later in the year officials declared an La Niña event – an ocean circulation pattern that normally encourages rainfall in Australia.

While rainfall was not extraordinarily high, it lifted most regions in eastern Australia out of extreme drought. Some parts of northern and western Australia missed out, however, and in some areas the drought deepened.

Taken as an average over the year and over the country, rainfall was 10% above the average for the previous two decades. The number of hot days – those reaching 35℃ – was 11% or nine days more than the 20-year average.

Values for 15 environmental indicators in 2020, expressed as the change from average 2000-2019 conditions. Similar to national economic indicators, they provide a summary but also hide regional variations, complex interactions and long-term context.
ANU Fenner School

The improved rainfall helped replenish dried soils, and national average soil moisture was close to average. Growth conditions for the NSW wheatbelt were the best in many years and tree cover increased in northern and eastern Australia.

The rain refilled many dams and reservoirs, especially in Canberra and Sydney. It also made some eastern rivers flow again, including the Darling River in NSW. But with such dry starting conditions, wetlands in inland eastern Australia filled only modestly and waterbird numbers remained low.

Drought persisted across large swathes of inland northern and western Australia, where in some parts, vegetation growth conditions were the worst in decades. And the surplus rain was often not enough to reach wetlands, which continued to shrink.




Read more:
Wake up, Mr Morrison: Australia’s slack climate effort leaves our children 10 times more work to do


New shoots in forest after fire
Signs of life: some parts of Australia have benefited from recent rain.
Shutterstock

Bushfires: few but locally severe

Fire activity in vast areas of inland Australia was very low, because a run of dry years did not leave much dry grass to burn.

Nationally, the total area burnt was 17 million hectares – 90% below the 20-year average. This led to 80 million tonnes of carbon emissions (43% below average).

Fire activity was not low everywhere. In southeast Australia, fires in southern NSW, East Gippsland and the ACT severely damaged forests and other ecosystems as well as people and property.

The full ecological damage of the Black Summer fires was not entirely apparent in 2020. That’s partly because COVID-19 restrictions made the situation difficult to assess.

The fires burned more than 80% of the habitat of 30 threatened species, and may have been the death blow for several. Food shortages and feral cats further reduced populations of surviving animals in the burnt ecosystems.

But some wildlife proved unexpectedly resilient. For example, a great effort by citizen scientists showed frogs rebounded well after the rains.

Another 15 species were added to the Threatened Species List in 2020. In good news, three species were removed from the list, including two species of tree frogs that recovered from the global chytrid fungus.




Read more:
5 remarkable stories of flora and fauna in the aftermath of Australia’s horror bushfire season


Stopping the slow train wreck

The accelerating impacts of climate change will not stop here. New records will inevitably be broken. Heat, drought and fire will again damage our environment and lives. Some ecosystems will be lost forever. But even worse outcomes can be avoided – if the world can rein in greenhouse gas pollution.

There’s cause for cautious optimism. International pressure may force the Morrison government’s hand on climate action. Several states and territories have already taken decisive climate action. Low-emission energy and transport are advancing quickly. As individuals we can fly and drive less, get solar panels and divest from fossil fuel companies.

In the meantime, we must adapt to inevitable climate change and reduce other pressures on our ecosystems. Citizen scientists have proven essential in monitoring how individual species are faring – so download that app and enjoy nature even more. And plant a few trees to help nature along.

Finally, pressure your local, state and national politicians. Ask them: how are you addressing vegetation loss, invasive pests and over-extraction from rivers? If you don’t like the answer, tell them, or try to vote them out.

With greater urgency and some luck, there is still much to be salvaged.

The full report and a video summary are available here.




Read more:
Our turtle program shows citizen science isn’t just great for data, it makes science feel personal


This story is part of a series The Conversation is running on the nexus between disaster, disadvantage and resilience. You can read the rest of the stories here.The Conversation

Albert Van Dijk, Professor, Water and Landscape Dynamics, Fenner School of Environment & Society, Australian National University; Marta Yebra, Associate Professor in Environment and Engineering, Australian National University, and Shoshana Rapley, Research assistant, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

5 ways fungi could change the world, from cleaning water to breaking down plastics


Shutterstock

Mitchell P. Jones, Vienna University of TechnologyFungi — a scientific goldmine? Well, that’s what a review published today in the journal Trends in Biotechnology indicates. You may think mushrooms are a long chalk from the caped crusaders of sustainability. But think again.

Many of us have heard of fungi’s role in creating more sustainable leather substitutes. Amadou vegan leather crafted from fungal-fruiting bodies has been around for some 5,000 years.

More recently, mycelium leather substitutes have taken the stage. These are produced from the root-like structure mycelium, which snakes through dead wood or soil beneath mushrooms.

You might even know about how fungi help us make many fermented food and drinks such as beer, wine, bread, soy sauce and tempeh. Many popular vegan protein products, including Quorn, are just flavoured masses of fungal mycelium.

But what makes fungi so versatile? And what else can they do?

Show me foamy and flexible

Fungal growth offers a cheap, simple and environmentally friendly way to bind agricultural byproducts (such as rice hulls, wheat straw, sugarcane bagasse and molasses) into biodegradable and carbon-neutral foams.

