We asked landholders how they feel about biodiversity offsets — and the NSW government has a lot to learn


Shutterstock

Roel Plant, University of Technology Sydney and Laure-Elise Ruoso, University of Technology SydneyWhen land is cleared to make room for urban growth, infrastructure, mining, and so on, developers are often required to “offset” their environmental damage by improving biodiversity elsewhere. This could mean, for example, planting trees along a river, or building shelters for animals that lost their habitats.

In New South Wales, one mechanism to fulfil this requirement is the Biodiversity Offsets Scheme, and a NSW parliamentary inquiry into this scheme is currently underway. The inquiry will look into the scheme’s administration, transparency and oversight, and will investigate the ability for private landowners to engage in it.

This is where our research comes in. We interviewed landholders in Greater Metropolitan Sydney during 2019 and 2020 to find out if they can — and want to — participate in biodiversity offsets.

Our findings suggest the NSW government would be wise to open up its offset scheme to make it more equitable, diverse and socially acceptable.

Recent controversies

Australia is considered an international forerunner when it comes to biodiversity offsetting, with all Australian states and territories having some form in place (complemented by federal provisions).

But over the years, biodiversity offset schemes have been marred with controversy, particularly recently.

In April, The Guardian Australia revealed a single company had made more than A$40 million by buying land and then selling offsets on that land to the state and federal governments. The new inquiry is a direct response to this news report.

How landholders come into it

Landholders are essential to making biodiversity offsets successful. They play a pivotal role in how offsetting functions on the ground, and in safeguarding its outcomes.

For example, landholder work could involve removing stock, weed control, pest fauna management, fencing off the site or building nest boxes for birds whose trees were cut down.

To get involved in biodiversity offsetting in NSW, landholders must first enter an agreement with the government to enhance and maintain the biodiversity values of their land, in perpetuity.

They often generate a one-off profit when they enter the agreement, and receive yearly payments from the government to manage their land. These payments are funded by, for instance, developers and mining companies, who have been required under law to offset their developments.




Read more:
Artificial refuges are a popular stopgap for habitat destruction, but the science isn’t up to scratch


But while it’s been shown biodiversity offsets readily meet developers’ needs, the diverse perspectives of landholders remain poorly understood.

This knowledge gap is what inspired us to undertake research with landholders in Greater Sydney. This included conducting interviews with landholders and land managers, both participants and non-participants in the scheme.

Can landholders participate?

Four factors determined whether landholders participated in the scheme: experience, financial and staff resources, access to information and technical support, and property size.

Several participants had a good understanding of the scheme because of prior experience or involvement. Some had access to financial and staff resources (such as lawyers and property managers), while others were given information and technical support.

Having support like this gave them confidence to enter into an agreement and manage the land appropriately. One landholder told us:

I think I knew enough people who’d done it to know that they’d got through all of that [management of the land] without too much concern.

In contrast, landholders unable to participate generally didn’t have experience, resources, support or large properties. They often relied on online information and had a poor understanding of the scheme. They had many concerns, especially financial. One barrier they identified, for example, is the cost of the initial ecological assessment of the land.

A non-participant said:

We don’t want to outline money for something that we don’t really understand or know anything about and might not happen.

Do landholders want to participate?

A variety of ethical, financial, technical and governance-related factors influenced a landholders’ willingness to participate in offsets. Some don’t consider nature as something that can be substituted, and fundamentally disagreed with the very principles of offsets:

We shouldn’t be clearing [t]here and then growing stuff here. We just shouldn’t be clearing there.

Others consider the rules of the scheme not stringent enough to achieve positive ecological outcomes. Some have reservations about their technical ability to do the conservation work, and question the likelihood of “nature complying” with stated ecological outcomes.

Some landholders seek compensation only for their conservation actions — in other words, making a profit isn’t their goal. For others, the prospect of a profit is a determining factor, with some hesitant to participate because it would take away from potentially more lucrative property development options:

I suspect there’ll be rezoning of land and all sorts of things, so if we do [offsetting] we’re going to lose that potential.

And some landholders perceive participation, in perpetuity, interferes with their right to sell their land. They see the scheme as potentially diminishing the land value, or putting unnecessary burden on the next landowner.

Building artificial refuges like nest boxes is a popular offsetting project.
Shutterstock

What needs to change?

These findings tell us two things about the current scheme:

  1. financial and information barriers create unequal opportunities across landholders
  2. the scheme doesn’t cater to diverse conservation perspectives.

The NSW government should loosen up the narrow neo-liberal market principles underpinning the scheme and open it up to a wider range of landholders. As an immediate first step, the government could introduce a more equitable model for sharing the costs of the initial ecological assessment.

It could also open the scheme to a wider range of conservation perspectives.

Offsetting is meant to be used as a last resort, according to globally accepted standards for development projects.




Read more:
Can we really restore or protect natural habitats to ‘offset’ those we destroy?


If developers and the government clearly demonstrate habitat destruction is completely necessary and offsetting really is a last resort, then we expect broader acceptance among landholders. Further research is required to learn how the government could achieve this.

