Almost 60 coral species around Lizard Island are ‘missing’ – and a Great Barrier Reef extinction crisis could be next


Michael Emslie

Zoe Richards, Curtin UniversityThe federal government has opposed a recommendation by a United Nations body that the Great Barrier Reef be listed as “in danger”. But there’s no doubt the natural wonder is in dire trouble. In new research, my colleagues and I provide fresh insight into the plight of many coral species.

Worsening climate change, and subsequent marine heatwaves, have led to mass coral deaths on tropical reefs. However, there are few estimates of how reduced overall coral cover is linked to declines in particular coral species.

Our research examined 44 years of coral distribution records around Lizard Island, at the northern end of the Great Barrier Reef. We found 16% of coral species have not been seen for many years and are at risk of either local extinction, or disappearing from parts of their local range.

This is alarming, because local extinctions often signal wider regional – and ultimately global – species extinction events.

Healthy coral near Lizard Island in 2011, top, then six years later after two bleaching events, bottom.
Healthy coral near Lizard Island in 2011, top, then six years later after two bleaching events, bottom.
Zoe Richards

Sobering findings

The Lizard Island reef system is 270 kilometres north of Cairns. It has suffered major disturbances over the past four decades: repeated outbreaks of crown-of-thorns seastars, category 4 cyclones in 2014 and 2015, and coral bleaching events in 2016, 2017 and 2020.

Our research focused on “hermatypic” corals around Lizard Island. These corals deposit calcium carbonate and form the hard framework of the reef.

We undertook hard coral biodiversity surveys four times between 2011 and 2020, across 14 sites. We combined the results with published and photographic species records from 1976 to 2020.

red fleshy coral with blue spots
Micromussa lordhowensis is popular in the aquarium trade.
Zoe Richards

Of 368 hard coral species recorded around Lizard Island, 28 (7.6%) have not been reliably recorded since before 2011 and may be at risk of local extinction. A further 31 species (8.4%) have not been recorded since 2015 and may be at risk of range reduction (disappearance from parts of its local range).

The “missing” coral species include:

  • Acropora abrotanoides, a robust branching shallow water coral that lives on the reef crest and reef flat has not been since since 2009
  • Micromussa lordhowensis, a low-growing coral with colourful fleshy polyps. Popular in the aquarium trade, it often grows on reef slopes but has not been seen since 2005
  • Acropora aspera, a branching coral which prefers very shallow water and has been recorded just once, at a single site, since 2011.

The finding that 59 coral species are at risk of local extinction or range reduction is significant. Local range reductions are often precursors to local species extinctions. And local species extinctions are often precursors to regional, and ultimately global, extinction events.

Each coral species on the reef has numerous vital functions. It might provide habitat or food to other reef species, or biochemicals which may benefit human health. One thing is clear: every coral species matters.




Read more:
The outlook for coral reefs remains grim unless we cut emissions fast — new research


reddish coral underwater
Acropa abrotanoides, one of the corals ‘missing’ from around Lizard Island.
Zoe Richards

A broader extinction crisis?

As human impacts and climate threats mount, there is growing concern about the resilience of coral biodiversity. Our research suggests such concerns are well-founded at Lizard Island.

Coral reef communities are dynamic, and so detecting species loss can be difficult. Our research found around Lizard Island, the diversity of coral species fluctuated over the past decade. Significant declines were recorded from 2011 to 2017, but diversity recovered somewhat in the three following years.

Local extinctions often happen incrementally and can therefore be “invisible”. To detect them, and to account for natural variability in coral communities, long-term biodiversity monitoring across multiple locations and time frames is needed.

Green coral
Acropora aspera has been recorded just once, at a single location, since 2011.
Anne Hoggett

In most locations however, data on the distribution and abundance of all coral species in a community is lacking. This means it can be hard to assess changes, and to understand the damage that climate change and other human-caused stressors are having on each species.

Only with this extra information can scientists conclusively say if the level of local extinction risk at Lizard Island indicates a risk that coral species may become extinct elsewhere – across the Great Barrier Reef and beyond.




Read more:
Is Australia really doing enough for the Great Barrier Reef? Why criticisms of UNESCO’s ‘in danger’ recommendation don’t stack up


The Conversation


Zoe Richards, Senior Research Fellow, Curtin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

The North American heatwave shows we need to know how climate change will change our weather


NASA

Christian Jakob, Monash University and Michael Reeder, Monash UniversityEight days ago, it rained over the western Pacific Ocean near Japan. There was nothing especially remarkable about this rain event, yet it made big waves twice.

First, it disturbed the atmosphere in just the right way to set off an undulation in the jet stream – a river of very strong winds in the upper atmosphere – that atmospheric scientists call a Rossby wave (or a planetary wave). Then the wave was guided eastwards by the jet stream towards North America.

Along the way the wave amplified, until it broke just like an ocean wave does when it approaches the shore. When the wave broke it created a region of high pressure that has remained stationary over the North American northwest for the past week.

