Even without new fossil fuel projects, global warming will still exceed 1.5℃. But renewables might make it possible


Shutterstock

Sven Teske, University of Technology Sydney and Sarah Niklas, University of Technology SydneyThe International Energy Agency (IEA) last month made global headlines when it declared there is no room for new fossil fuel investment if we’re to avoid catastrophic climate change.

However, our new research suggests the horse may have already bolted. We found even if no new fossil fuel projects were approved anywhere in the world, carbon emissions set to be released from existing projects will still push global warming over the dangerous 1.5℃ threshold.

Specifically, even with no new fossil fuel expansion, global emissions would be 22% too high to stay within 1.5℃ by 2025, and 66% too high by 2030.

However, keeping global warming under 1.5℃ is still achievable with rapid deployment of renewables. Our research found solar and wind can supply the world’s energy demand more than 50 times over.

The stunning potential of wind and solar

While our findings were alarming, they also give us a new reason to be hopeful.

We analysed publicly available oil, gas and coal extraction data, and calculated the future production volume. We worked under the assumption no new fossil fuel extraction projects would be developed, and all existing projects would see production declining at standard industry rates.

We found fossil fuel projects already in the pipeline will, by 2030, produce 35% more oil and 69% more coal than what’s consistent with a pathway towards a 1.5℃ temperature rise.

Power station at night
Fossil fuels account for over 75% of carbon dioxide emissions.
Shutterstock

Fossil fuels are the main driver of climate change, accounting for more than 75% of carbon dioxide emissions. Continuing to expand this sector will not only be catastrophic for the climate, but also for the world’s economy as it locks in infrastructure that will become stranded assets.

Ultimately, it’s not enough to simply keep fossil fuels in the ground. To meet our climate goals under the Paris Agreement, we must phase down existing production.




Read more:
4 reasons why a gas-led economic recovery is a terrible, naïve idea


Solar and wind power technologies are already market ready and cost competitive. And as our analysis confirms, they’re ready to be scaled up to meet the energy demands of every person on the planet.

We mapped all the potential areas where wind and solar infrastructure can be built, and the energy potential across six continents.

Even after applying a set of robust, conservative estimates that take environmental safeguards, land constraints and technical feasibility into account, we found that solar and wind energy could meet the world’s energy demand from 2019 — 50 times over.

It’s clear we don’t need new fossil fuel development to ensure 100% energy access in the future.

Australia’s laggard status

In Australia, the Morrison government refuses to set new emissions reduction targets, and continues to fund new fossil fuel projects, such as a A$600 million gas plant in the New South Wales Hunter Valley.

Despite Australia’s laggard status on climate change, there are positive moves elsewhere around the world.

The progress was evident ahead of the G7 summit this past weekend, where climate change was firmly on the agenda. Ahead of the summit, environment ministers worldwide agreed to phase out overseas fossil fuel finance and end support for coal power.

And in recent weeks, three global fossil fuel giants – Shell, Chevron and ExxonMobil – faced legal and shareholder rebukes over their inadequate action on climate change.




Read more:
Four seismic climate wins show Big Oil, Gas and Coal are running out of places to hide


Coming on top of all that, the IEA last month set out a comprehensive roadmap to achieve net-zero emissions by 2050. It included a stark warning: no new fossil fuel projects should be approved.

Natural carbon storage is key

However, the IEA’s findings contradict our own on several fronts. We believe the IEA underestimated the very real potential of renewable energy and relied on problematic solutions to fill what it sees as a gap in meeting the carbon budget.

For example, the IEA suggests a sharp increase in bioenergy is required over the next 30 years.

This would require biofuels from energy plantations — planting crops (such as rapeseed) specifically for energy use.

But conservationists estimate the sustainable potential for biofuels is lower. They also say high volumes of bioenergy might interfere with land use for food production and protected nature conservation areas.

Our research found the exact opposite is needed: rapid phase out of deforestation and significant reforestation alongside the decarbonisation of the energy sector.

Bioenergy should be produced predominantly from agricultural and organic waste to remain carbon neutral.




Read more:
International Energy Agency warns against new fossil fuel projects. Guess what Australia did next?


Likewise, the IEA calls for an extreme expansion of carbon capture and storage (CCS) projects — where carbon dioxide emissions are captured at the source, and then pumped and stored deep in the ground.

In its roadmap, the IEA expects CCS projects to grow from capturing 40 million tonnes of carbon dioxide (as is currently the case), to 1,665 million tonnes by 2030.

