Rainforest giants with rare autumn displays: there’s a lot more to Australia’s red cedar than timber


Peter Woodard/Wikimedia

Gregory Moore, The University of MelbourneNative deciduous trees are rare in Australia, which means many of the red, yellow and brown leaves we associate with autumn come from introduced species, such as maples, oaks and elms.

One native tree, however, stands out for its leaves with soft autumnal hues that drop in March and April: Australia’s red cedar. Don’t be fooled by its common name — red cedar is not a cedar at all, but naturally grows in rainforests throughout Southeast Asia and Australia.

You may be more familiar with its timber, which I’ve been acquainted with all of my life. My grandmothers had cedar chests of drawers they had inherited from their mothers or grandmothers, and I had assumed they were made from one of the Northern hemisphere cedar species. The wood still smelled of cedar after all this time in family homes – a scent I associate with grandparents and country homes.

By the time I was given one of these chests to restore, I knew much more about the tree and valued the chest of drawers all the more. So, with autumn putting a spotlight on Australian red cedars, let’s look at this species in more detail.

Majestic giants of the rainforest

I first encountered red cedar trees in the sub-tropical rainforests of Queensland and New South Wales in the 1980s. Then, its scientific name was called Cedrela toona and later Toona australis. Now, it’s recognised as Toona ciliata.

The various names reflect a taxonomic history in which the Australian species was once regarded as being separate from its Asian relatives, but all are now considered one.

Two red cedars in a rainforest
Native red cedar trees can grow up to 60m tall.
Shutterstock

The trees are awe-inspiring. Under the right conditions, it can grow to 60 metres tall (occasionally more) with a trunk diameter of up to 7m.

After losing its foliage in autumn, the new foliage in spring often has an attractive reddish tinge. In late spring it has small (5 milimetres) white or pale pink flowers, but they usually go unnoticed in the rainforest because of their height or the density of other tree canopies growing beneath.

Older red cedars have wonderful buttresses at the base of their trunk, a characteristic shared by many tall tropical trees. These buttresses have long been considered an advantage for species that can emerge above the canopy of a rainforest where winds are much stronger, with the buttresses and expanded root systems providing greater strength and resistance to the wind.

These buttresses also greatly increase the surface area of the base of the trees exposed to air, which facilitates the uptake of extra oxygen as the activity of micro-organisms in the soil can leave it oxygen-depleted.

White flowers against the leaves of red cedar
Tiny white flowers are hard to see from the ground in a rainforest.
Forest and Kim Starr/Wikimedia, CC BY-SA

Logged to near extinction

With a wide distribution throughout Asia and Australia, its uses in ancient times were many and varied. In traditional medicine, bark was used or digestive remedies as well as wound dressing and its resin was used for treating skin conditions.

Dyes, oils and tannins used for preparing leather could also be extracted by boiling various plant parts. Today the wood is used for culturing shiitake mushrooms, which are much in demand in restaurants.

But the recent history of red cedar is a typically sad colonial tale. The species belongs to the same family as mahogany (Meliaceae) and, not surprisingly, was exploited for its timber from the early days of colonisation.

Red cedar bannister
You can find red cedar timber in many public buildings across Australia.
denisbin/Flickr, CC BY-ND

The timber is durable, lightweight and suitable for naval use and so was very heavily logged, right along the east coast of Australia from the early 1800s until the early 20th century.

The rich deep red colour of its timber and the fact it was soft and easily worked meant it was used for furniture, ornate carvings in public buildings, town halls and parliaments, such as the State Library in Melbourne. It was also used for implements and handles, and for sailing and racing boats.




Read more:
The secret life of puddles: their value to nature is subtle, but hugely important


You’ve probably had a close encounter with the lovely red banisters on some of these old buildings that were made of red cedar, often darkened under the patina of so many hands.

The once common and widespread species was logged almost to extinction along the east coast by the mid-1900s, and to the point of practical commercial extinction with little timber available to industry by the 1960s.

So valued was the timber that in the late 1970s, a plan was hatched to remove red cedar from Queensland National Park rainforests using helicopters. Luckily, the idea did not fly and so some great trees persist. The species has a conservation status of concern, but is not considered to be endangered at present.

Leaves of the Toona ciliata
The leaves of red cedar begin to fall in late March.
Peter Woodard/Wikimedia

A terrible pest

The fact they are deciduous makes them potentially very interesting and useful for horticultural use, but that potential remains largely unrealised. And given the value and quality of its timber, you may be wondering why it’s not being grown in plantations across the continent.

The reason is a native moth called the cedar tip moth (Hypsipyla robusta), which lays its eggs on the main growing shoot of the tree. When the eggs hatch the larvae bore down the shoot, which not only results in shoot dieback but also causes the trees to develop multiple stems and branches which reduce its timber value.




Read more:
White cedar is a rare bird: a winter deciduous Australian tree


Despite this, they are still planted as a quick-growing ornamental tree for their shade in other parts of the world, such Hawaii and Zimbabwe.

The moths are attracted to the scent of the tree, so they’re very difficult to control. The moth does not attack the tree in South America, for instance, because the moth has not established there, so there are large plantations of red cedar in Brazil.

It’s an interesting reminder: often it’s the little things in ecology that can affect success, or failure. When we humans meddle without knowledge, things don’t necessarily go to plan, usually to our cost.




Read more:
Why climate change will dull autumn leaf displays


The Conversation


Gregory Moore, Doctor of Botany, The University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Net zero won’t be achieved in inner city wine bars: Morrison


Michelle Grattan, University of CanberraAs Scott Morrison gradually pivots his climate policy towards embracing a target of net zero emissions by 2050, he is seeking to distinguish the government from “inner city” types and political opponents who’ve been marching down that road for a long time.

The Prime Minister told a Business Council of Australia dinner on Monday the government was charting its own course “to ensure Australia is well placed to prosper through the great energy transition of our time, consistent with strong action on climate change”.

