What Australia can learn from Victoria’s shocking biodiversity record



File 20190320 93057 1dzh716.jpg?ixlib=rb 1.1
The endangered Brush-tailed Rock-wallaby is one of Victoria’s threatened species.
TARONGA ZOO/AAP

Geoffrey Wescott, Deakin University

Victoria is struggling with biodiversity conservation, according to a State of the Environment report tabled in parliament this week. While the scorecard is bleak – not one of the state’s key biodiversity indicators ranks as “good” – the report itself gives some hope.

For the first time the Commissioner for Environmental Sustainability, who prepared the report, offers proactive recommendations to the Victorian government for improving its performance, and has linked these goals to international sustainability targets. It’s an comprehensive and ambitious effort, and offers some good lessons to the rest of Australia.




Read more:
Australia among the world’s worst on biodiversity conservation


Alarming results

Victoria is the most densely populated state in Australia, the most cleared of native vegetation, and has the smallest percentage of public land.

The State of the Environment report uses a traffic light method to summarise the status, trend and data quality of 170 indicators spread over 12 scientific assessment areas (everything from general air and water quality to specific environments such as marine and coasts, plus issues such as waste and energy).

The indicators paint a picture that does not look good for biodiversity. None of these indicators are rated “good”; seven are “fair”, 21 “poor”, and seven “unknown”. In terms of trends, just one is improving, seven are stable, and 18 are deteriorating (nine are unclear).

National park declarations have slowed substantially on land in recent years – the first Andrews government (2014-18) was the first Victorian government in a quarter of a century not to increase national parks. Not a single additional marine area has been protected since 2002.

In contrast, conservation on private land is fair and trending upward according to the report card (probably largely due to the efforts of Trust for Nature). A substantial cash injection for the trust from Victoria’s rolling fund would likely see outsized results, although this is not a specific recommendation in the report.

The reports offers two critical recommendations for improving biodiversity:

  • increase private land conservation and invest in local government capability to enforce existing protective guidelines, and

  • appoint a Chief Biodiversity Scientist to counsel the Secretary and Environment Minister to improve the impact of biodiversity research.

Creating a Chief Biodiversity Scientist is a good starting point for an area that has received decreasing effort, over the past decade in particular. However, it must be only the first step in raising the lowly position of biodiversity conservation, not only in the environment department but across the entire government.

Beyond passive reporting

This years report moves beyond simply relaying data in two ways: first, with 20 specific recommendations to the government, and secondly by using the United Nation’s framework of environmental accounting to tie the report to the global Sustainable Development Goals.

The report claims this is the first attempt to apply the UN’s Sustainable Development Goals to a sub-national environmental report. Given the number of federated nations around the world (the United States, Brazil and Canada, for a start), putting the spotlight on state or provincial environmental responsibilities is a significant and laudable step.

In the more immediate future, the report gives the Victorian government 20 recommendations linked to the Sustainable Development Goals, across a range of categories: Traditional Owner leadership, climate change, air and water quality, land, forests, fire, marine and coastal environments, water resources, waste and resource recovery, energy, transport, and “megatrends”.

The 20 recommendations are solidly based on the findings across the 12 assessment areas. These show that only 11% of status indicators are “good”, whereas 32% are “poor”, with the trend demonstrating only 10% are improving, 30% stable and 30% deteriorating.




Read more:
Why biodiversity is key to our survival


While the State of the Environment report naturally focuses on Victoria, there are plenty of lessons and ideas here for the rest of the country.

Now the onus is firmly on the self-proclaimed “most progressive government in Australia” to act.The Conversation

Geoffrey Wescott, Honorary Research Fellow, School of Life and Environmental Sciences, Deakin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

NZ is home to species found nowhere else but biodiversity losses match global crisis



File 20181202 194956 zkvtmm.jpg?ixlib=rb 1.1
There are five species of kiwi in New Zealand. Their total number is currently at around 70,000 but the populations may have declined by two thirds in 20 years.
from http://www.shutterstock.com, CC BY-ND

Robert McLachlan, Massey University and Steven Alexander Trewick, Massey University

The recently released 2018 Living Planet report is among the most comprehensive global analyses of biodiversity yet. It is based on published data on 4,000 out of the 70,000 known species of mammals, birds, fish, reptiles and amphibians.