Such reforms would give the scheme a stronger social license to operate and ensure it meets its policy objectives better.

Importantly, opening up the scheme would make it more transparent, so that future excessive profit seeking, with questionable conservation outcomes, can be prevented.The Conversation

Roel Plant, Adjunct Professor, University of Technology Sydney and Laure-Elise Ruoso, Senior Research Consultant, University of Technology Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Repeating mistakes: why the plan to protect the world’s wildlife falls short


The forty-spotted pardalote is one of Australia’s rarest birds.
Shutterstock

Michelle Lim, Macquarie UniversityIt’s no secret the world’s wildlife is in dire straits. New data shows a heatwave in the Pacific Northwest killed more than 1 billion sea creatures in June, while Australia’s devastating bushfires of 2019-2020 killed or displaced 3 billion animals. Indeed, 1 million species face extinction worldwide.

These numbers are overwhelming, but a serious global commitment can help reverse current tragic rates of biodiversity loss.

This week the UN’s Convention on Biological Diversity released a draft of its newest ten-year global plan. Often considered to be the Paris Agreement of biodiversity, the new plan aims to galvanise planetary scale action to achieve a world “living in harmony with nature” by 2050.

But if the plan goes ahead in its current form, it will fall short in safeguarding the wonder of our natural world. This is primarily because it doesn’t legally bind nations to it, risking the same mistakes made by the last ten-year plan, which didn’t stop biodiversity decline.

A lack of binding obligations

The Convention on Biological Diversity is a significant global agreement and almost all countries are parties to it. This includes Australia, which holds the unwanted record for the greatest number of mammal extinctions since European colonisation.

However, the convention is plagued by the lack of binding obligations. Self-reporting to the convention secretariat is the only thing the convention makes countries do under international law.

All other, otherwise sensible, provisions of the convention are limited by a series of get-out-of-jail clauses. Countries are only required to implement provisions “subject to national legislation” or “as far as possible and as appropriate”.

The convention has used non-binding targets since 2000 in its attempt to address global biodiversity loss. But this has not worked.

Kangaroo in burnt bushland
More than 3 billion animals were killed or displaced as a result of the 2019-2020 bushfires.
Shutterstock

The ten-year term of the previous targets, the Aichi Targets, came to an end in 2020, and included halving habitat loss and preventing extinction. But these, alongside most other Aichi targets, were not met.

In the new draft targets, extinction is no longer specifically named — perhaps relegated to the too hard basket. Pollution appears again in the new targets, and now includes a specific mention of eliminating plastic pollution.

Is this really a Paris-style agreement?

I wish. Calling the plan a Paris-style agreement suggests it has legal weight, when it doesn’t.

The fundamental difference between the biodiversity plan and the Paris Agreement is that binding commitments are a key component of the Paris Agreement. This is because the Paris Agreement is the successor of the legally binding Kyoto Protocol.

The final Paris Agreement legally compels countries to state how much they will reduce their emissions by. Nations are then expected to commit to increasingly ambitious reductions every five years.




Read more:
Raze paradise to put in a biofuel crop? No, there are far better ways to tackle climate change


If they don’t fulfil these commitments, countries could be in breach of international law. This risks damage to countries’ reputation and international standing.

The door remains open for some form of binding commitment to emerge from the biodiversity convention. But negotiations to date have included almost no mention of this being a potential outcome.

Bleached coral
Ecosystems humans rely on are in peril, such as the Great Barrier Reef which was recently recommended to be placed on the world heritage ‘in danger’ list.
Shutterstock

So what else needs to change?

Alongside binding agreements, there are many other aspects of the convention’s plan that must change. Here are three:

First, we need truly transformative measures to tackle the underlying economic and social causes of biodiversity loss.

The plan’s first eight targets are directed at minimising the threats to biodiversity, such as the harvesting and trade of wild species, area-based conservation, climate change and pollution.

While this is important, the plan also needs to call out and tackle dominant worldviews which equate continuous economic growth with human well-being. The first eight targets cannot realistically be met unless we address the economic causes driving these threats: materialism, unsustainable production and over-consumption.




Read more:
‘Revolutionary change’ needed to stop unprecedented global extinction crisis


Second, the plan needs to put Indigenous peoples’ knowledge, science, governance, rights and voices front and centre.

An abundance of evidence shows lands managed by Indigenous and local communities have significantly better biodiversity outcomes. But biodiversity on Indigenous lands is decreasing and with it the knowledge for continued sustainable management of these ecosystems.

Indigenous peoples and local communities have “observer status” within the convention’s discussions, but references to Indigenous “knowledges” and “participation” in the draft plan don’t go much further than in the Aichi Targets.

A mother orangutan carrying its baby
Actions in one part of the globe can have significant impacts to biodiversity in other parts.
Shutterstock

Third, there must be cross-scale collaborations as global economic, social and environmental systems are connected like never before.