This is quite unrealistic, because it means betting on expensive, unproven technology that’s being deployed very slowly and is often plagued by technical issues.

Establishing natural carbon sinks should be prioritised instead, such as keeping forest, mangrove and seagrass ecosystems better intact to draw carbon dioxide from the atmosphere.

Phasing out early

As a wealthy country, Australia is better placed than most to weather any economic disruption from the energy transition.

Our research shows Australia should phase out fossil fuels early and urgently. The Australian government should also ensure communities and people reliant on fossil fuel industries are helped through the transition.

We must also support poorer countries highly dependent on fossil fuels, particularly in the Asia-Pacific region.

There is new international momentum for climate action, and the future of the fossil fuel industry looks increasingly dire. The technologies to make the transition are ready and waiting – now all that’s needed is political will.




Read more:
Tracking the transition: the ‘forgotten’ emissions undoing the work of Australia’s renewable energy boom


The Conversation


Sven Teske, Research Director, Institute for Sustainable Futures, University of Technology Sydney and Sarah Niklas, Research Consultant, Institute for Sustainable Futures, University of Technology Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Check your mirrors: 3 things rooftop solar can teach us about Australia’s electric car rollout


Shutterstock

Bjorn Sturmberg, Australian National University; Kathryn Lucas-Healey, Australian National University; Laura Jones, Australian National University, and Mejbaul Haque, Australian National UniversityGovernments and car manufacturers are investing hundreds of billions of dollars on electric vehicles. But while the electric transport revolution is inevitable, the final destination remains unknown.

The electric vehicle transition is about more than just doing away with vehicles powered by fossil fuels. We must also ensure quality technology and infrastructure, anticipate the future and avoid unwanted outcomes, such as entrenching disadvantage.

In Australia, the electric vehicle rollout has been slow, and federal action limited. But some state governments are working to electrify bus fleets, roll out public charging networks and trial smart vehicle charging in homes.

Australia’s world-leading rollout of rooftop solar power systems offers a guide to help navigate the transition. We’ve identified three key lessons on what’s gone well, and in hindsight, what could have been done differently.

solar panels on roofs
Australia’s rooftop solar boom offers insights into the electric vehicle revolution.
Shutterstock

1. Price isn’t everything

Solar systems and electric vehicles are both substantial financial investments. But research into rooftop solar has shown financial considerations are just one factor that guides purchasing decisions. Novelty, concerns about climate change and a desire for self-sufficiency are also significant – and electric vehicle research is producing similar findings.

When considering the electric vehicle rollout, understanding these deeper motivators may help avoid a race to the bottom on price.

About one in four Australian homes has rooftop solar, with almost three million systems installed. Solar companies have often sought to highlight the low price of rooftop systems over other considerations. This has created consumer demand for low-priced, lower-quality products – and led to potentially hundreds of thousands of substandard installations across Australia.




Read more:
On the road again: here’s how the states can accelerate Australia’s sputtering electric vehicle transition


So what are the lessons here for the electric vehicle rollout? First, when planning public infrastructure where electric vehicles can be charged, construction costs should not be the only consideration. Factors such as night-time safety and disability access should be prioritised. Shortcuts today will reinforce barriers for women and people with disabilities and create complex problems down the track.

Like rooftop solar, the point of sale of electric vehicles offers a unique opportunity to teach customers about the technology. Companies, however, can only afford to invest in customer education if they aren’t too stressed about margins.

“Smart” charging is one measure being explored to ensure the electricity network can handle future growth in electric vehicle uptake. Smart chargers can be remotely monitored and controlled to minimise their impact on the grid.

The point of sale is a pivotal moment to tell new owners of electric vehicles that their charging may at times be managed in this way.

EVs on charge
Electric vehicle charging infrastructure should be safe and accessible.
Shutterstock

2. Plan ahead

The uptake of rooftop solar in Australia has been a raging success. In fact, rooftop solar is now the largest generator in the national power system.

This raises issues, such as how rooftop solar systems will respond to a major disturbance, such as the failure of a transmission line. A large amount of solar power feeding into the grid can also challenge electricity network infrastructure.

In response, electricity networks have implemented changes such as limiting solar exports and therefore, returns to solar system owners, and charging fees for exporting solar.

Such retrospective changes have been unpopular with solar owners. So to maintain reliable electricity supplies, and avoid angering consumers, it’s vital to plan where and when electric vehicles are charged.

If every vehicle in Australia was electric, this would add about a quarter to national power demand. The rise in demand would be greatest near bus and logistics depots and ultra-fast highway chargers.