Rather than listing species that have gone extinct, the report summarises more subtle information about the vulnerability of global biodiversity. The bottom line is that across the globe, the population sizes of the species considered have declined by an average of 60% in 40 years.

New Zealand is a relatively large and geographically isolated archipelago with a biota that includes many species found nowhere else in the world. One might think that it is buffered from some of the effects of biological erosion, especially since people only arrived less than 800 years ago. But as we show, the impact on wildlife has been catastrophic.




Read more:
Tipping point: huge wildlife loss threatens the life support of our small planet


Describing biological diversity

The diversity of life may seem incomprehensible. Carolus Linnaeus began his systematic work to describe earth’s biological diversity in the 18th century with about 12,000 plants and animals. Since then, 1.3 million species of multi-cellular creatures have been described, but the size of the remaining taxonomic gap remains unclear.

Recently, sophisticated models estimated the scale of life, suggesting that multi-cellular life ranges between about five million and nine million species. Microbial life might include millions, billions or even trillions of species.

Species do not exist in isolation. They are part of communities of large and microscopic organisms that themselves drive diversification. Charles Darwin observed in his usual understated way:

It is interesting to contemplate an entangled bank, clothed with many plants of many kinds, with birds singing on the bushes, with various insects flitting about, and with worms crawling through the damp earth, and to reflect that these elaborately constructed forms, so different from each other, and dependent on each other in so complex a manner, have all been produced by laws acting around us.

Global decline of wild places

The main threat to biodiversity remains overexploitation of resources, leading to loss of habitat. Human overconsumption can only get worse in coming decades, and this will likely escalate the impact of invasive species, increase the rate of disease transmission, worsen water and air pollution and add to climate change.




Read more:
Capitalism is killing the world’s wildlife populations, not ‘humanity’


This is the Anthropocene, the era of human domination of many global-scale processes. By the early 1990s, just 33 million of the earth’s 130 million square kilometres of ice-free land remained in wilderness. By 2016, it was down to 30 million. Most of this is either desert, taiga or tundra. In other words, humans and their cities, roads and farms occupy 77% of the available land on earth.

By 2050, wild lands are projected to contract to 13 million square kilometres, leaving ever less space for wild animals and plants. In terms of resources consumed, there is huge inequity. Preliminary estimates of the biomass of all life on earth reveal that humans, their pets and their farm animals outweigh wild land mammals by 50 to one. Poultry outweigh all wild birds 2.5 to one.

New Zealand: at the bottom of the cliff

In New Zealand, a lot of attention is paid to iconic, rare species, such as kiwi and kākāpo. However, in 2017, the Parliamentary Commissioner for the Environment reported that the proportion of forest land occupied by birds found only in New Zealand had declined in the North Island from 16% to 5% between 1974 and 2002. In the South Island, it declined from 23% to 16%.

These figures are consistent with other studies on animal populations. For example, kiwi, which currently number 70,000, may have declined by two thirds in 20 years. Thus there is a risk that continued biodiversity decline overall will see more and more species requiring last-ditch efforts to save them, with healthy populations confined to heavily protected and often fenced sanctuaries.

New Zealand is unusual in that introduced, invasive predators are a major threat and are widely seen as the predominant threat to native animals. However, land use change in New Zealand has been rapid, extensive and catastrophic for biodiversity and ecosystem resilience. The New Zealand situation is at best the global story writ small.

As the last substantial land area to be settled by humans, the land experienced an alarming rate of habitat loss. Indeed, deforestation was considered a necessity and the “homestead system” in Auckland saw tenants turned off the land if they failed to clear sufficient native bush.