“The key to meeting our climate change ambitions is commercialisation of low emissions technology,” he said.

“We are going to meet our ambitions with the smartest minds, the best technology and the animal spirits of capitalism.”

Morrison was speaking ahead of this week’s two-day virtual summit on climate called by President Biden.

The Biden administration has made the issue a major policy priority, which has increased the pressure on Australia to sign up to the 2050 target before the Glasgow meeting on climate late in the year.

Morrison acknowledged that “we need to change our energy mix over the next 30 years on the road to net zero emissions”.

But he said “we will not achieve net zero in the cafes, dinner parties and wine bars of our inner cities.

“It will not be achieved by taxing our industries that provide livelihoods for millions of Australians off the planet, as our political opponents sought to do, when they were given the chance.

“It will be achieved by the pioneering entrepreneurialism and innovation of Australia’s industrial workhorses, farmers and scientists.

“It will be won in places like the Pilbara, the Hunter, Gladstone, Portland, Whyalla, Bell Bay, and the Riverina.

“In the factories of our regional towns and outer suburbs. In the labs of our best research institutes and scientists.

“It will be won in our energy sector. In our industrial sector. In our agricultural sector. In our manufacturing sector.

“This is where the road to net zero is being paved in Australia. And those industries and all who work in them, will reap the benefits of the changes they are making and pioneering.”

Morrison said Australia’s natural resources and its industries’ strength presented “a huge opportunity to capitalise on the new energy economy”.

“And let’s not forget that Australia already produces many of the products that will be in growing demand as part of a low carbon future – from copper to lithium.

“It is this practical approach of making new technologies commercial that will see us achieve our goals.”

He said Australia was making real progress.

Its total emissions were 19% lower at the end of 2020 than in 2005.

“Our domestic emissions have already fallen by 36% from 2005 levels.

“Australia has deployed renewable energy ten times faster than the global average and four times faster than in Europe and the United States.

“One in four rooftops has solar, more than anywhere else in the world.

“Australia takes our emission reductions targets very seriously. We don’t make them lightly. We prepare our plan to achieve them and we follow through.”The Conversation

Michelle Grattan, Professorial Fellow, University of Canberra

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Attack of the alien invaders: pest plants and animals leave a frightening $1.7 trillion bill


Shutterstock

Corey J. A. Bradshaw, Flinders University; Boris Leroy, Muséum national d’histoire naturelle (MNHN); Camille Bernery, Université Paris-Saclay; Christophe Diagne, Université Paris-Saclay, and Franck Courchamp, Université Paris-SaclayThey’re one of the most damaging environmental forces on Earth. They’ve colonised pretty much every place humans have set foot on the planet. Yet you might not even know they exist.

We’re talking about alien species. Not little green extraterrestrials, but invasive plants and animals not native to an ecosystem and which become pests. They might be plants from South America, starfish from Africa, insects from Europe or birds from Asia.

These species can threaten the health of plants and animals, including humans. And they cause huge economic harm. Our research, recently published in the journal Nature, puts a figure on that damage. We found that globally, invasive species cost US$1.3 trillion (A$1.7 trillion) in money lost or spent between 1970 and 2017.

The cost is increasing exponentially over time. And troublingly, most of the cost relates to the damage and losses invasive species cause. Meanwhile, far cheaper control and prevention measures are often ignored.

Yellow crazy ants attacking a gecko
Yellow crazy ants, such as these attacking a gecko, are among thousands of invasive species causing ecological and economic havoc.
Dinakarr, CC0, Wikimedia Commons

An expansive toll

Invasive species have been invading foreign territories for centuries. They hail from habitats as diverse as tropical forests, dry savannas, temperate lakes and cold oceans.

They arrived because we brought them — as pets, ornamental plants or as stowaways on our holidays or via commercial trade.

The problems they cause can be:

  • ecological, such as causing the extinction of native species
  • human health-related, such as causing allergies and spreading disease
  • economic, such as reducing crop yields or destroying human-built infrastructure.

In Australia, invasive species are one of our most serious environmental problems – and the biggest cause of extinctions.

Feral animals such as rabbits, goats, cattle, pigs and horses can degrade grazing areas and compact soil, damaging farm production. Feral rabbits take over the burrows of native animals, while feral cats and foxes hunt and kill native animals.




Read more:
Invasive species are Australia’s number-one extinction threat


Wetlands in the Northern Territory damaged by invasive swamp buffalo (Bubalus bubalis)
Warren White

Introduced insects, such as yellow crazy ants on Christmas Island, pose a serious threat to a native species. Across Australia, feral honeybees compete with native animals for nectar, pollen and habitat.

Invasive fish compete with native species, disturb aquatic vegetation and introduce disease. Some, such as plague minnows, prey on the eggs and tadpoles of frogs and attack native fish.

Environmental weeds and invasive fungi and parasites also cause major damage.

Of course, the problem is global – and examples abound. In Africa’s Lake Victoria, the huge, carnivorous Nile perch — introduced to boost fisheries – has wiped out more than 200 of the 300 known species of cichlid fish — prized by aquarium enthusiasts the world over.

And in the Florida Everglades, thousands of five metre-long Burmese pythons have gobbled up small, native mammals at alarming rates.




Read more:
Invasive predators are eating the world’s animals to extinction – and the worst is close to home


cichlid fish
In Africa, numbers of the beautiful cichlid fish have been decimated by Nile perch.
Shutterstock

Money talks

Despite the serious threat biological invasions pose, the problem receives little political, media or public attention.

Our research sought to reframe the problem of invasive species in terms of economic cost. But this was not an easy task.

The costs are diverse and not easily compared. Our analysis involved thousands of cost estimates, compiled and analysed over several years in our still-growing InvaCost database. Economists and ecologists helped fine-tune the data.

The results were staggering. We discovered invasive species have cost the world US$1.3 trillion (A$1.7 trillion) lost or spent between 1970 and 2017. The cost largely involves damages and losses; the cost of preventing or controlling the invasions were ten to 100 times lower.