Read more:
Owners of electric vehicles to be paid to plug into the grid to help avoid blackouts


Timing is key to maximising the use of a network connection without overloading it. For example, if everyone charged their vehicle in the evening after they get home from work, as this would put further pressure on electricity supplies at this peak time.

Governments and electricity providers should encourage electric vehicle charging during the day, when demand is lower. This might mean, for example, providing vehicle charging facilities at workplaces and in public areas.

Until Australia’s power grid transitions to 100% renewables, the use of solar energy should be strongly encouraged. This would ensure the vehicles were charged from a clean, cheap energy source and would help manage the challenges of abundant solar.

The question of road user charges for electric vehicles drivers is another example where it’s best to avoid retrospective changes. Such charges are necessary in the long run and best introduced from the outset.

woman's arm holds EV charger on car
Vehicle charging during the day, when power demand is lowest, should be encouraged.
Shutterstock

3. Coordination is key

Electric vehicle policy spans many government portfolios: transport, infrastructure, energy, planning, environment and climate change. Nationally, and from state to state, different ministers are in charge.

This makes coordination difficult, and creates the risk of policies undermining each other. For example, one policy might encourage the charging of electric vehicles from rooftop solar, to reduce carbon emissions. But because solar energy is so cheap, this might encourage more private vehicle use, which worsens road congestion.

So policies to encourage electric vehicle uptake should not come at the cost of creating more attractive and efficient public transport networks.

And new technologies can entrench societal disadvantage. For example, the rooftop solar rollout often excluded people who could not afford to buy the systems. Without policies to address this, the electric vehicle transition could lead to similar outcomes.

traffic queues in Sydney
Encouraging electric vehicle use could worsen road congestion, if not well managed.
Shutterstock

Lessons in the rear-view mirror

As Australia’s experience with rooftop solar has shown, successful technology transitions must be carefully planned and attentively steered.

In the case of electric vehicles, this will ensure the benefits to owners, society and the environment are fully realised. It will also ensure a smooth-as-possible transition, the gains from which all Australians can share.




Read more:
The US jumps on board the electric vehicle revolution, leaving Australia in the dust


The Conversation


Bjorn Sturmberg, Research Leader, Battery Storage & Grid Integration Program, Australian National University; Kathryn Lucas-Healey, Research Fellow, Australian National University; Laura Jones, Senior Analyst – Economics and Business models, Australian National University, and Mejbaul Haque, Research Fellow, Battery Energy Storage and Grid Integration Program, Research School of Engineering, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

How rain, wind, heat and other heavy weather can affect your internet connection


Gordonekoff / Shutterstock

James Jin Kang, Edith Cowan University and Paul Haskell-Dowland, Edith Cowan UniversityWhen your Netflix stream drops out in the middle of a rainstorm, can you blame the wild weather?

Quite possibly. The weather can affect the performance of your internet connection in a variety of ways.

This can include issues such as physical damage to the network, water getting into electrical connections, and wireless signal interference. Some types of connection are more vulnerable to weather than others.

The behaviour of other humans in response to the weather can also have an effect on your connection.

How rain can affect your internet connection

Internet connections are much more complicated than the router and cables in our homes. There are many networking devices and cables and connections (of a variety of types and ages) between our homes and the websites we are browsing.

How do we connect to the Internet?

An internet connection may involve different kinds of physical link, including the copper wiring used in the old phone network and more modern fibre optic connections. There may also be wireless connections involved, such as WiFi, microwave and satellite radio.

Example of multi-layered internet access.
Ferran, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

Rain can cause physical damage to cables, particularly where telecommunication networks are using old infrastructure.

ADSL-style connections, which use the old phone network, are particularly vulnerable to this type of interference. Although many Australians may be connected to the National Broadband Network (NBN), this can still run (in part) through pre-existing copper wires (in the case of “fibre to the node” or “fibre to the cabinet” connections) rather than modern optical fibres (“fibre to the home”).

Different types of NBN connection.
Riick, CC BY-SA 3.0 http://creativecommons.org/licenses/by-sa/3.0/, via Wikimedia Commons

Much of the internet’s cabling is underground, so if there is flooding, moisture can get into the cables or their connectors. This can significantly interfere with signals or even block them entirely, by reducing the bandwidth or causing an electrical short-circuit.

But it isn’t just your home connection that can be impacted. Wireless signals outside the home or building can be affected by rainfall as water droplets can partially absorb the signal, which may result in a lower level of coverage.

Even once the rain stops, the effects can still be felt. High humidity can continue to affect the strength of wireless signals and may cause slower connection speeds.