The unprecedented movement of people and goods and the exchange of money, information and resources means actions in one part of the globe can have significant biodiversity impacts in faraway lands. The draft framework does not sufficiently appreciate this.

For example, global demand for palm oil contributes to deforestation of orangutan habitat in Borneo. At the same time, consumer awareness and social media campaigns in countries far from palm plantations enable distant people to help make a positive difference.

The road to Kunming

The next round of preliminary negotiations of the draft framework will take place virtually from August 23 to September 3 2021. And it’s likely final in-person negotiations in Kunming, China will be postponed until 2022.

It’s not all bad news, there is still much to commend in the convention’s current draft plan.

For example, the plan facilitates connections with other global processes, such as the UN’s Sustainable Development Goals. It recognises the contributions of biodiversity to, for instance, nutrition and food security, echoing Sustainable Development Goal 2 of “zero hunger”.

The plan also embraces more inclusive language, such as a shift from saying “ecosystem services” to “Nature’s Contribution to People” when discussing nature’s multiple values.




Read more:
‘Existential threat to our survival’: see the 19 Australian ecosystems already collapsing


But if non-binding targets didn’t work in the past, then why does the convention think this time will be any different?

A further set of unmet biodiversity goals and targets in 2030 is an unacceptable scenario. At the same time, there’s no point aiming at targets that merely maintain the status quo.

We can change the current path of mass extinction. This requires urgent, concerted and transformative action towards a thriving planet for people and nature.The Conversation

Michelle Lim, Senior Lecturer, Macquarie Law School, Macquarie University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Worried about Earth’s future? Well, the outlook is worse than even scientists can grasp



Daniel Mariuz/AAP

Corey J. A. Bradshaw, Flinders University; Daniel T. Blumstein, University of California, Los Angeles, and Paul Ehrlich, Stanford University

Anyone with even a passing interest in the global environment knows all is not well. But just how bad is the situation? Our new paper shows the outlook for life on Earth is more dire than is generally understood.

The research published today reviews more than 150 studies to produce a stark summary of the state of the natural world. We outline the likely future trends in biodiversity decline, mass extinction, climate disruption and planetary toxification. We clarify the gravity of the human predicament and provide a timely snapshot of the crises that must be addressed now.

The problems, all tied to human consumption and population growth, will almost certainly worsen over coming decades. The damage will be felt for centuries and threatens the survival of all species, including our own.

Our paper was authored by 17 leading scientists, including those from Flinders University, Stanford University and the University of California, Los Angeles. Our message might not be popular, and indeed is frightening. But scientists must be candid and accurate if humanity is to understand the enormity of the challenges we face.

Girl in breathing mask attached ot plant in container
Humanity must come to terms with the future we and future generations face.
Shutterstock

Getting to grips with the problem

First, we reviewed the extent to which experts grasp the scale of the threats to the biosphere and its lifeforms, including humanity. Alarmingly, the research shows future environmental conditions will be far more dangerous than experts currently believe.

This is largely because academics tend to specialise in one discipline, which means they’re in many cases unfamiliar with the complex system in which planetary-scale problems — and their potential solutions — exist.

What’s more, positive change can be impeded by governments rejecting or ignoring scientific advice, and ignorance of human behaviour by both technical experts and policymakers.

More broadly, the human optimism bias – thinking bad things are more likely to befall others than yourself – means many people underestimate the environmental crisis.

Numbers don’t lie

Our research also reviewed the current state of the global environment. While the problems are too numerous to cover in full here, they include:

  • a halving of vegetation biomass since the agricultural revolution around 11,000 years ago. Overall, humans have altered almost two-thirds of Earth’s land surface

  • About 1,300 documented species extinctions over the past 500 years, with many more unrecorded. More broadly, population sizes of animal species have declined by more than two-thirds over the last 50 years, suggesting more extinctions are imminent




Read more:
What is a ‘mass extinction’ and are we in one now?


  • about one million plant and animal species globally threatened with extinction. The combined mass of wild mammals today is less than one-quarter the mass before humans started colonising the planet. Insects are also disappearing rapidly in many regions

  • 85% of the global wetland area lost in 300 years, and more than 65% of the oceans compromised to some extent by humans

  • a halving of live coral cover on reefs in less than 200 years and a decrease in seagrass extent by 10% per decade over the last century. About 40% of kelp forests have declined in abundance, and the number of large predatory fishes is fewer than 30% of that a century ago.

State of the Earth's environment
Major environmental-change categories expressed as a percentage relative to intact baseline. Red indicates percentage of category damaged, lost or otherwise affected; blue indicates percentage intact, remaining or unaffected.
Frontiers in Conservation Science

A bad situation only getting worse

The human population has reached 7.8 billion – double what it was in 1970 – and is set to reach about 10 billion by 2050. More people equals more food insecurity, soil degradation, plastic pollution and biodiversity loss.

High population densities make pandemics more likely. They also drive overcrowding, unemployment, housing shortages and deteriorating infrastructure, and can spark conflicts leading to insurrections, terrorism, and war.