Clearly, getting on top of control and prevention would have helped avoid the massive damage bill.




Read more:
Global agriculture study finds developing countries most threatened by invasive pest species


Average costs have been increasing exponentially over time — trebling each decade since 1970. For 2017 alone, the estimated cost of invasive species was more than US$163 billion. That’s more than 20 times higher than the combined budgets of the World Health Organisation and the United Nations in the same year.

Perhaps more alarming, this massive cost is a conservative estimate and likely represents only the tip of the iceberg, for several reasons:

  • we analysed only the most robust available data; had we included all published data, the cost figure would have been 33 times higher for the estimate in 2017
  • some damage caused by invasive species cannot be measured in dollars, such as carbon uptake and the loss of ecosystem services such as pollination
  • most of the impacts have not been properly estimated
  • most countries have little to no relevant data.
A bucket by a lake with a sign reading 'Biosecurity station. Please dip your feet and nets'
Prevention strategies, such as biosecurity controls, are a relatively cheap way to deal with invasive species.
Shutterstock

Prevention is better than cure

National regulations for dealing with invasive species are patently insufficient. And because alien species do not respect borders, the problem also requires a global approach.

International cooperation must include financial assistance for developing countries where invasions are expected to increase substantially in the coming decades, and where regulations and management are most lacking.

Proactive measures to prevent invasion must become a priority. As the old saying goes, an ounce of prevention is better than a pound of cure. And this must happen early – if we miss the start of an invasion, control in many cases is impossible.

More and better research on the economic costs of biological invasions is essential. Our current knowledge is fragmented, hampering our understanding of patterns and trends, and our capacity to manage the problem efficiently.

We hope quantifying the economic impacts of invasive species will mean political leaders start to take notice. Certainly, confirmation of a A$1.7 trillion bill should be enough to get the ball rolling.




Read more:
Worried about Earth’s future? Well, the outlook is worse than even scientists can grasp


The Conversation


Corey J. A. Bradshaw, Matthew Flinders Professor of Global Ecology and Models Theme Leader for the ARC Centre of Excellence for Australian Biodiversity and Heritage, Flinders University; Boris Leroy, Maître de conférences en écologie et biogéographie, Muséum national d’histoire naturelle (MNHN); Camille Bernery, Doctorante en écologie des invasions, Université Paris-Saclay; Christophe Diagne, Chercheur post-doctorant en écologie des invasions, Université Paris-Saclay, and Franck Courchamp, Directeur de recherche CNRS, Université Paris-Saclay

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Demand for rare-earth metals is skyrocketing, so we’re creating a safer, cleaner way to recover them from old phones and laptops


Shutterstock

Cristina Pozo-Gonzalo, Deakin UniversityRare-earth metals are critical to the high-tech society we live in as an essential component of mobile phones, computers and many other everyday devices. But increasing demand and limited global supply means we must urgently find a way to recover these metals efficiently from discarded products.

Rare-earth metals are currently mined or recovered via traditional e-waste recycling. But there are drawbacks, including high cost, environmental damage, pollution and risks to human safety. This is where our ongoing research comes in.

Our team in collaboration with the research centre Tecnalia in Spain has developed a way to use environmentally friendly chemicals to recover rare-earth metals. It involves a process called “electrodeposition”, in which a low electric current causes the metals to deposit on a desired surface.

This is important because if we roll out our process to scale, we can alleviate the pressure on global supply, and reduce our reliance on mining.

The increasing demand for rare-earth metals

Rare-earth metals is the collective name for a group of 17 elements: 15 from the “lanthanides series” in the periodic table, along with the elements scandium and yttrium. These elements have unique catalytic, metallurgical, nuclear, electrical, magnetic and luminescent properties.




Read more:
Renewables need land – and lots of it. That poses tricky questions for regional Australia


The term “rare” refers to their even, but scarce, distribution around the world, noted after they were first discovered in the late 18th century.

These minerals are critical components of electronic devices, and vital for many green technologies; they’re in magnets for wind power turbines and in batteries for hybrid-electric vehicles. In fact, up to 600 kilograms of rare-earth metals are required to operate just one wind turbine.

White electric car plugged into a charger
Rare-earth metals are essential components of electric vehicles.
Shutterstock

The annual demand for rare-earth metals doubled to 125,000 tonnes in 15 years, and the demand is projected to reach 315,000 tonnes in 2030, driven by increasing uptake in green technologies and advancing electronics. This is creating enormous pressure on global production.

Can’t we just mine for more rare metals?

Rare-earth metals are currently extracted through mining, which comes with a number of downsides.

First, it’s costly and inefficient because extracting even a very small amount of rare earth metals requires large areas to be mined.

Second, the process can have enormous environmental impacts. Mining for rare earth minerals generates large volumes of toxic and radioactive material, due to the co-extraction of thorium and uranium — radioactive metals which can cause problems for the environment and human health.

Third, most mining for rare-earth metals occurs in China, which produces more than 70% of global supply. This raises concerns about long-term availability, particularly after China threatened to restrict its supply in 2019 during its trade war with the US.

E-waste recycling is not the complete answer

Through e-waste recycling, rare-earth metals can be recovered from electronic products such as mobile phones, laptops and electric vehicles batteries, once they reach the end of their life.

For example, recovering them from electric vehicle batteries involves traditional hydrometallurgical (corrosive media treatment) and pyrometallurgical (heat treatment) processes. But these have several drawbacks.




Read more:
Clean energy? The world’s demand for copper could be catastrophic for communities and environments


Pyrometallurgy is energy-intensive, involving multiple stages that require high working temperatures, around 1,000℃. It also emits pollutants such as carbon dioxide, dioxins and furans into the atmosphere.

Meanwhile, hydrometallurgy generates large volumes of corrosive waste, such as highly alkaline or acidic substances like sodium hydroxide or sulfuric acid.