Copper cables and changed behaviour

If you are using ADSL or NBN for your internet connection, it is likely copper phone cables are used for at least some of the journey. These cables were designed to carry voice signals rather than data, and on average they are now more than 35 years old.

Only around 18% of Australian homes have the faster and more reliable optical-fibre connections.

There is also a behaviour factor. When it rains, more people might decide to stay indoors or work from home. This inevitably leads to an increase in the network usage. When a large number of people increase their internet usage, the limited bandwidth available is rapidly consumed, resulting in apparent slowdowns.




Read more:
How to boost your internet speed when everyone is working from home


This is not only within your home, but is also aggregated further up the network as your traffic is joined by that from other homes and eventually entire cities and countries.

Heatwaves and high winds

In Australia, extreme cold is not usually a great concern. Heat is perhaps a more common problem. Our networking devices are likely to perform more slowly when exposed to extreme heat. Even cables can suffer physical damage that may affect the connection.

Imagine your computer fan is not running and the device overheats — it will eventually fail. While the device itself may be fine, it is likely the power supply will struggle in extremes. This same issue can affect the networking equipment that controls our internet connection.

Satellite internet services for rural users can be susceptible to extreme weather, as the satellite signals have to travel long distances in the air.

Radio signals are not usually affected by wind, but hardware such as satellite dishes can be swayed, vibrated, flexed or moved by the wind.

Most of the time, human behaviour is the main cause

For most users, the impact of rain will be slight – unless they are physically affected by a significant issue such as submerged cables, or they are trying to use WiFi outside during a storm.

So, can weather affect your internet connection? Absolutely.

Will most users be affected? Unlikely.

So if your favourite Netflix show is running slow during in rainy weather, it’s most likely that the behaviour of other humans is to blame — holed up indoors and hitting the internet, just like you.




Read more:
Internet traffic is growing 25% each year. We created a fingernail-sized chip that can help the NBN keep up


The Conversation


James Jin Kang, Lecturer, Computing and Security, Edith Cowan University and Paul Haskell-Dowland, Associate Dean (Computing and Security), Edith Cowan University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Tracking the transition: the ‘forgotten’ emissions undoing the work of Australia’s renewable energy boom


Shutterstock

Hugh Saddler, Australian National University and Frank Jotzo, Australian National UniversityWorld leaders including Prime Minister Scott Morrison will gather in the UK this weekend for the G7 summit. In a speech on Wednesday ahead of the meeting, Morrison said Australia recognises the need to reach net-zero emissions in order to tackle climate change, and expects to achieve the goal by 2050.

So has Australia started the journey towards deep cuts in greenhouse gas emissions?

In the electricity supply system, the answer is yes, as renewables form an ever-greater share of the electricity mix. But elsewhere in the energy sector – in transport, industry and buildings – there has been little or no progress.

This situation needs to change. These other parts of the energy system contribute nearly 40% of all national greenhouse gas emissions – and the share is growing. In a new working paper out today, we propose a way to track the low-carbon transition across the energy sector and check progress over the last decade.

woman cooks in kitchen with gas stove
Energy emissions from buildings, such as from gas cooktops, have largely escaped scrutiny.
Shutterstock

A stark contrast

The energy sector can be separated into three major types of energy use in Australia:

  • electricity generation
  • transport and mobile equipment used in mining, farming, and construction
  • all other segments, mainly fossil fuel combustion to provide heat in industry and buildings.

In 2018-19, energy sector emissions accounted for 72% of Australia’s national total. Transition from fossil fuels to zero-emissions sources is at the heart of any strategy to cut emissions deeply.

The transition is already happening in electricity generation, as wind and solar supplies increase and coal-fired power stations close or operate less.

But in stark contrast, elsewhere in the sector there is no evidence of a meaningful low-emissions transition or acceleration in energy efficiency improvement.

This matters greatly because in 2019, these other segments contributed 53% of total energy combustion emissions and 38% of national greenhouse gas emissions. Total energy sector emissions increased between 2005 (the reference year for Australia’s Paris target) and 2019.

As the below graphic shows, while the renewables transition often gets the credit for Australia’s emissions reductions, falls since 2005 are largely down to changes in land use and forestry.



Let’s take a closer look at the areas where Australia could do far better in future.

1. Transport and mobile equipment

Transport includes road and rail transport, domestic aviation and coastal shipping. Mobile equipment includes machinery such as excavators and dump trucks used in mining, as well as tractors, bulldozers and other equipment used in farming and construction. Petroleum supplies almost 99% of the energy consumed by these machines.