Native bush in New Zealand has been reduced by about three quarters from its former 82% extent across the landscape. What remains is heavily modified and not representative of former diversity. For example, in the Manawatū-Whanganui region, ancient lowland kahikatea forest has been reduced to less than 5% of its former extent, and between 1996 and 2012, 89,000 hectares of indigenous forest and scrub was converted to exotic forest and exotic pasture. When a habitat is removed, the organisms that live in it go, too.

The way forward

The Living Planet report charts a detailed, aspirational roadmap to reverse the decline in biodiversity. It takes heart from the 2015 Paris Agreement and Sustainable Development Goals. It looks ahead to a greatly strengthened Convention on Biological Diversity for 2020.

Unfortunately, biodiversity threats are, if anything, even more pervasive and difficult to address than fossil fuel emissions. In climate change, it is broadly agreed that rising seas, acidifying oceans and destabilised weather patterns are bad. There is no such universal understanding of the importance of biodiversity.

To address this, the report details the importance of biodiversity to human health, food production and economic activity – the “ecosystem services” that nature provides to humans. The intrinsic value of nature to itself is hardly mentioned. This is not a new debate. The 1992 UN Convention on Biological Diversity is founded on “the intrinsic value of biological diversity”, while the Rio Earth Summit of the same year stated that “human beings are at the centre of concerns for sustainable development.”

The issue should not be confined to ecologists, philosophers, and diplomats. It needs to be addressed or we may find that future generations value nature even less than present ones do. In 2002, Randy Olsen popularised the concept of the shifting baseline, which means that people progressively adjust to a new normal and don’t realise what has been lost:

People go diving today in California kelp beds that are devoid of the large black sea bass, broomtailed groupers and sheephead that used to fill them. And they surface with big smiles on their faces because it is still a visually stunning experience to dive in a kelp bed. But all the veterans can think is, “You should have seen it in the old days”.The Conversation

Robert McLachlan, Professor in Applied Mathematics, Massey University and Steven Alexander Trewick, Professor of Evolutionary Ecology, Massey University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia among the world’s worst on biodiversity conservation



File 20171102 26430 45tyt3.jpg?ixlib=rb 1.1
A long-term monitoring project in Simpson Desert provides crucial information about the ecosystem.
Mina Guli/Flickr, CC BY-NC

Noel D Preece, James Cook University

Australia is among the top seven countries worldwide responsible for 60% of the world’s biodiversity loss between 1996 and 2008, according to a study published last week in the journal Nature.

The researchers examined the conservation status of species in 109 countries and compared that to conservation funding. Australia ranks as the second worst of the group, with a biodiversity loss of 5-10%.

The study clearly linked adequate conservation funding to better species survival, which makes it all the more concerning that one of Australia’s most valuable national environmental monitoring programs will lose funding next month.


Read more: We need our country; our country needs us


Established in 2011, the long-term ecological research network (LTERN) monitors alpine grasslands, tall wet forests, temperate woodlands, heathlands, tropical savannas, rainforests and deserts. It coordinates 1,100 monitoring sites run by numerous researchers, bringing together decades of experience. There’s nothing else like it in Australia, and at an annual cost of A$1.5 million it delivers extraordinary value for money.

Long term ecological research stations across Australia.
TERN

The value of long-term research

Our continent has a hyper-variable environment, with catastrophic bushfires, alarming species extinctions, and widespread loss of habitat.


Read more: Half the world’s ecosystems at risk from habitat loss, and Australia is one of the worst


In the battle to manage and predict the future of our ecosystems, the LTERN punches above its weight.

In the Northern Territory it was long thought that the ecosystems centred on Kakadu National Park were intact. But instead, long-term monitoring showed alarming and unexpected crashes towards extinction of native mammals of the region since the 1990s, driven by fire regime changes, feral animals, disease, cane toads, climate change and grazing.

Likewise, the 70-year-old network of monitoring sites in Australia’s alpine regions revealed the impact of climate change on flowering pollination, and the fact that livestock grazing actually increases fire risk. Without these insights it would not be possible to manage these ecosystems sustainably.