Similar recovery processes are also applied to other energy storage technologies, such as lithium ion batteries.

It’s vital to develop safer, more efficient ways to recycle e-waste and avoid mining, as demand for rare-earth metals increases.
Shutterstock

Why our research is different

Given these challenges, we set out to find a sustainable method to recover rare-earth metals, using electrodeposition.

Electrodeposition is already used to recover other metals. In our case, we have designed an environmentally friendly composition based on ionic liquid (salt-based) systems.




Read more:
Want more jobs in Australia? Cut our ore exports and make more metals at home


We focused on recovering neodymium, an important rare-earth metal due to its outstanding magnetic properties, and in extremely high demand compared to other rare-earth metals. It’s used in electric motors in cars, mobile phones, wind turbines, hard disk drives and audio devices.

Ionic liquids are highly stable, which means it’s possible to recover neodymium without generating side products, which can affect the neodymium purity.

The novelty of our research using ionic liquids for electrodeposition is the presence of water in the mix, which improves the quantity of the final recovered neodymium metal.

Unlike previously reported methods, we can recover neodymium metal without using controlled atmosphere, and at working temperature lower than 100℃. These are key considerations to industrialising such a technology.




Read more:
Rare metals play a strategic and essential role in health


At this stage we have proof of concept at lab scale using a solution of ionic liquid with water, recovering neodymium in its most expensive metallic form in a few hours. We are currently looking at scaling up the process.

An important early step

In time, our method could avoid the need to mine for rare earth metals and minimises the generation of toxic and harmful waste. It also promises to help increase economic returns from e-waste.

Importantly, this method could be adapted to recover metals in other end-of-life applications, such as lithium ion batteries, as a 2019 report projected an 11% growth per annum in production in Europe.

Our research is an important early step towards establishing a clean and sustainable processing route for rare-earth metals, and alleviating the pressures on these critical elements.The Conversation

Cristina Pozo-Gonzalo, Senior Research Fellow, Deakin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Victoria’s new feral horse plan could actually protect the high country. NSW’s method remains cruel and ineffective


Shutterstock

Don Driscoll, Deakin UniversityFeral horses are a catastrophic problem for the environment, particularly in the high country that crosses the New South Wales and Victoria border. To deal with this growing issue, the Victorian government has released a draft feral horse action plan, which is open for comment until April 23.

It comes after Victoria’s old action plan from 2018 proved ineffective, with feral horse numbers increasing in the most recent counts in 2019. This is similar to New South Wales’ current performance, where feral horses are legally protected and numbers are essentially unmanaged.

This new Victorian plan has flaws, but it’s still likely to perform better than the old plan (and the very low benchmark set by NSW), as it generally aims to deploy evidence-based management of national parks.

As Victoria gets on top of its feral horse problem, NSW will be left further behind with a degrading environment and rising costs of horse management.

The feral horse threat

Feral horses degrade ecosystems and threaten native Australian species with their heavy trampling and excessive grazing. They damage waterways and streamside vegetation which, in turn, threatens species that live in and alongside the streams, such as the alpine spiny crayfish, the alpine water skink and the Tooarrana broad-toothed rat. All of these are threatened species.

Damage from feral horses could worsen as ecosystems recover from the extensive 2019-20 eastern Australian bushfires. Horse grazing could delay animals’ habitat recovery and horse trampling could exacerbate stream degradation after fires.

In fact, there are 24 species that need protection from feral horses after the fires, as identified by the Australian government’s wildlife and threatened species bushfire recovery expert panel in September.

All of this ecosystem destruction translates into substantial economic costs. Frontier Economics released a report in January this year showing the potential benefits of horse control in Kosciuszko National Park was A$19-50 million per year. The benefits accrue through improved recreational opportunities, improved water quality and reduced car crashes involving feral horses.

In contrast, horse control could cost as little as A$1 million per year and up to $71 million, depending on the methods used. Frontier Economics concluded the costs that are incurred by keeping feral horses far outweigh the cost of eradication.

Alpine water skink
Alpine water skinks are among the vulnerable native species threatened by feral horses.
DEPI/Flickr, CC BY-SA

Victoria’s new feral horse plan

The draft Victorian feral horse action plan aims to:

  1. remove isolated populations on the Bogong High Plains within three years and prevent new populations from establishing
  2. contain and reduce feral horses in the eastern Alps by removing 500 horses in the first year
  3. use the most humane, safe and effective horse control methods.

The first aim makes complete sense. Removing small populations will always be more humane, cheaper and better for the environment than leaving them uncontrolled.

The second aim is perplexing. Based on 2019 surveys, the draft action plan says there are approximately 5,000 horses in the eastern Alps and the population is growing at 15% per year. If the government continues to remove 500 horses per year after the first year, it could see the population rise to more than 9,000 over ten years, despite culling 5,000 horses in that time.




Read more:
Double trouble as feral horse numbers gallop past 25,000 in the Australian Alps


In contrast, removing 2,000 horses per year could see the population controlled within three years. Reducing horse numbers rapidly results in the fewest horses having to be culled in the long term.

The third aim of the Victorian draft action plan gives appropriate and strong emphasis to animal welfare. Controlling horse numbers can be morally challenging, and requires a clear understanding of the trade-offs.

Without horse control, native animals are killed when their habitat is destroyed, unique Australian ecosystems are degraded, horses themselves starve or die of thirst in droughts, and the economic costs of inaction escalate. To avoid these costs, horse numbers must be reduced by culling.

This is the grim reality, but with careful attention to animal welfare, the draft strategy will ensure horse control is managed humanely, with control methods based on evidence rather than hyperbole.

Money wasting in NSW

Victoria’s plan is in stark contrast to the NSW government’s approach. In 2018, the NSW government passed the so-called “brumby bill”, which protects feral horses in Kosciuszko National Park.




Read more:
Passing the brumby bill is a backward step for environmental protection in Australia


The current method of control in NSW is to capture the horses and transport them to an abattoir if they cannot be re-homed. But evidence shows culling has fewer animal welfare concerns than this method.