Read more:
Climate explained: why we need to focus on increased consumption as much as population growth


Essentially, humans have created an ecological Ponzi scheme. Consumption, as a percentage of Earth’s capacity to regenerate itself, has grown from 73% in 1960 to more than 170% today.

High-consuming countries like Australia, Canada and the US use multiple units of fossil-fuel energy to produce one energy unit of food. Energy consumption will therefore increase in the near future, especially as the global middle class grows.

Then there’s climate change. Humanity has already exceeded global warming of 1°C this century, and will almost assuredly exceed 1.5 °C between 2030 and 2052. Even if all nations party to the Paris Agreement ratify their commitments, warming would still reach between 2.6°C and 3.1°C by 2100.

people walking on a crowded street
The human population is set to reach 10 billion by 2050.
Shutterstock

The danger of political impotence

Our paper found global policymaking falls far short of addressing these existential threats. Securing Earth’s future requires prudent, long-term decisions. However this is impeded by short-term interests, and an economic system that concentrates wealth among a few individuals.

Right-wing populist leaders with anti-environment agendas are on the rise, and in many countries, environmental protest groups have been labelled “terrorists”. Environmentalism has become weaponised as a political ideology, rather than properly viewed as a universal mode of self-preservation.

Financed disinformation campaigns against climate action and forest protection, for example, protect short-term profits and claim meaningful environmental action is too costly – while ignoring the broader cost of not acting. By and large, it appears unlikely business investments will shift at sufficient scale to avoid environmental catastrophe.

Changing course

Fundamental change is required to avoid this ghastly future. Specifically, we and many others suggest:

  • abolishing the goal of perpetual economic growth

  • revealing the true cost of products and activities by forcing those who damage the environment to pay for its restoration, such as through carbon pricing

  • rapidly eliminating fossil fuels

  • regulating markets by curtailing monopolisation and limiting undue corporate influence on policy

  • reigning in corporate lobbying of political representatives

  • educating and empowering women across the globe, including giving them control over family planning.

A coal plant
The true cost of environmental damage should be borne by those responsible.
Shutterstock

Don’t look away

Many organisations and individuals are devoted to achieving these aims. However their messages have not sufficiently penetrated the policy, economic, political and academic realms to make much difference.

Failing to acknowledge the magnitude and gravity of problems facing humanity is not just naïve, it’s dangerous. And science has a big role to play here.

Scientists must not sugarcoat the overwhelming challenges ahead. Instead, they should tell it like it is. Anything else is at best misleading, and at worst potentially lethal for the human enterprise.




Read more:
Mass extinctions and climate change: why the speed of rising greenhouse gases matters


The Conversation


Corey J. A. Bradshaw, Matthew Flinders Professor of Global Ecology and Models Theme Leader for the ARC Centre of Excellence for Australian Biodiversity and Heritage, Flinders University; Daniel T. Blumstein, Professor in the Department of Ecology and Evolutionary Biology and the Institute of the Environment and Sustainability, University of California, Los Angeles, and Paul Ehrlich, President, Center for Conservation Biology, Bing Professor of Population Studies, Stanford University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Tiny treetop flowers foster incredible beetle biodiversity



Hundreds of beetle species seem to be specialists that feed only from small white flowers on trees.
Susan Kirmse, CC BY-ND

Caroline S. Chaboo, University of Nebraska-Lincoln

The Research Brief is a short take on interesting academic work.

The big idea

Biologists have long known that rainforest treetops support a huge number of beetle species, but why these canopies are so rich in beetle diversity has remained a mystery. New research by my colleague Susan Kirmse and me shows that flowering trees play a critical role in maintaining this diversity, and that beetles may be among the most diverse pollinators in the animal kingdom.

We carried out a one-year study in a remote part of the Amazon rainforest in Venezuela. We used a specially built crane to collect a total of 6,698 adult beetles representing 859 species. These were gathered from 45 individual trees of 23 different tree species.

We were surprised to discover that the majority of these beetles – 647, or 75.3% of species found – were living on flowering trees. In fact, 527 beetle species in 41 families were associated exclusively with flowers. Interestingly, the majority of these species – almost 60% – were exclusively found on trees that produce lots of small white flowers.

Overall, this discovery shows that flowering trees are likely among the most important drivers for maintaining the high diversity of beetles in rainforests. But this relationship goes both ways. Our study also suggests that beetles may be among the most underappreciated pollinators in tropical forests.

A tall metal structure emerging from the forest canopy in Venezuela.
Using a specialized crane, the team was able to collect beetles from the very top of the forest canopy.
Susan Kirmse, CC BY-ND

Why it matters

Tropical rainforests are the very heart of Earth’s biodiversity. They harbor about 65% to 75% of all terrestrial species, including the most tree species and the most insects.

After finding such a tight relationship between beetles and flowering trees, we wondered: How many beetle species could be involved in pollination in the Amazon? Our study found an average of 26.35 unique beetle species for every species of tree. With an estimated 16,000 Amazonian tree species, this suggests that there might be more species of flower-visiting beetles than any other insects on Earth, potentially surpassing by far the 20,000 species of bees and the 19,000 species of butterflies.