Road transport is responsible for more than two-thirds of all the energy consumed by transport and mobile equipment.

What’s more, prior to COVID, energy use by transport and mobile equipment was steadily growing – as were emissions. The absence of fuel efficiency standards in Australia, and a trend towards larger cars, has contributed to the problem.

Electric vehicles offer great hope for cutting emissions from the transport sector. As Australia’s electricity grid continues to decarbonise, emissions associated with electric vehicles charged from the grid will keep falling.

cars on freeway from rear
Electric vehicles would slash road transport emissions.
Shutterstock

2. Other energy emissions

Emissions from all other parts of the energy system arise mainly from burning:

  • gas to provide heat for buildings and manufacturing, and for the power needed to liquefy gas to make LNG
  • coal, for a limited range of heavy manufacturing activities, such as steel and cement production
  • petroleum products (mainly LPG) in much smaller quantities, where natural gas is unavailable or otherwise unsuitable.

Emissions from these sources, as a share of national emissions, rose from 13% in 2005 to 19% in 2019.

These types of emissions can be reduced through electrification – that is, using low- or zero-carbon electricity in industry and buildings. This might include using induction cooktops, and electric heat pumps to heat buildings and water.

However the data offer no evidence of such a shift. Fossil fuel use in this segment has declined, but mainly due to less manufacturing activity rather than cleaner energy supply.

And in 2018 and 2019, the expanding LNG industry drove further emissions growth, offsetting the decline in use of gas and coal in manufacturing.

How to track progress

Over the past decade or so, Australia’s emissions reduction policies – such as they are – have focused on an increasingly narrow range of emission sources and reduction opportunities, in particular electricity generation.

Only now are electric vehicles beginning to be taken seriously, while energy efficiency – a huge opportunity to cut emissions and costs – is typically ignored.

Our paper proposes a large set of new indicators, designed to show what’s happening (and not happening) across the energy sector.

The indicators fall into four groups:

  • greenhouse gas emissions from energy use
  • primary fuel mix including for electricity generation
  • final energy consumption including energy use efficiency
  • the fuel/technology mix used to deliver energy services to consumers.

Our datasets excludes the effects of 2020 COVID-19 lockdowns. They’re based on data contained in established government publications: The Australian Energy Statistics, the National Greenhouse Gas Inventory and the Australian Bureau of Statistics’ national accounts and population estimates.

By systematically tracking and analysing these indicators, and combining them with others, Australia’s energy transition can be monitored on an ongoing basis. This would complement the great level of detail already available for electricity generation. It would also create better public understanding and focus policy attention on areas that need it.

In some countries, government agencies monitor the energy transition in great detail. In some cases, such as Germany, independent experts also conduct systematic and substantial analysis as part of an annual process.

The road ahead

Australia has begun the journey to a zero-emissions energy sector. But we must get a move-on in transport, industry and buildings.

The technical opportunities are there. What’s now needed is government regulation and policy to encourage investment in zero-emissions technologies for both supplying and using all forms of energy.

And once available, the technology should be deployed now and in coming years, not in the distant future.




Read more:
Check your mirrors: 3 things rooftop solar can teach us about Australia’s electric car rollout


The Conversation


Hugh Saddler, Honorary Associate Professor, Centre for Climate Economics and Policy, Australian National University and Frank Jotzo, Director, Centre for Climate and Energy Policy, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Friday essay: a rare bird — how Europeans got the black swan so wrong


Bernard Spragg/flickr

David Haworth, Monash UniversityThe black swan is an Australian icon. The official emblem of Western Australia, depicted in the state flag and coat-of-arms, it decorates several public buildings. The bird is also the namesake for Perth’s Swan River, where the British established the Swan River Colony in 1829.

The swan’s likeness has featured on stamps, sporting team uniforms, and in the logo for Swan Brewery, built on the sacred Noongar site of Goonininup on the banks of the Swan.

But this post-colonial history hides a much older and broader story. Not only is the black swan important for many Aboriginal people, it was also a potent symbol within the European imagination — 1500 years before Europeans even knew it existed.

Native to Australia, the black swan or Cygnus atratus can be found across the mainland, except for Cape York Peninsula. Populations have also been introduced to New Zealand, Japan, China, the United Kingdom and the United States.

Right now, the breeding season of the black swan is in full swing across southern Australia, having recently ended in the north. In waterways and wetlands, people are seeing pairs of swans — a quarter of which are same-sex — tending carefully to their cygnets, seeing off potential threats with elaborate triumph ceremonies, or gliding elegantly across the water, black feathers gleaming in the winter sun.