And in the latest round of money-wasting horse management, the NSW government trapped 574 horses over the past year, but released 192 females and foals back into the park. If the program is aimed at reducing horse numbers, releasing the most fertile animals back into the population is counter-productive.

Regenerating plants and burnt trees in fire-damaged alpine region
Feral horses are exacerbating the damage from recent bushfires in the High Country.
Shutterstock

What’s more, removing 300-400 horses per year has little impact on overall numbers. There are around 14,000 horses in Kosciuszko National Park, with a growth rate of 23% per year. This means more than 3,000 horses must be removed just to prevent the population from getting bigger.

The high country without feral horses

If the Victorian draft plan can be improved to invest in rapid horse reduction and ecosystem restoration, we can expect to see quagmires created by trampling horses return to functioning ecosystems and the recovery of threatened species.

Stream banks can be stabilised and then dense grass tussocks and sedges will return, creating homes for threatened skinks, crayfish and the Tooarrana broad-toothed rat.

While Kosciuszko’s alpine ecosystems continue to decline under the NSW government’s political impasse, the Victorian Alps will become the favoured destination for tourists who want to see Australia’s nature thriving when they visit national parks.




Read more:
To fix Australia’s environment laws, wildlife experts call for these 4 changes — all are crucial


The Conversation


Don Driscoll, Professor in Terrestrial Ecology, Deakin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Climate change is a security threat the government keeps ignoring. We’ll show up empty handed to yet another global summit


Cheryl Durrant, UNSWClimate change is a hot topic in Australian security circles, as it poses an emerging threat to our national resilience and way of life. As a new report from the Australian Strategic Policy Institute (ASPI) last week warned, the federal government is unprepared to meet these challenges.

The report, authored by Dr Robert Glasser, said the government has largely overlooked the security threat posed by rising seas, climate-induced famine, extreme weather events, mass migrations and other climate change damage in Southeast Asia. Australia is sitting on the frontline of this vulnerable region.

Glasser’s report focuses on Southeast Asia, but in the bigger picture, climate security is an existential global risk which the Australian government is yet to fully grasp. It is this global aspect of climate and security which will be on the agenda in two weeks time at the Biden Leaders Summit in the US.

Why should we be worried?

The global risk is broader than traditional security threats, such as the rise of China, terrorism and separatist movements. As the ASPI report emphasises, there is a relationship between climate security and other sectors such as food, health and environmental security.

Unlike traditional national security threats, climate threats have no respect for national or sector borders and cannot be solved with missiles.

The threat is urgent. With the end of the Donald Trump presidency, climate change is back on regional and international security action agendas. The penny has dropped on how little time is left to take action to prepare for the worst of consequences.

This is especially the case when there are long lead times to implement action, such as infrastructure development and military capability development.




Read more:
Climate change poses a ‘direct threat’ to Australia’s national security. It must be a political priority


ASPI’s key recommendations to the government include:

  • improving understanding of climate change risks through a broad whole-of-government process
  • building capacity in government agencies to assess ongoing risks
  • identifying opportunities for regional aid and investments.

These make sense, as the first step of preparedness is understanding the risk.

Security risks go beyond natural disasters

The ASPI report notes Southeast Asia “has the world’s highest sea-level rise per kilometre of coastline and the largest coastal population affected by it”. The region is a hot spot for cyclones, with some nations vulnerable to catastrophic heat or fires.

The ASPI report notes:

Those hazards will not only exacerbate the traditional regional security threats […] but also lead to new threats and the prospect of multiple, simultaneous crises, including food insecurity, population displacement and humanitarian disasters that will greatly test our national capacities, commitments and resilience.

The report focuses on Southeast Asia and natural disasters, but the risks and the affected regions are bigger than that.

The Indo-Pacific region may see the displacement of millions of people due to climate change-related extreme weather events, heatwaves, droughts, rising seas and floods. We’re already seeing this occur in Bangladesh and small island developing states.

We could also see conflict arise as climate change affects global food or water resources. A particular concern is the potential geopolitical tensions between India and China over dwindling Tibetan water resources.

Australia is getting left behind

Urgency and risk are central to an executive order from President Joe Biden in January. The order requires a US national security estimate on the economic and national security impacts of climate change by June. The US Department of Defence must also complete an analysis of the security implications of climate change in the same timeframe.




Read more:
Biden says the US will rejoin the Paris climate agreement in 77 days. Then Australia will really feel the heat


Most tellingly, the US is taking an integrated approach to climate security. Foreign policy, defence and economic risk analysis are being conducted in a joined-up, systemic way.

In contrast, the Australian Defence Strategic Update 2020 was conducted in isolation from foreign policy and economic reviews. Taking a narrow military perspective, it does mention climate change, but only once, as a subset of human security threats.

Australia risks being left behind as other countries follow the US lead. Across the Tasman, our Kiwi friends are already well advanced in turning risk awareness into action. The New Zealand government completed its first national climate risk assessment last year, with a national adaptation plan to be completed by August 2022.

What are the consequences?

Being left behind has consequences for Australia’s international standing, national resilience and economic position.

From a diplomatic perspective, Australia’s influence in the Indo-Pacific region is diminished, relative to other actors, especially in states where climate change risk is a top priority, such as Vanuatu or Kiribati.

Risks offer opportunities as well. For example, Australia has an abundance of critical minerals and rare earths needed for modern communications, space technologies, and renewable energy generation and transmission. These are key for business, as well as critical for defence forces.




Read more:
Critical minerals are vital for renewable energy. We must learn to mine them responsibly


However, processing and manufacturing is largely conducted offshore — in countries vulnerable to climate risks such as Malaysia — before returning to Australia as finished products.

This puts Australian defence and space and energy sectors at risk of disruption, and Australian businesses at risks of economic loss.

What needs to happen next?