Our study shows that flowering tree species play an important role as diversity hotspots in tropical rainforest canopies. For policymakers and biologists hoping to preserve or restore rainforests, promoting the cultivation of trees and other plants – especially those with lots of small white flowers that beetles love – could help to maintain species-rich communities. Flowers are a very important resource, providing food and shelter for thousands of insects in addition to beetles. Thus, preserving plant diversity or selecting many different indigenous tree species for reforestation can enhance the diversity of insects.

An image of a iridescent green-blue beetle.
Beetles like the Griburius auricapillus are just some of the hundreds of species that can be found in treetops.
Susan Kirmse, CC BY-ND

What still isn’t known

Our research was the first to describe this tight relationship between beetles and rainforest trees, especially with trees that produce thousands of small, simple flowers. But how this association came to be is still unclear.

Many of the beetle species were found only on trees with this particular type of flower. The trees get an obvious benefit: pollination. But what specifically these trees offer to the beetles requires further study. The simpler flowers are easier for beetles to access, but is the appeal food, like petals, pollen or nectar? Or maybe a home to find mates or lay eggs for the young to grow?

[You’re smart and curious about the world. So are The Conversation’s authors and editors. You can get our highlights each weekend.]

What’s next

To fight the worldwide rapid declines in insect diversity, researchers and conservationists must understand the ecological connections between insects and their food plants. Long-term studies, particularly in research plots like the one we used in Venezuela, allow researchers to collect layers of information that help unravel the complexity of diversity.

Yet such sites rely on political interest and stability. Political instability in Venezuela is preventing our fieldwork from continuing at the Venezuela plot.

While we can’t return to our study site in Venezuela, it is clear that researchers must work together to understand the mysteries of life on Earth. But biologists are racing the clock as large rainforests are destroyed forever.The Conversation

Caroline S. Chaboo, Adjunct Professor in Insect Systematics, University of Nebraska-Lincoln

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Humans are encroaching on Antarctica’s last wild places, threatening its fragile biodiversity



SL Chown, CC BY-NC

Rachel Leihy, Monash University and Steven Chown, Monash University

Since Western explorers discovered Antarctica 200 years ago, human activity has been increasing. Now, more than 30 countries operate scientific stations in Antarctica, more than 50,000 tourists visit each year, and new infrastructure continues to be developed to meet this rising demand.

Determining if our activities have compromised Antarctica’s wilderness has, however, remained difficult.

Our study, published today in Nature, seeks to change that. Using a new “ecological informatics” approach, we’ve drawn together every available recorded visit by humans to the continent, over its 200 year history.

We found human activity across Antarctica has been extensive, especially in the ice-free and coastal areas, but that’s where most biodiversity is found. This means wilderness areas – parts of the continent largely untouched by human activity – do not capture many of the continent’s important biodiversity sites.

Historical and contemporary human activity on Deception Island.
SL Chown

One of the world’s largest intact wildernesses

So just how large is the Antarctic wilderness? For the first time, our study calculated this area and how much biodiversity it captures. And, like all good questions, the answer is “that depends”.

If we think of Antarctica in the same way as every other continent, then the whole of Antarctica is a wilderness. It has no farms, no cities, no suburbs, no malls, no factories. And for a continent so large, it has very few people.

Antarctica’s wilderness should be held to a higher standard.
SL Chown

But Antarctica is too different to compare to other continents – it should be held to a higher standard. And so we define “wilderness” as the areas that aren’t highly impacted by people. This would exclude, for example, tourist areas and scientific stations. And under this definition, the wilderness area is still large.

It’s about 13,598,148 square kilometres, or more than 99% of the continent. Only the wilderness in the vast forested areas of the far Northern Hemisphere is larger. Roughly, this area is nearly twice the size of Australia.




Read more:
Marine life found in ancient Antarctica ice helps solve a carbon dioxide puzzle from the ice age


On the other hand, the inviolate areas (places free from human interference) that the Antarctic Treaty Parties are obliged to identify and protect are dwindling rapidly.

Our analyses suggest less than 32% of the continent includes large, unvisited areas. And even that’s an overestimate. Not all visits have been recorded, and several new traverses – crossing large tracts of unvisited areas – are being planned.

Human activity has been extensive across Antarctica, but large areas with no visitation record might still exist across central parts of the continent.
Leihy et al. 2020 Nature

Wilderness areas have poor biodiversity value

If so much of the continent remains “wild”, how much of Antarctica’s biodiversity lives within these areas?

Surprisingly few sites considered really important for Antarctic biodiversity are represented in the “un-impacted” wilderness area.

For example, only 16% of the continent’s Important Bird Areas (areas identified internationally as critical for bird conservation) are located in wilderness areas. And only 25% of protected areas established for their species or ecosystem value, and less than 7% of sites with recorded species, are in wilderness areas.

This outcome is surprising because wilderness areas elsewhere, like the Amazon rainforest, are typically valued as crucial habitat for biodiversity.