This is where our innocuous rain event made waves again: the locked region of high pressure air set off one of the most extraordinary heatwaves we have ever seen, smashing temperature records in the Pacific Northwest of the United States and in Western Canada as far north as the Arctic. Lytton in British Columbia hit 49.6℃ this week before suffering a devastating wildfire.

What makes a heatwave?

While this heatwave has been extraordinary in many ways, its birth and evolution followed a well-known sequence of events that generate heatwaves.

Heatwaves occur when there is high air pressure at ground level. The high pressure is a result of air sinking through the atmosphere. As the air descends, the pressure increases, compressing the air and heating it up, just like in a bike pump.

Sinking air has a big warming effect: the temperature increases by 1 degree for every 100 metres the air is pushed downwards.

The North American heatwave has seen fires spread across the landscape.
NASA

High-pressure systems are an intrinsic part of an atmospheric Rossby wave, and they travel along with the wave. Heatwaves occur when the high-pressure systems stop moving and affect a particular region for a considerable time.

When this happens, the warming of the air by sinking alone can be further intensified by the ground heating the air – which is especially powerful if the ground was already dry. In the northwestern US and western Canada, heatwaves are compounded by the warming produced by air sinking after it crosses the Rocky Mountains.

How Rossby waves drive weather

This leaves two questions: what makes a high-pressure system, and why does it stop moving?

As we mentioned above, a high-pressure system is usually part of a specific type of wave in the atmosphere – a Rossby wave. These waves are very common, and they form when air is displaced north or south by mountains, other weather systems or large areas of rain.




Read more:
We’ve learned a lot about heatwaves, but we’re still just warming up


Rossby waves are the main drivers of weather outside the tropics, including the changeable weather in the southern half of Australia. Occasionally, the waves grow so large that they overturn on themselves and break. The breaking of the waves is intimately involved in making them stationary.

Importantly, just as for the recent event, the seeds for the Rossby waves that trigger heatwaves are located several thousands of kilometres to the west of their location. So for northwestern America, that’s the western Pacific. Australian heatwaves are typically triggered by events in the Atlantic to the west of Africa.

Another important feature of heatwaves is that they are often accompanied by high rainfall closer to the Equator. When southeast Australia experiences heatwaves, northern Australia often experiences rain. These rain events are not just side effects, but they actively enhance and prolong heatwaves.

What will climate change mean for heatwaves?

Understanding the mechanics of what causes heatwaves is very important if we want to know how they might change as the planet gets hotter.

We know increased carbon dioxide in the atmosphere is increasing Earth’s average surface temperature. However, while this average warming is the background for heatwaves, the extremely high temperatures are produced by the movements of the atmosphere we talked about earlier.

So to know how heatwaves will change as our planet warms, we need to know how the changing climate affects the weather events that produce them. This is a much more difficult question than knowing the change in global average temperature.

How will events that seed Rossby waves change? How will the jet streams change? Will more waves get big enough to break? Will high-pressure systems stay in one place for longer? Will the associated rainfall become more intense, and how might that affect the heatwaves themselves?




Read more:
Explainer: climate modelling


Our answers to these questions are so far somewhat rudimentary. This is largely because some of the key processes involved are too detailed to be explicitly included in current large-scale climate models.

Climate models agree that global warming will change the position and strength of the jet streams. However, the models disagree about what will happen to Rossby waves.

From climate change to weather change

There is one thing we do know for sure: we need to up our game in understanding how the weather is changing as our planet warms, because weather is what has the biggest impact on humans and natural systems.

To do this, we will need to build computer models of the world’s climate that explicitly include some of the fine detail of weather. (By fine detail, we mean anything about a kilometre in size.) This in turn will require investment in huge amounts of computing power for tools such as our national climate model, the Australian Community Climate and Earth System Simulator (ACCESS), and the computing and modelling infrastructure projects of the National Collaborative Research Infrastructure Strategy (NCRIS) that support it.

We will also need to break down the artificial boundaries between weather and climate which exist in our research, our education and our public conversation.The Conversation

Christian Jakob, Professor in Atmospheric Science, Monash University and Michael Reeder, Professor, School of Earth, Atmosphere and Environment, Monash University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

A tale of two valleys: Latrobe and Hunter regions both have coal stations, but one has far worse mercury pollution


Shutterstock

Larissa Schneider, Australian National University; Anna Lintern, Monash University; Cameron Holley, UNSW; Darren Sinclair, University of Canberra; Neil Rose, UCL; Ruoyu Sun, and Simon Haberle, Australian National UniversityWe know coal-fired power stations can generate high levels of carbon dioxide, but did you know they can be a major source of mercury emissions as well?

Our new research compared the level of mercury pollution in the Hunter Valley in New South Wales and the Latrobe Valley in Victoria.