In the Simpson Desert – the only LTERN site that captures the remote outback – the dynamic of boom and bust has been monitored since 1990. It reveals a long-running and cyclical explosion of life. Intermittent downpours support flushes of wildflowers, booming marsupial populations and flocks of budgerigars, which are then ravaged by feral foxes and cats. Spending only one year in the desert would mean missing this dynamic, which has driven dozens of native species to extinction.

Several of these monitoring sites are likely to close when funding stops next month, as alternative support is not available. Without the network, coordination among the remaining sites will become much harder.

We should be able to predict environmental changes

The National Collaborative Research Infrastructure Scheme, which ultimately funds the LTERN, has called for the development of a national environmental prediction system to forecast ecosystem changes.

But without long-term data, the development of a reliable and accurate environmental prediction system is impossible, particularly for biodiversity.

The journal Science reported in August that researchers working with LTERN are trying to find alternative funding, possibly for a more comprehensive network. But with limited funding commitment and opaque long-term plans from government, this seems ambitious.

After 40 years working in Australian ecosystem management, assessment, investigation and research, I am deeply concerned about terminating the existing system and starting again. It takes time to understand ecosystems, and the accumulated knowledge of up to 70 years of monitoring is invaluable. It risks destroying one of the few successes in long-term monitoring of our ecosystems and species.

Australia is infamous for commencing new initiatives and then stopping them. Australia’s surveillance and monitoring efforts are already recognised as inadequate. Breaks in continuity of long-term ecological datasets significantly reduce their value and disrupt key information on environmental and ecosystem change.

Out of step with the world

In a letter to Science, 69 Australian scientists described the decision to defund the LTERN as “totally out of step with international trends and national imperatives”. Indeed, the United States has recently expanded its long-term monitoring network, which has been running for nearly 30 years.

Not only is Australia’s decision against the international trend, it also defies Australia’s own stated goals. Australia’s Biodiversity Conservation Strategy explicitly commits to establishing a national long-term biodiversity monitoring system. The strategy’s five-year review admits to failing to achieve this outcome.


Read more: The environment needs billions of dollars more: here’s how to raise the money


The loss of the LTERN will undermine assessments of the sustainability of key industries such as grazing and forestry. Without it, we can’t robustly evaluate the success of taxpayer-funded environmental management.

A$1.5 million a year is a very small price to pay for crucial insights into our continent’s changing environments and biodiversity. But reinstating this paltry sum will not solve the very real crisis in Australian ecosystem knowledge.

The ConversationWe urgently need a comprehensive national strategy, as pledged in Australia’s Biodiversity Conservation Strategy. The evidence is in: investment in biodiversity conservation pays off.

Noel D Preece, Adjunct Principal Research Fellow at Charles Darwin and, James Cook University

This article was originally published on The Conversation. Read the original article.

The environment needs billions of dollars more: here’s how to raise the money


Paul Martin, University of New England; Amy Cosby, University of New England, and Kip Werren, University of New England

Extinction threatens iconic Australian birds and animals. The regent honeyeater, the orange-bellied parrot, and Leadbeater’s possum have all entered the list of critically endangered species.

It is too late for the more than 50 species that are already extinct, including bettongs, various wallabies, and many others. Despite international commitments, policies and projects, Australia’s biodiversity outcomes remain unsatisfactory.

A 2015 review of Australia’s 2010-2050 Biodiversity Conservation Strategy found that it has failed to “effectively guide the efforts of governments, other organisations or individuals”.

Insufficient resourcing is one cause of biodiversity loss. The challenge is impressive. Australia must tackle degradation and fragmentation of habitat, invasive species, unsustainable use of resources, the deterioration of the aquatic environment and water flows, increased fire events, and climate change.

This all requires money to support private landholders conducting conservation activities, to fund research, to manage public lands, and to support other conservation activities conducted by governments, industry, and individuals.

So where can we find the funds?

How much money is needed?