Ice-free areas are critical habitat for Antarctic biodiversity, like Adélie penguins, and frequently visited by people as well.
SL Chown

Inviolate areas have seemingly even less biodiversity value. This is because people have mostly had to visit Antarctic sites to collect species data.

In the future, remote sensing technologies might allow us to investigate and monitor pristine areas without setting foot in them. But for now, most of our knowledge of Antarctic species comes from places that have been impacted to some extent by people.

How does human activity threaten Antarctic biodiversity?

Antarctica’s remaining wilderness areas need urgent protection from increasing human activity.

Even passing human disturbance can impact the biodiversity and wilderness value of sites. For example, sensitive vegetation and soil communities can take years to recover from trampling.

Increasing movement around the continent also increases the risk people will transfer species between isolated regions, or introduce new alien species to Antarctica.

Expanding the existing network of Antarctic protected areas can secure remaining wilderness areas into the future.
SL Chown

So how can we protect it?

Protecting the Antarctic wilderness could be achieved by expanding the existing Antarctic Specially Protected Areas network to include more wilderness and inviolate areas where policymakers would limit human activity.

When planning how we’ll use Antarctica in the future, we could also consider the trade off between the benefits of science and tourism activities, and the value of retaining pristine wilderness and inviolate areas.




Read more:
Microscopic animals are busy distributing microplastics throughout the world’s soil


This could be done explicitly through the environmental impact assessments required for activities in the region. Currently, impacts on the wilderness value of sites are rarely considered.

We have an opportunity in Antarctica to protect some of the world’s most intact and undisturbed environments, and prevent further erosion of Antarctica’s remarkable wilderness value.The Conversation

Ross Sea Region, Antarctica. Few sites considered really important for Antarctic biodiversity are represented in the wilderness area.
SL Chown

Rachel Leihy, PhD candidate, Monash University and Steven Chown, Professor of Biological Sciences, Monash University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Intensive farming is eating up the Australian continent – but there’s another way



Sue McIntyre, Author provided

Sue McIntyre, Australian National University

Last week we learned woody vegetation in New South Wales is being cleared at more than double the rate of the previous decade – and agriculture was responsible for more than half the destruction.

Farming now covers 58% of Australia, or 385 million hectares, and accounts for 59% of water extracted.

It’s painfully clear nature is buckling under the weight of farming’s demands. In the past decade, the federal government has listed ten ecological communities as endangered, or critically endangered, as a result of farming development and practices.

So how can we accommodate the needs of both farming and nature? Research shows us how – but it means accepting land as a finite resource, and operating within its limits. In doing so, farmers will also reap benefits.

Grassy eucalypt woodlands used for cattle farming in subtropical Queensland.
Tara Martin. Author provided.

Healthy grazing landscapes

In the 1990s, I worked as a research ecologist in the cattle country of sub-tropical Queensland. The prevailing culture valued agricultural development over conservation. Yet many of these producers lived on viable farms that supported a wealth of native plants and animals.

They made a living from the native grassy eucalypt woodlands, an ecosystem that extends from Cape York to Tasmania. In these healthy landscapes, vigorous pastures of tall perennial grasses protected the soil, enriched it with carbon and fed the cattle.




Read more:
IPCC’s land report shows the problem with farming based around oil, not soil


NSW and Victoria have similar eucalypt grassy vegetation, but farming here has taken a very different path.

Fertilised legumes and grasses grown for livestock fodder have replaced hundreds of native grassland plants. Over time, native trees and shrubs stopped regenerating and remaining trees became unhealthy, destroying wildlife habitat. The transformation was hastened by aerial applications of fertiliser and herbicide.

By 2006, 4.5 million hectares of box-gum grassy woodland – or 90% – in temperate Australia had been destroyed.

Aerial delivery of fertiliser, seed and herbicide transformed grassy woodlands in NSW.
F. G. Swain. Author provided.

A template for sustainability

Back in Queensland in the 1990s, my colleagues and I devised a template for sustainable land use. Funded by the livestock industry and a now-defunct federal corporation, we worked with producers and government agencies to find the right balance between farm production and conserving natural resources.

Our research concluded that for farming to be sustainable, intensive land uses must be limited. Such intensive uses include crops and non-native pastures. They are “high input”, typically requiring fertilisers, herbicides and pesticides, and some form of cultivation. They return greater yields but kill native plants, and are prone to soil and nutrient runoff into waterways.

But our template was not adopted as conventional farming practice. In the past 20 years, Australia’s cropping area has increased by 18,200 square kilometres.

By 2019, 38,000 square kilometres of poplar box grassy woodland in Australia had been cleared – more than half the size of Tasmania. The ecosystem was listed as endangered in 2019. Until that point, it had been considered invasive native scrub in NSW – exempting it from clearing regulations – and was systematically cleared for agriculture in Queensland.