Yet once upon a time in a land far away, such birds were described as rare or even imaginary.

swans on water
Winter is breeding season in Australia’s southern states.
Unsplash/Mitchell Luo, CC BY

The impossible black swan

In the first century CE, Roman satirist Juvenal referred to a good wife as a “rare bird in the earth, and very like a black swan”.

Casual misogyny aside, this is an example of adynaton, a figure of speech for something absurd or preposterous — like pigs flying, or getting blood from a stone.




Read more:
Guide to the Classics: Juvenal, the true satirist of Rome


Over the centuries, versions of the phrases “black swan” and “rare bird” became common in several European languages, describing something that defied belief. The expressions made sense because Europeans assumed, based on their observations, that all swans were white.

Around the same time that Juvenal coined these phrases, Ptolemy devised a map of the world that included an unknown southern continent, Terra Australis Incognita. Many believed this distant southland was populated with monsters and fabulous races, like the Antipodes, imagined by Cicero as “men which have their feet planted right opposite to yours”.

In a quirk of history, both the impossible black swan and the hypothetical southland were indeed real. Even more unbelievably, they would be found at the same geographic coordinates.

Once they were white

Black swans are significant totems for many Aboriginal people and incorporated within songlines and constellations (where they are called Gnibi, Ginibi, or Gineevee).

Yet the Noongar people in WA, and the Yuin and Euahlayi in New South Wales, tell ancestral stories about white swans, which had most of their feathers torn out by eagles.

black and white print of early Australian river scene
Print by an unknown artist after a drawing by Frederick Garling or watercolour by Frederick R. Clause, who accompanied Captain Stirling on his 1827 trip down the Swan River.
State Library of Western Australia

In the Noongar story Maali, the swan, is proud and boastful of its beauty, and has its white feathers ripped out by Waalitj, the eagle, as punishment. In the Yuin story the swan, Guunyu, humble and quiet, is attacked because the other birds are jealous of his beauty.

And in the Euahlayi story, two brothers are transformed into swans, or Byahmul, as part of a robbery. Later they are attacked by eagles as an act of revenge.

In each story, after the swans have their white plumage torn out, crows release a cascade of feathers, turning the swans black, except for their white wing tips. Their red beak still shows blood from the attack.

These stories are keenly observant of, and offer an explanation for, the black swan’s colouration. They acknowledge the possibility swans could be white — even though it’s unlikely First Nations people observed white swans in their surroundings prior to British settlement.

This contrasts starkly with the European assumption that, having never seen a black swan, they couldn’t possibly exist.

Painting of black swans
Australian painter Neville Cayley’s Black Swans (circa 1890).
National Library Australia



Read more:
6,000 years of climate history: an ancient lake in the Murray-Darling has yielded its secrets


From myth to wonder

European assumptions were destined to shatter once Dutch ships began visiting Australia’s western coastline in the 1600s. Seeing the mythical black swan in the flesh must have been like seeing a unicorn emerge from the shadows of the forest.

In 1636, Dutch mariner Antonie Caen observed black birds “as large as swans” at sea off Bernier Island — probably the first recorded European sighting.

In 1697, Willem de Vlamingh’s expedition to the west coast sighted many swans on what they dubbed Swarte Swaane Drift or Black Swan River. Noongar people know this river as Derbarl Yerrigan. If de Vlamingh was amazed at the sight of black swans, he did not record it, simply noting, “They are quite black”. Three swans were captured and taken to Batavia (Jakarta), but died before they could be brought to Europe.

Reports of the black swan made it back to the Netherlands and then to England, but it took another century for its mythical status to dissipate completely.

English ornithologist John Latham gave the black swan its first scientific name, Anas atrata, in 1790. Yet knowledge of its existence was still not widespread.

In 1792, the botanist on Bruni d’Entrecasteaux’s expedition, Jacques Labillardiere, made note of black swans at Recherche Bay in Tasmania, apparently unaware they were already known to Europeans.

drawing of black swan
The black swan (Chenopis atrata) by Ebenezer Edward Gostelow (1938).
National Library Australia

In 1804, Nicolas Baudin’s expedition brought the first living specimens to Europe. These became part of the Empress Josephine Bonaparte’s garden menagerie at the Château de Malmaison.

The black swan had migrated from myth to the far edge of reality, joining the kangaroo and the platypus as awe-inspiring wonders from the distant, topsy-turvy southland — real, but only just.