ASPI’s report echoes the earlier recommendation from a 2018 Senate inquiry into the implications of climate change for Australia’s national security. The inquiry also called for a coordinated whole-of-government response to climate change risks.

Three years later, the federal government has yet to act on its recommendations.

The Australian government now needs to have a greater sense of urgency to act on the growing national and international calls to act on climate risk. But first, our leaders need a changed mindset. They must accept that climate change is an immediate threat to Australia.




Read more:
Senate report: climate change is a clear and present danger to Australia’s security


The Conversation


Cheryl Durrant, Adjunct Associate Professor, UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.

‘Failure is not an option’: after a lost decade on climate action, the 2020s offer one last chance


Shutterstock

Will Steffen, Australian National UniversityIn May 2011, almost precisely a decade ago, the government-appointed Climate Commission released its inaugural report. Titled The Critical Decade, the report’s final section warned that to keep global temperature rises to 2℃ this century, “the decade between now and 2020 is critical”.

As the report noted, if greenhouse gas emissions peaked around 2011, the world’s emissions-reduction trajectory would have been easily manageable: net-zero by around 2060, and a maximum emissions reduction rate of 3.7% each year. Delaying the emissions peak by only a decade would require a trebling of this task – a maximum 9% reduction each year.

But, of course, the decade to 2020 did not mark the beginning of the world’s emissions-reduction journey. Global emissions accelerated before dropping marginally under COVID-19 restrictions, then quickly rebounding.

Our new report, released today, shows the immense cost of this inaction. It is now virtually certain Earth will pass the critical 1.5℃ temperature rise this century – most likely in the 2030s. Now, without delay, humanity must focus on holding warming to well below 2℃. For Australia, that means tripling its emissions reduction goal this decade to 75%.

Young girl holds sign at climate protest
The 2020s offer a last chance to keep warming within 2℃ this century, and leave a habitable planet for future generations.
Shutterstock

Aim high, go fast

The Climate Council report is titled Aim High: Go Fast: Why Emissions Need To Plummet This Decade. It acknowledges the multiple lines of evidence showing it will be virtually impossible to keep average global temperature rise to 1.5℃ or below this century, without a period of significant overshoot and “drawdown”. (This refers to a hypothetical period in which warming exceeds 1.5℃ then cools back down due to the removal of carbon dioxide (CO₂) from the atmosphere.)

The increasing rate of climate change, insights from past climates, and a vanishing carbon budget all suggest the 1.5℃ threshold will in fact be crossed very soon, in the 2030s.

There is no safe level of global warming. Already, at a global average temperature rise of 1.1℃, we’re experiencing more powerful storms, destructive marine and land heatwaves, and a new age of megafires.




Read more:
Cyclone Seroja just demolished parts of WA – and our warming world will bring more of the same


As the Intergovernmental Panel on Climate Change has warned, the consequences of breaching 1.5℃ warming will be stark. Heatwaves, droughts, bushfires and intense rain events will become even more severe. Sea levels will rise, species will become extinct and crop yields will fall. Coral reefs, including the Great Barrier Reef, will decline by up to 90%.

And perhaps most frighteningly, overshooting 1.5℃ runs a greater risk of crossing “tipping points”, such as the collapse of ice sheets and the release of natural carbon stores in forests and permafrost. Crossing those thresholds may set off irreversible changes to the global climate system, and destroy critical ecosystems on which life on Earth depends.

An ice sheet in Greenland
Climate tipping points, such as melting ice sheets, may set off irreversible changes in natural systems.
John McConnico/AP

Every fraction of a degree matters

The outlook may be dire, but every fraction of a degree of avoided warming matters. Its value will be measured in terms of human lives, species and ecosystems saved. We can, and must, limit warming to well below 2℃. The goal is very challenging, but still achievable.

The strategies, technologies and pathways needed to tackle the climate challenge are now emerging as fast as the risks are escalating. And in the lead-up to the COP26 climate conference in Glasgow later this year, there’s widespread momentum for international cooperation and action.




Read more:
Seriously ugly: here’s how Australia will look if the world heats by 3°C this century


Many of Australia’s strategic allies and major trading partners – including the United States, Europe, the United Kingdom and China – are starting to move on climate change. But Australia is standing still. This is despite our nation being one of the most vulnerable to climate change – and despite us having some of the world’s best renewable energy resources.

We must urgently grab these opportunities. We propose Australia radically scale up its emissions-reduction targets – to a 75% cut by 2030 from 2005 levels (up from the current 26-28% target). Australia should also aim to reach net-zero emissions by 2035. Doing so by 2050 – a goal Prime Minister Scott Morrison says is his preference – is too late.

A coal plant
Polluting industries such as coal will have to give way to cleaner industries.
Shutterstock

A huge but achievable task

Such dramatic action is clearly daunting. There are political, technical and other challenges ahead because action has been delayed. But a 75% emissions-reduction target is a fair and achievable contribution to the global effort.

Australia’s unrivalled potential for renewable energy means it can transform the electricity sector and beyond. Electric vehicles can lead to carbon-free transport and renewably generated electricity and green hydrogen can decarbonise industry.

The emerging new economy is bringing jobs to regional Australia and building cleaner cities by reducing fossil fuel pollution. There is staggering potential for a massive new industry built on the export to Asia of clean energy and products made from clean hydrogen.




Read more:
Scott Morrison has embraced net-zero emissions – now it’s time to walk the talk


State, territory and local governments are leading the way in this transformation. The federal government must now join the effort.

The transition will no doubt be disruptive at times, and involve hard decisions. Industries such as coal will disappear and others will emerge. This will bring economic and social change which must be managed sensitively and carefully.

But the long-term benefits of achieving a stable climate far outweigh the short-term disruptions. As our report concludes:

The pathway we choose now will either put us on track for a much brighter future for our children, or lock in escalating risks of dangerous climate change. The decision is ours to make. Failure is not an option.