Farmers should conserve sufficient areas of landscape to support native plants and animals.
Sue McIntyre, Author provided

Regenerating the land

Hearteningly, our research was recently revived in a multidisciplinary study of regenerative grazing on the grassy woodlands of NSW. The template was used to assess the ecological condition of participating farms.

The study examined differences in profitability between graziers who had adopted regenerative techniques such as low-input pasture management, and all other sheep, sheep-beef and mixed cropping-grazing farmers in their region.




Read more:
Three ways farms of the future can feed the planet and heal it too


It found regenerative grazing was often more profitable than other types of farming, especially in dry years. Regenerative farmers also experienced significantly higher than average well-being compared with other NSW farmers.

So what does our template involve? First, it identifies four types of land use relevant to farmed grassy woodland regions.

Second, it specifies the proportion of land that should be allocated to each use, in order to achieve landscape health (see pie chart below). The proportions can be applied to single farm, or entire districts or regions.

How to sustain production, natural resources and native flora and fauna on a landscape or farm.
Sue McIntyre

Intensive land use involves activities that replace nearly all native species. If these activities occupy more than 30% of the landscape, there’s insufficient habitat to maintain many native species, especially plants.

At least 10% of land must be devoted to nature conservation. The remaining 60% of the land should involve low-intensity activity such as grazed native pasture and timber production. If managed well, these land uses can support human livelihoods and a diversity of native species.

Within that split of land use, total native woodland should be no less than 30%. This guarantees connected habitats for native plants and animals, enabling movement and breeding opportunities.

Retaining grassy woodland ensures habitat for native animals.
Duncan McCaskill/Flickr

Respect the land’s limits

Australians ask a lot of our land. It must make space for our houses, businesses, and roads. It should support all species to prevent extinctions. And it must produce our food and fibre.

Global population growth demands a rapid rise in food production. But relying on intensive agriculture to achieve this is unsustainable. Aside from damaging the land, it increases greenhouse gas emissions though mechanisation, fertilisation, chemical use and tree clearing.




Read more:
Australian farmers are adapting to climate change


To meet the challenges of the future we must ensure farmed landscapes retain their ecological functions. In particular, maintaining biodiversity is key to climate adaptation. And as many of Australia’s plants and animals march towards extinction, the need to reverse biodiversity loss has never been greater.

Farmers can be profitable while maintaining and improving the ecological health of their land. It’s time to look harder at farming models that respect the limits of nature, and recognise that less can be more.The Conversation

Sue McIntyre, Honorary Professor, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

There are 10 catastrophic threats facing humans right now, and coronavirus is only one of them


Arnagretta Hunter, Australian National University and John Hewson, Crawford School of Public Policy, Australian National University

Four months in, this year has already been a remarkable showcase for existential and catastrophic risk. A severe drought, devastating bushfires, hazardous smoke, towns running dry – these events all demonstrate the consequences of human-induced climate change.

While the above may seem like isolated threats, they are parts of a larger puzzle of which the pieces are all interconnected. A report titled Surviving and Thriving in the 21st Century, published today by the Commission for the Human Future, has isolated ten potentially catastrophic threats to human survival.

Not prioritised over one another, these risks are:

  1. decline of natural resources, particularly water
  2. collapse of ecosystems and loss of biodiversity
  3. human population growth beyond Earth’s carrying capacity
  4. global warming and human-induced climate change
  5. chemical pollution of the Earth system, including the atmosphere and oceans
  6. rising food insecurity and failing nutritional quality
  7. nuclear weapons and other weapons of mass destruction
  8. pandemics of new and untreatable disease
  9. the advent of powerful, uncontrolled new technology
  10. national and global failure to understand and act preventatively on these risks.

The start of ongoing discussions

The Commission for the Human Future formed last year, following earlier discussions within emeritus faculty at the Australian National University about the major risks faced by humanity, how they should be approached and how they might be solved. We hosted our first round-table discussion last month, bringing together more than 40 academics, thinkers and policy leaders.

The commission’s report states our species’ ability to cause mass harm to itself has been accelerating since the mid-20th century. Global trends in demographics, information, politics, warfare, climate, environmental damage and technology have culminated in an entirely new level of risk.

The risks emerging now are varied, global and complex. Each one poses a “significant” risk to human civilisation, a “catastrophic risk”, or could actually extinguish the human species and is therefore an “existential risk”.

The risks are interconnected. They originate from the same basic causes and must be solved in ways that make no individual threat worse. This means many existing systems we take for granted, including our economic, food, energy, production and waste, community life and governance systems – along with our relationship with the Earth’s natural systems – must undergo searching examination and reform.

COVID-19: a lesson in interconnection

It’s tempting to examine these threats individually, and yet with the coronavirus crisis we see their interconnection.

The response to the coronavirus has had implications for climate change with carbon pollution reduction, increased discussion about artificial intelligence and use of data (including facial recognition), and changes to the landscape of global security particularly in the face of massive economic transition.

It’s not possible to “solve” COVID-19 without affecting other risks in some way.