Good versus evil

Black swans never established large populations in the wild after being brought to Europe. It’s speculated this is because black animals were considered bad omens, in league with witches and devils, and often driven away or killed.

Beliefs like these reflect the ancient assumption, found everywhere from the Dead Sea Scrolls to Star Wars, that darkness and the colour black represent evil and corruption, and that light and the colour white represent goodness and purity.

Frantz Fanon once argued that “the colonial world is a Manichean world”, in which light and dark, white and black, and good and evil are starkly divided. These divisions have been deeply implicated in the histories of colonialism and racism — often with devastating consequences.

Two swans, one dancer

The symbolic contrast of light and dark features heavily in Pyotr Ilyich Tchaikovsky’s most famous ballet, Swan Lake. Prince Siegfried falls in love with Odette, the innocent and virtuous white swan. But he is tricked into promising himself to her double, the seductive and malevolent Odile.

The ballet’s story was inspired by a long tradition of European fairy tales depicting Swan Maidens, but Tchaikovsky was also reportedly inspired by the life of King Ludwig II of Bavaria, known as the Swan King. Both Ludwig II and Tchaikovsky were caught between the societal pressure to marry and their own same-sex desires.

The roles of Odette and Odile are often played by the same ballerina, a tradition that started in 1895, two years after Tchaikovsky’s death. But it was not until 1941 that Odile was first depicted wearing black, and afterwards became known as the black swan.

Swan Lake suggests a Manichean worldview in which good and evil are polar opposites, as far away from each other as Europe is from the Antipodes. By having the same ballerina portray both roles, the ballet also suggests the world is not so simple — things can be black or white, or both at once.

False black swans

For 1500 years, Europeans had been spectacularly wrong about the black swan. Once its existence was accepted, its transmogrification from myth to reality became a metaphor within the philosophy of science. The black swan had shown the difficulty of making broad claims based on observable evidence.

Austrian philosopher Karl Popper used the black swan in 1959 to illustrate the difference between science that can be verified versus science that can be falsified.

To verify that all swans are white is practically impossible, because that would require assessing all swans — yet a single black swan can disprove the theory. In 2007, essayist and mathematic statistician Nassim Nicholas Taleb argued organisations and individuals should be robust enough to cope with “black swan events”: consequential but unexpected moments in history.

black and white photo of kids at lake with birds
Children with black swans and ducks in Centennial Park, circa 1934.
Wikimedia Commons/State Library NSW



Read more:
Friday essay: the long history of warrior turtles, from ancient myth to warships to teenage mutants


The white black swan

This Australian winter, those enjoying the sight of black swans and their cygnets might assume, based on observable evidence, that all Australian native swans are black. But as black swans have shown, and as Taleb argued, we should expect the unexpected.

Last month, some four centuries after Europeans were awe-struck by the sight of black swans on our waters, Tasmanian fisherman Jake Hume rescued a white-plumaged black swan, the only one known to exist.

white swan at vet
Odette, the white black swan, is recovering from bullet wounds.
Bonorong Wildlife Sanctuary/Instagram

The swan is not an albino, because it still has pigmentation around its beak and eye. Its white feathers are the expression of a rare genetic mutation. First sighted in the area in 2007, the bird was found riddled with shotgun pellets. It is recovering in Bonorong Wildlife Sanctuary until ready to be released.

Simultaneously a black swan, a white swan, and a metaphor, this assumption-shattering “rare bird” captures the complex cultural history surrounding this species.The Conversation

David Haworth, Senior Research Officer, Monash University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Matt Canavan suggested the cold snap means global warming isn’t real. We bust this and 2 other climate myths


Steven Saphore/AAP

Nerilie Abram, Australian National University; Martin De Kauwe, UNSW, and Sarah Perkins-Kirkpatrick, UNSWSenator Matt Canavan sent many eyeballs rolling yesterday when he tweeted photos of snowy scenes in regional New South Wales with a sardonic two-word caption: “climate change”.

Canavan, a renowned opponent of climate action and proponent of the coal industry, appeared to be suggesting that the existence of an isolated cold snap means global warming isn’t real.

Prime Minister Scott Morrison has previously insisted there is “no dispute in this country about the issue of climate change, globally, and its effect on global weather patterns”. But Canavan’s tweet would suggest otherwise.

The reality is, as the climate warms, record-breaking cold weather is becoming less common. And one winter storm does not negate more than a century of human-caused global warming. Here, we take a closer look at the cold weather misconception and two other common climate change myths.

Myth #1: A cold snap means global warming isn’t happening

Canavan’s tweet is an example of a common tactic used by climate change deniers that deliberately conflates weather and climate.