We have estimated that Australia’s biodiversity protection requires an equivalent investment to defence spending – roughly 2% of gross domestic product.

Of course, such estimates are up for debate given that how much money is required depends on what we want the environment to look like, which methods we use, and how well they work. Other studies (see also here and here point to a similar conclusion: far more money is needed to achieve significantly better outcomes.

Apart from government funding, private landholders, businesses, communities, Indigenous Australians, and non-government organisations contribute significantly to natural resource management. We were unable to quantify their collective cash and in-kind contributions, as the information is not available. But we do know that farmers spend around A$3 billion each year on natural resource management.

Nonetheless, the erosion of environmental values indicates that the level of spending required to sufficiently meet conservation targets far exceeds the amount currently being spent. The investment required is similar to value of agriculture in Australia.

Conservation doesn’t come cheap.
JJ Harrison/Wikimedia Commons, CC BY-SA

Unfortunately, the concentration of wealth and labour sets a limit to what any given community can pay.

Despite a high GDP per person and very wealthy cities, Australia has fewer than 0.1 people per hectare and a wealth intensity (GDP per hectare) of less than US$2,000 due to the sparse population and income of rural Australia.

Australia’s rural population has declined sharply, from over 18% in 1960 to around 10% today. Other countries (for example in Europe) are not limited to the same degree. Even China has a greater rural resource intensity than Australia.

Rural incomes are often volatile, but environmental investments need to be sustained. The history of Landcare highlights that private landholders have struggled to secure a reliable investment basis for sustainably managing the environment.

Can government pay what is required?

If Australia is serious about the environment, we need to know who will pay for biodiversity protection (a public good). This is especially true given that it is not feasible for rural (particularly Indigenous) landholders and communities to invest the required amount.

Will government be the underpinning investor? The federal government’s current spending program on natural resource management was initiated in 2014 with an allocation of A$2 billion over four years.

This was split between the second National Landcare Program, the (now-defunded) Green Army, the Working on Country program, the Land Sector Package, the Reef 2050 plan, the Great Barrier Reef Foundation, and the Whale and Dolphin Protection Plan.

As well as federal funding, the state, territory, and local governments invest in public lands, bushfire mitigation, waste management, water management, environmental research and development, biodiversity programs, and environmental policies. Local and state government departments together spend around A$4.9 billion each year on natural resource management.

The problem is that government spending on natural resource management can not be significantly increased in the near future due to fiscal pressures and the focus on reducing budget deficits.

Show us the money

At a time when Australia is reconsidering many aspects of its environmental policies, we should address the strategy for funding natural resource management.

It should be possible to leverage more private spending on the environment preferably as part of a coordinated strategy. Diverse, market-based approaches are being used around the world.

For example, we could use market instruments such as biodiversity banking to support landholders in protecting biodiversity.

Taxation incentives, such as a generous tax offset for landholders who spend money on improving the environment, can be a very powerful catalyst and could be crucial for meeting environmental investment needs.

Evidence suggests that integrating a variety of mechanisms into a coordinated business model for the environment is likely to be the most efficient and effective approach. But this will not happen unless Australia faces the fiscal challenge of sustainability head-on.

Australia needs an innovative investment plan for the environment. By combining known funding methods and investment innovation, Australia can reduce the gap between what we currently spend and what the environment needs.

Without a more sophisticated investment strategy, it is likely that Australia will continue on the trajectory of decline.

The Conversation

Paul Martin, Director, Australian Centre for Agriculture and Law, University of New England; Amy Cosby, Researcher, Centre for Agriculture and Law, University of New England, and Kip Werren, Lecturer in Law, University of New England

This article was originally published on The Conversation. Read the original article.

Go native: why we need ‘wildlife allotments’ to bring species back to the ‘burbs


Lizzy Lowe, University of Auckland and Margaret Stanley, University of Auckland

As urban populations around the globe skyrocket and the demand for housing grows, space is increasingly at a premium in cities. Unfortunately, despite some notable efforts to include green space in cities, native wildlife is not often a priority for urban planners, despite research showing the benefits it brings to both people and ecosystems.