Fungal foams are becoming increasingly popular as sustainable packaging materials; IKEA is one company that has indicated a commitment to using them.

Fungal foams can also be used in the construction industry for insulation, flooring and panelling. Research has revealed them to be strong competitors against commercial materials in terms of having effective sound and heat insulation properties.

Rigid and flexible fungal foams have several construction applications including (a) particle board and insulation cores, (b) acoustic absorbers, (c) flexible foams and (d) flooring.
Jones et al

Moreover, adding in industrial wastes such as glass fines (crushed glass bits) in these foams can improve their fire resistance.

And isolating only the mycelium can produce a more flexible and spongy foam suitable for products such as facial sponges, artificial skin, ink and dye carriers, shoe insoles, lightweight insulation lofts, cushioning, soft furnishings and textiles.




Read more:
Scientists create new building material out of fungus, rice and glass


Paper that doesn’t come from trees? No, chitin

For other products, it’s the composition of fungi that matters. Fungal filaments contain chitin: a remarkable polymer also found in crab shells and insect exoskeletons.

Chitin has a fibrous structure, similar to cellulose in wood. This means fungal fibre can be processed into sheets the same way paper is made.

When stretched, fungal papers are stronger than many plastics and not much weaker than some steels of the same thickness. We’ve yet to test its properties when subject to different forces.

Fungal paper’s strength can be substituted for rubbery flexibility by using specific fungal species, or a different part of the mushroom. The paper’s transparency can be customised in the same way.

Paper sheets with varying transparency derived from the brown crab’s shell (C. pagurus) (column 1), fungi Daedaleopsis confragosa (column 2) and the mushroom Agaricus bisporus (column 6). Columns 3, 4 and 5 show fungal papers of varying transparencies based on mixtures of the two species.
Wan Nawawi et al

Growing fungi in mineral-rich environments results in inherent fire resistance for the fungus, as it absorbs the inflammable minerals, incorporating them into its structure. Add to this that water doesn’t wet fungal surfaces, but rolls off, and you’ve got yourself some pretty useful paper.

A clear solution to dirty water

Some might ask: what’s the point of fungal paper when we already get paper from wood? That’s where the other interesting attributes of chitin come into play — or more specifically, the attributes of its derivative, chitosan.

Chitosan is chitin that has been chemically modified through exposure to an acid or alkali. This means with a few simple steps, fungal paper can adopt a whole new range of applications.

For instance, chitosan is electrically charged and can be used to attract heavy metal ions. So what happens if you couple it with a mycelium filament network that is intricate enough to prevent solids, bacteria and even viruses (which are much smaller than bacteria) from passing through?

White-button mushroom
Fungal chitin paper derived from white-button mushrooms is an eco-friendly alternative to standard filter materials.
Shutterstock

The result is an environmentally friendly membrane with impressive water purification properties. In our research, my colleagues and I found this material to be stable, simple to make and useful for laboratory filtration.

While the technology hasn’t yet been commercialised, it holds particular promise for reducing the environmental impact of synthetic filtration materials, and providing safer drinking water where it’s not available.

Mushrooms in modern medicine

Perhaps even more interesting is chitosan’s considerable biomedical potential. Fungal materials have been used to create dressings with active wound healing properties.

Although not currently on the market, these have been proven to have antibacterial properties, stem bleeding and support cell proliferation and attachment.

Fungal enzymes can also be used to combat bacteria active in tooth decay, enhance bleaching and destroy compounds responsible for bad breath.




Read more:
Vegan leather made from mushrooms could mould the future of sustainable fashion


Then there’s the well-known role of fungi in antibiotics. Penicillin, made from the Penicillium fungi, was a scientific breakthrough that has saved millions of lives and become a staple of modern healthcare.

Many antibiotics are still produced from fungi or soil bacteria. And in an age of increasing antibiotic resistance, genome sequencing is finally enabling us to identify fungi’s untapped potential for manufacturing the antibiotics of the future.

Mushrooms mending the environment

Fungi could play a huge role in sustainability by remedying existing environmental damage.

For example, they can help clean up contaminated industrial sites through a popular technique known as mycoremediation, and can break down or absorb oils, pollutants, toxins, dyes and heavy metals.

They can also compost some synthetic plastics, such as polyurethane. In this process, the plastic is buried in regulated soil and its byproducts are digested by specific fungi as it degrades.

These incredible organisms can even help refine bio fuels. Whether or not we go as far as using fungal coffins to decompose our bodies into nutrients for plants — well, that’s a debate for another day.

But one thing is for sure: fungi have the undeniable potential to be used for a whole range of purposes we’re only beginning to grasp.

It could be the beer you drink, your next meal, antibiotics, a new faux leather bag or the packaging that delivered it to you — you never know what form the humble mushroom will take tomorrow.




Read more:
The secret life of fungi: how they use ingenious strategies to forage underground


The Conversation


Mitchell P. Jones, Postdoctoral researcher, Vienna University of Technology

This article is republished from The Conversation under a Creative Commons license. Read the original article.