Parts of Australia are currently in the grip of a cold snap as icy air from Antarctica is funnelled up over the eastern states. This is part of a normal weather system, and is temporary.

Climate, on the other hand, refers to weather conditions over a much longer period, such as several decades. And as our climate warms, the probability of such weather systems bringing record-breaking cold temperatures reduces dramatically.

Just as average temperatures in Australia have risen markedly over the past century, so too have winter temperatures. That doesn’t mean climate change is not happening. In a warming world, extremely cold winter temperatures can still occur, but less often than they used to.

In fact, human-caused climate change means extreme winter warmth now occurs more often, and across larger parts of the country. Record-breaking hot events in Australia now far outweigh record breaking cold events.

Extreme cold and warm winter temperatures in Australia
Percentage of Australia experiencing extreme cold (bottom 10%) and extreme warmth (top 10%) in winter since 1910. Data from the Bureau of Meteorology.

Myth #2: Global warming is good for us

Yes, climate change may bring isolated benefits. For example, warmer global temperatures may mean fewer people die from extreme cold weather, or that shorter shipping routes open up across the Arctic as sea ice melts.

But the perverse benefits that may flow from climate change will be far outweighed by the damage caused.

Extreme heat can be fatal for humans. And a global study found 37% of heat-related deaths are a direct consequence of human-caused climate change. That means nearly 3,000 deaths in Brisbane, Sydney and Melbourne between 1991 and 2018 were due to climate change.

Extreme heat and humidity may make some parts of the world, especially those near the Equator, essentially uninhabitable by the end of this century.

Global warming also kills plants, animals and ecosystems. In 2018, an estimated one-third of Australia’s spectacled flying foxes died when temperatures around Cairns reached 42℃. And there is evidence many Australian plants will not cope well in a warmer world – and are already nearing their tipping point.

Heatwaves also damage oceans. The Great Barrier Reef has suffered three mass bleaching events in just five years. Within decades the natural wonder is unlikely to exist in is current form – badly hurting employment and tourism.




Read more:
Climate change is making ocean waves more powerful, threatening to erode many coastlines


Myth #3: More CO₂ means Earth will definitely get greener

In January last year, News Corp columnist Andrew Bolt caused a stir with an article that suggested rising carbon dioxide (CO₂) emissions were “greening the planet” and were therefore “a good thing”.

During photosynthesis, plants absorb CO₂. So as the concentration of CO₂ in the atmosphere increases, some researchers predict the planet will become greener and crop yields will increase.

Consistent with this hypothesis, there is indirect evidence of increased global photosynthesis and satellite-observed greening. There is also indirect evidence of increased “carbon sinks”, whereby CO₂ is drawn down from the atmosphere by plants, then stored in soil.

Rising temperatures lead to an earlier onset of spring, as well as prolonged summer plant growth – particularly in the Northern Hemisphere. Researchers think this has triggered an increase in the land carbon sink.

However, there’s also widespread evidence some trees are not growing as might be expected given the increased CO₂ levels in our atmosphere. For example, a study of how Australian eucalypts might respond to future CO₂ concentrations has so far found no increase in growth.

Increased plant growth may also cause them to use more water, causing significant reductions in streamflow that will compound water availability issues in dry regions.

Overall, attempts to reconcile the various lines of evidence of how climate change will alter Earth’s land vegetation have proved challenging.

So, are we doomed?

After all this bad news, you might be feeling a bit dejected. And true, the current outlook isn’t great.

Earth has already warmed by about 1℃, and current policies have the world on track for at least 3℃ warming this century. But there is still reason for hope. While every extra bit of warming matters, so too does every action to reduce greenhouse gas emissions.

And there are promising signs of increasing ambition to reduce greenhouse gas emissions on the global front – from the United States, the United Kingdom, the European Union, Japan and others.

Unfortunately, Australia is far behind our international peers, instead pushing the burden of action onto future generations. We now need the political leadership to set our country, and the world, on a safer and more secure path. Ill-informed tweets by senior members of the government only set back the cause.




Read more:
Spot the difference: as world leaders rose to the occasion at the Biden climate summit, Morrison faltered


The Conversation


Nerilie Abram, Professor; ARC Future Fellow; Chief Investigator for the ARC Centre of Excellence for Climate Extremes; Deputy Director for the Australian Centre for Excellence in Antarctic Science, Australian National University; Martin De Kauwe, Senior lecturer, UNSW, and Sarah Perkins-Kirkpatrick, ARC Future Fellow, UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.