Climate Council researcher Dr Simon Bradshaw contributed to this article.The Conversation

Will Steffen, Emeritus Professor, Fenner School of Environment & Society, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Sydney’s disastrous flood wasn’t unprecedented: we’re about to enter a 50-year period of frequent, major floods


Tom Hubble, University of SydneyLast month’s flood in the Hawkesbury-Nepean River region of western Sydney peaked at a staggering 12.9 metres, with water engulfing road signs and reaching the tops of many houses.

There hasn’t been a major flood on the Hawkesbury-Nepean for more than 30 years, with the last comparable one occurring in 1990. Long-term Sydneysiders, however, will remember that 12 major floods occurred during the 40 years before 1990. Five of these were larger than last month’s flood.

So what’s going on? The long-term rainfall pattern in the region and corresponding river flow is cyclic in nature. This means 40 to 50 years of dry weather with infrequent small floods are followed by 40 to 50 years of wet weather with frequent major floods.

As river and floodplain residents take stock of the recent damage to their homes and plan necessary repairs, it’s vital they recognise more floods are on the way. Large, frequent floods can be expected to occur again within 10 or 20 years if — as expected — the historical pattern of rainfall and flooding repeats itself.

Living in a bathtub

Many of the 18,000 people who were evacuated live in and around a region known as the “Sackville Bathtub”. As the name suggests, this flat, low-lying section of the floodplain region was spectacularly affected.

The flooded Hawkesbury-Nepean River last month. Brown floodwater is evident between Penrith (right) and the Pacific Ocean (top left). The Sackville Bathtub is located left of centre.
Digital Earth Australia Map, Geoscience Australia, Tom Hubble

The Sackville Bathtub is located between Richmond and Sackville. It’s part of the Cumberland Plain area of Western Sydney and formed very slowly over 100 million years due to plate tectonic processes. The bathtub’s mudstone rock layers are folded into a broad, shallow, basin-shaped depression, which is surrounded by steep terrain.

Downstream of Sackville, the Hawkesbury-Nepean River flows through sandstone gorges and narrows in width. This creates a pinch-point that partially blocks the river channel.

Just as a bath plug sitting half-way over a plughole slows an emptying bath, the Sackville pinch-point causes the bathtub to fill during floods.

How the bathtub effect in the Hawkesbury-Nepean Valley causes floodwaters to back up and lead to deep and dangerous flooding.

Will raising the dam wall work?

The NSW state government is planning to raise the wall of the Warragamba Dam to help mitigate catastrophic floods in the region. But this may not be an effective solution.

Typically, somewhere between 40% and 60% of the floodwater that fills up the Sackville Bathtub comes from unimpeded, non-Warragamba sources. So, when the Hawkesbury-Nepean River floods, the bathtub is already quite full and causing significant problems before Warragamba begins to spill. The Warragamba water then raises the flood level, but often by only a couple of metres.

Raising Warragamba Dam’s wall as a mitigation measure will only control about half the floodwater, and won’t prevent major floods delivered by the Nepean and Grose rivers, which also feed into the region. This represents a small potential benefit for a very large cost.

The timing of observed flood peaks during the August 1986 Hawkesbury-Nepean flood, in relation to the time when Warragamba Dam began to spill. The arrival of Warragamba water in the Sackville Bathtub increased the flood depth only by about a metre above the floodwaters delivered earlier during the flood from the Grose and Nepean rivers.
Tom Hubble – Redrawn from data presented in Appendix One of the Hawkesbury-Nepean Flood Study; Infrastructure NSW 2019.

A long flooding period is on our doorstep

The idea of drought-dominated and flood-dominated periods for the Hawkesbury-Nepean River system was proposed in the mid-1970s by the University of Sydney’s Robin Warner. Since the late 1990’s, it hasn’t been the focus of much research.




Read more:
What is a 1 in 100 year weather event? And why do they keep happening so often?


He showed a century-long cycle of alternating periods of dry weather and small floods followed by wet weather and big floods is normal for Sydney. This means the March flood may not have come as a surprise to older residents of the Sackville Bathtub, who have a lived experience of the whole 40-50 year flooding cycle.

As a rough average, one major flood occurred every four years during the last wet-weather period between 1950 and 1990. The largest of this period occurred in November 1961. It filled the Sackville Bathtub to a depth of 15 metres and — like the June 1964 (14.6 metres) and March 1978 (14.5 metres) events — caused more widespread flooding than this year’s flood.

A photo of a flood that occured in Maitland in September 1950.
Sam Hood/NSW State Library/Flickr, CC BY

We’re currently 30 years into a dry period, which may be about to end. Conditions might stay dry for another 10 or 20 years.

These cycles are likely caused by natural, long-term “climate drivers” — long-term climatic fluctuations such as El Niño and La Niña, the Pacific Decadal Oscillation and the Indian Ocean Dipole, which are driven by oceanic current circulations. These global phenomena bring both benevolent weather and destructive weather to Australia.

Eastern Australia experiences decades-long periods of wetter weather when these climate drivers sync up with each other. When they’re out of sync, we get dry weather periods.




Read more:
A rare natural phenomenon brings severe drought to Australia. Climate change is making it more common


These long-term cycles are natural and have been operating for thousands of years, but climate change is amplifying and accelerating them. Dry periods are getting drier, wet periods are getting wetter.

The good news and bad news

The bad news is that 12-plus metre floods at Hawkesbury River (Windsor Bridge) are not all that unusual. There have been 24, 12-plus metre floods at Windsor Bridge since 1799.

The good news is meteorological forecasters are excellent at predicting when the storms that generate moderate, large and catastrophic floods are coming. We can expect several days’ to a week’s notice of the next big flood.

We can also prepare our individual and communal responses for more large and frequent floods on the Hawkesbury-Nepean. Residents of the area need to think about how they might live near the river as individuals. Decide what is precious and what you will fit into a car and trailer. Practice evacuating.