It may seem that bringing biodiversity back into cities would require large areas of land set aside for habitat restoration. But it is possible to use relatively small spaces such as transport corridors, verges and the edges of sporting grounds. Think of it as “land sharing” rather than “land sparing”“.

The idea of transforming public areas in cities into green space is not a new one. Allotment vegetable gardens, which have long been a staple of British suburban life, are enjoying a revival, as are community gardens in Australia.

These gardens are obviously great for sustainable food production and community engagement. But we think similar efforts should be directed towards creating green spaces filled with native vegetation, so that local wildlife might thrive too.

Benefits for biodiversity

Cities can be hostile environments for wildlife, and although some rare species are still present in some cities, the destruction of habitats and growth of built-up areas has led to many localised extinctions. Often, species are left clinging on in particular reserves or habitat remnants. “Green corridors” through the built environment can link these habitat fragments together and help stop urban species from being marooned in small patches – and this is where native gardens can help.

Cities are often built in fertile areas on coasts, and because of their fertility are often home to large numbers of species, which means that planting native vegetation in public spaces can potentially help a wide range of different species.

A study in Melbourne found that native vegetation in urban green space is essential for conservation of native pollinators, as introduced plants only benefit introduced bees. But with the right habitat, even small mammals such as bandicoots can survive in urban areas.

Benefits for people

Native green space in cities can also be used to educate communities about their wildlife. Community gardens can be a very effective way to bring people together and create a sense of identity and cohesion within a community.

Native landscaping in playgrounds.
Simon Pawley, Sustainable Outdoors

Many people in cities have little or no contact with nature, and this “extinction of experience” can make them feel apathetic about conservation. Green space lets city dwellers connect with nature, and if these spaces contain native rather than introduced plants, they have the added benefit of familiarising people with their native flora, creating a stronger sense of cultural identity.

Where to share

There are many places in urban areas that can be tinkered with to encourage native species, with little or no disruption to their intended use. Picture the typical Australian park, for example: large expanses of grass and some isolated gum trees. Biodiverse systems are more complex, featuring tall trees, smaller ones, shrubs, herbs and grasses, which together create diverse habitat for a range of species. So by building native garden beds around single trees, at the park’s edges, or within designated areas (even among playgrounds!), we can gain complex layers of habitats for our native animals without losing too much picnic space.

We think of verges as places to park our cars or wheelie bins, but these grass borders are another underused area where we could plant native gardens. This not only improves the aesthetics of the streetscape but also reduces water use and the need to mow.

Verge gardens.
Simon Pawley, Sustainable Outdoors

Australia is a sporting nation and our sports grounds are cherished features of the urban landscape, yet there are plenty of opportunities here for native vegetation. The average golf course, for instance, only uses two-thirds of its area for actual golf (unless you’re a very bad shot). The out-of-bounds areas nestled between the fairways offer plenty of space for native biodiversity. Likewise, the boundaries of sporting ovals are ideal locations for native vegetation borders.

Even infrastructure corridors such as train lines, electricity corridors, and the edges of highways have the potential to contribute to the functioning of local ecosystems.

Making it happen

As the existence of community gardens and Landcare groups shows, there is already a drive within local communities to make these ideas a reality. In fact, some groups of “guerrilla gardeners” are so passionate about urban greening that they dedicate their own time and resources towards creating green public space, often without permission.

But urban gardening doesn’t need to be illegal. Many councils in Australia have policies that encourage the planting of native plants in private gardens, with some even offering rebates for native landscaping projects.

Ultimately we need to both share and spare urban landscapes. By conserving habitat fragments and planting native gardens to connect these patches, we can bring native plants and animals back into our cities.

The Conversation

Lizzy Lowe, Postdoctoral fellow, University of Auckland and Margaret Stanley, Senior Lecturer in Ecology, University of Auckland

This article was originally published on The Conversation. Read the original article.