And we found power stations in the Latrobe Valley emit around 10 times more mercury than power stations in the Hunter Valley. Indeed, the mercury level in the Latrobe Valley environment is 14 times higher than what’s typically natural for the region.

So why is there such a stark difference between states? Well, it has a lot to do with regulations.

Following a NSW requirement for power stations to install pollution control technology, mercury levels in the environment dropped. In Victoria, on the other hand, coal-fired power stations continue to operate without some of the air pollution controls NSW and other developed countries have mandated.

To minimise the safety risks that come with excessive mercury pollution, coal-fired power stations in all Australian jurisdictions should adopt the best available technologies to reduce mercury emissions.

A dangerous neurotoxin

Mercury is a neurotoxin, which means it can damage the nervous system, brain and other organs when a person or animal is exposed to unsafe levels.

Coal naturally contains mercury. So when power stations burn coal, mercury is released to the atmosphere and is then deposited back onto the Earth’s surface. When a high level of mercury ends up in bodies of water, such as lakes and rivers, it can be transferred to fish and other aquatic organisms, exposing people and larger animals to mercury that feed on these fish.




Read more:
The death of coal-fired power is inevitable — yet the government still has no plan to help its workforce


Mercury does not readily degrade or leave aquatic environments such as lakes and rivers. It’s a persistent toxic element — once present in water, it’s there to stay.

The amount of mercury emitted depends on the type of coal burnt (black or brown) and the type of pollution control devices the power stations use.

The Latrobe Valley stations in Victoria burn brown coal, which has more mercury than the black coal typically found in NSW. Despite this, Victorian regulations have historically not placed specific limits on mercury emissions.

In contrast, NSW power plants are required to use “bag filters”, a technology that’s used to trap mercury (and other) particles before they enter the atmosphere.

While bag filters alone fall short of the world’s best practices, they can still be effective. In fact, after bag filters were retrofitted to Hunter Valley’s Liddell power station in the early 1990s, mercury deposition in the surrounding environment halved.

Mercury deposited in sediments of Lake Glenbawn (left) in the Hunter Valley and Traralgon Railway Reservoir (right) in the Latrobe Valley.

The best available technology to control mercury emissions from coal-fired power plants is a combination of “wet flue-gas desulfurization” (which removes mercury in its gaseous form) and bag filters (which removes mercury bound to particles).

This is what’s been adopted across North America and parts of Europe. It not only filters out mercury, but also removes sulphur dioxide, nitrogen oxides and other toxic air compounds.

Using lake sediments to see into the past

Lake sediments can capture mercury deposited from the atmosphere and from surrounding areas. Sediments that contain this mercury accumulate at the bottom of lakes over time — the deeper the sediment, the further back in time we can analyse.

We took sediment samples from lakes in the Latrobe and Hunter valleys, and dated them back to 1940 to get a historical record of mercury deposition.

This information can help us understand how much naturally occurring mercury there was before coal-fired power stations were built, and therefore show us the impact of burning coal.

A power station by a lake
Lake Narracan: one of the lakes we sampled sediments from, near a coal-fired power station in Latrobe Valley.
Larissa Schneider, Author provided

From these records, we found the adoption of bag filters in the Hunter Valley corresponded with mercury depositions declining in NSW from the 1990s.

In contrast, in Victoria, where there’s been no such requirement, mercury emissions and depositions have continued to increase since Hazelwood power station was completed in 1971.

What do we do about it?

In March, the Victorian government announced changes to the regulatory licence conditions for brown coal-fired power stations. Although mercury emissions allowances have been included for the first time, they’re arguably still too high, and there’s no requirement to install specific pollution control technologies.

There’s a risk this approach won’t reduce mercury emissions from existing levels. Victoria should instead consider more ambitious regulations that encourage the adoption of best practice technology to help protect local communities and the environment.

Coal-fired power station at the end of a road, at night
Loy Yang power station, Victoria’s largest, burns brown coal which contains more mercury.
Shutterstock

Another vital step toward protecting human health and the environment from mercury is for the federal government to ratify the Minamata Convention on Mercury, an international treaty to protect human health and the environment from mercury.

Despite signing the convention in 2013, the Australian government is yet to ratify it, which is required to make it legally binding in Australia.

Ratifying the convention will oblige state and federal governments to develop and implement a strategy to reduce mercury emissions, including from coal-fired power stations across Australia. And this strategy should include rolling out effective technologies — our research shows it can make a big difference.


The authors acknowledge Lauri Myllyvirta from the Centre for Research on Energy and Clean Air for her contributions to this article.




Read more:
Hazelwood power station: from modernist icon to greenhouse pariah


The Conversation


Larissa Schneider, DECRA fellow, Australian National University; Anna Lintern, Lecturer, Monash University; Cameron Holley, Professor, UNSW; Darren Sinclair, Professor, University of Canberra; Neil Rose, Professor of Environmental Pollution and Palaeolimnology, UCL; Ruoyu Sun, Associate Professor, and Simon Haberle, Professor, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.