As a community, we must ensure the transport infrastructure and evacuation protocols minimise disruption to river and floodplain residents while maximising their safety. It’s particularly important we set up inclusive infrastructure to ensure disadvantaged people, who are disproportionately affected by disasters, also have a fighting chance to evacuate and survive.




Read more:
Not ‘if’, but ‘when’: city planners need to design for flooding. These examples show the way


Upgrading the escape routes that enable people to evacuate efficiently is absolutely vital. As is rethinking whether we should continue urban expansion in the Sackville Bathtub.

So remember, the next major flood is going to occur sooner than we would like. If you live in this region, you must start preparing. Or as a wise elder once said, “Live on a floodplain, own a boat!”


This story is part of a series The Conversation is running on the nexus between disaster, disadvantage and resilience. Read the rest of the stories here.The Conversation

Tom Hubble, Associate Professor, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

There’s a long and devastating history behind the proposal for a nuclear waste dump in South Australia


Rosemary Laing, one dozen considerations, Totem 1, Emu (2013) on display at The Image is Not Nothing.
Josh Geelen

Katherine Aigner, Australian National UniversityOn Saturday the Adelaide Festival hosted a public showing of Australian Atomic Confessions, a documentary I co-directed about the tragic and long-lasting effects of the atomic weapons testing carried out by Britain in South Australia in the 1950s.

Amid works from 20 artists reflecting on nuclear trauma as experienced by Indigenous peoples, the discussion that followed brought up the ways in which attempts at nuclear colonisation have continued in South Australia, and are continuing right now.

For the fourth time in 23 years South Australia is being targeted for a nuclear waste dump — this time at Napandee, a property near Kimba on the Eyre Peninsula.

The plan is likely to require the use of a port, most probably Whyalla, to receive reprocessed nuclear fuel waste by sea from France, the United Kingdom and the Lucas Heights reactor in NSW via Port Kembla.


Napandee. Site Characterisation Technical Report.
Department of Industry

The waste will be stored above ground in concrete vaults which will be filled for 100 years and monitored for a further 200-300 years.

Nuclear waste can remain hazardous for thousands of years.

The Barngarla people hold cultural rights and responsibilities for the region but were excluded from a government poll about the proposal because they were not deemed to be local residents.

The 734 locals who took part backed the proposal 61.6%

The Barngarla people are far from the first in South Australia to be excluded from a say about proposals to spread nuclear materials over their land.

It’s not the first such proposal

Australian Atomic Confessions explores the legacy of the nine British atomic bombs dropped on Maralinga and Emu Field in the 1950s, and the “minor trials” that continued into the 1960s.

After failed clean-ups by the British in the 1960s followed by a Royal Commission in the 1980s, the Australian Radiation Protection and Nuclear Safety Agency conducted a cleanup between 1995 and 2000 it assures us was successful to the point where most of the contaminated areas at Maralinga fall well within the clean-up standards applied for unrestricted land use.

But experts remain sceptical, given the near-surface burial of plutonium and contamination remaining across a wide area.

The Tjarutja people are allowed to move through and hunt at the Maralinga site with their radiation levels monitored but are not permitted to camp there permanently.

Nina Sanadze, 100 Years After, 30 years On, 3rd Tbilisi Triennial (2018) on display as part of The Image is not Nothing.
Sandro Sulaberidze

We are told that what happened in the 1950s wouldn’t happen today, in relation to the proposed nuclear waste dump. But it wasn’t our enemies who bombed us at Maralinga and Emu Field, it was an ally.

In exchange for allowing 12 British atomic bombs tests (including those at the Monte Bello Islands off the northern coast of Western Australia), the Australian government got access to nuclear technology which it used to build the Lucas Heights reactor.

It is primarily the nuclear waste produced from six decades of operations at Lucas Heights that would be dumped onto Barngarla country in South Australia, closing the links in this nuclear trauma chain.




Read more:
Sixty years on, Maralinga reminds us not to put security over safety


Nuclear bombs and nuclear waste disproportionately impact Indigenous peoples, yet Australia still has not signed up to the United Nations Declaration on the Rights of Indigenous Peoples. The declaration requires states to ensure there is no storage or disposal of hazardous materials on the lands of Indigenous peoples without their free, prior and informed consent.


Article 29, United Nations Declaration on the Rights of Indigenous Peoples

Nor has Australia shown any willingness to sign up to the Treaty on the Prohibition of Nuclear Weapons which came into force on January 22 this year after a lobbying campaign that began in Australia and was endorsed by Indigenous leaders worldwide.

Aboriginal people have long known the dangers of uranium on their country.

Water from the Great Artesian Basin has been extracted by the Olympic Dam copper-uranium mine for decades. Fragile mound springs of spiritual significance to the Arabunna People are disappearing, posing questions for the mining giant BHP to answer.

Artworks on display at The Image is not Nothing at the Adelaide Festival.
Josh Geelen

Australian uranium from BHP Olympic Dam and the now-closed Rio Tinto Ranger mine fuelled the 2011 Fukushima nuclear disaster.

Senior traditional custodian of the Mirrar people, Yvonne Margarula, wrote to the United Nations in 2013 saying her people feel responsible for what happened.

It is likely that the radiation problems at Fukushima are, at least in part, fuelled by uranium derived from our traditional lands. This makes us feel very sad.

The Irati Wanti (The Poison, Leave It!) campaign led by a council of senior Aboriginal women helped defeat earlier proposals for nuclear waste dumps between 1998 and 2004.

There remains strong Indigenous opposition to the current nuclear waste proposal.

Over the past five years, farmers have joined with the Barngarla People to protect their communities and the health of the land.




Read more:
Friday essay: the silence of Ediacara, the shadow of uranium


In 2020 the government introduced into the Senate a bill that would do away with traditional owners’ and farmers’ rights to judicial reviews and procedural fairness in regard to the use of land for the facility.

Resources Minister Keith Pitt is deciding how to proceed.The Conversation

Katherine Aigner, PhD candidate Centre for Aboriginal Economic Policy, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.