Shared future, shared approach

The commission’s report does not aim to solve each risk, but rather to outline current thinking and identify unifying themes. Understanding science, evidence and analysis will be key to adequately addressing the threats and finding solutions. An evidence-based approach to policy has been needed for many years. Under-appreciating science and evidence leads to unmitigated risks, as we have seen with climate change.

The human future involves us all. Shaping it requires a collaborative, inclusive and diverse discussion. We should heed advice from political and social scientists on how to engage all people in this conversation.




Read more:
From the bushfires to coronavirus, our old ‘normal’ is gone forever. So what’s next?


Imagination, creativity and new narratives will be needed for challenges that test our civil society and humanity. The bushfire smoke over the summer was unprecedented, and COVID-19 is a new virus.

If our policymakers and government had spent more time using the available climate science to understand and then imagine the potential risks of the 2019-20 summer, we would have recognised the potential for a catastrophic season and would likely have been able to prepare better. Unprecedented events are not always unexpected.

Prepare for the long road

The short-termism of our political process needs to be circumvented. We must consider how our actions today will resonate for generations to come.

The commission’s report highlights the failure of governments to address these threats and particularly notes the short-term thinking that has increasingly dominated Australian and global politics. This has seriously undermined our potential to decrease risks such as climate change.




Read more:
Listen to your people Scott Morrison: the bushfires demand a climate policy reboot


The shift from short to longer term thinking can began at home and in our daily lives. We should make decisions today that acknowledge the future, and practise this not only in our own lives but also demand it of our policy makers.

We’re living in unprecedented times. The catastrophic and existential risks for humanity are serious and multifaceted. And this conversation is the most important one we have today.The Conversation

Arnagretta Hunter, ANU Human Futures Fellow 2020; Cardiologist and Physician., Australian National University and John Hewson, Professor and Chair, Tax and Transfer Policy Institute, Crawford School of Public Policy, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

B&Bs for birds and bees: transform your garden or balcony into a wildlife haven



Wes Mountain/The Conversation, CC BY-NC

Judith Friedlander, University of Technology Sydney

Just like humans, animals like living near coastal plains and waterways. In fact, cities such as Sydney and Melbourne are “biodiversity hotspots” – boasting fresh water, varied topographies and relatively rich soil to sustain and nourish life.

Recent research showed urban areas can support a greater range of animals and insects than some bushland and rural habitat, if we revegetate with biodiversity in mind.




Read more:
How you can help – not harm – wild animals recovering from bushfires


Urban regeneration is especially important now, amid unfathomable estimates that more than one billion animals were killed in the recent bushfires. Even before the fires, we were in the middle of a mass extinction event in Australia and around the world.

Losing animals, especially pollinators such as bees, has huge implications for biodiversity and food supplies.

My team and I are creating a B&B Highway – a series of nest boxes, artificial hollows and pollinating plants – in Sydney and coastal urban areas of New South Wales. These essentially act as “bed and breakfasts” where creatures such as birds, bees, butterflies and bats can rest and recharge. Everyday Australians can also build a B&B in their own backyards or on balconies.

City living for climate refugees

I spoke to Charles Sturt University ecologist Dr Watson about the importance of protecting animals such as pollinators during the climate crisis. He said:

The current drought has devastated inland areas – anything that can move has cleared out, with many birds and other mobile animals retreating to the wetter, more temperate forests to the south and east.

So, when considering the wider impacts of these fires […] we need to include these climate refugees in our thinking.

Native birds like the white-winged triller have been spotted in urban areas.
Shutterstock

Many woodland birds such as honeyeaters and parrots have moved in droves to cities, including Sydney, over the last few years because of droughts and climate change, attracted to the rich variety of berries, fruits and seeds.

I also spoke to BirdLife Australia’s Holly Parsons, who said last year’s Aussie Backyard Bird Count recorded other inland birds – such as the white-winged triller, the crimson chat, pied honeyeater, rainforest pigeons and doves – outside their usual range, attracted to the richer food variety in coastal cities.




Read more:
To save these threatened seahorses, we built them 5-star underwater hotels


What’s more, there have been increased sightings of powerful owls in Sydney and Melbourne, squirrel gliders in Albury, marbled geckos in Melbourne, and blue-tongue lizards in urban gardens across south-east Australia.

With so many birds and pollinators flocking to the cities, it’s important we support them with vegetated regions they can shelter in, such as through the B&B Highway we’re developing.

The B&B Highway: an urban restoration project

B&Bs on our “highway” are green sanctuaries, containing pollinating plants, water and shelters such as beehives and nesting boxes.




Read more:
Spiders are threatened by climate change – and even the biggest arachnophobes should be worried


We’re setting up B&Bs across New South Wales in schools and community centres, with plans to expand them in Melbourne, Brisbane and other major cities. In fact, by mid-2020, we’ll have 30 B&Bs located across five different Sydney municipalities, with more planned outside Sydney.

The NSW Department of Education is also developing an associated curriculum for primary and early high school students to engage them in ecosystem restoration.

One of the biodiversity havens the author developed to attract pollinators.
Author provided

If you have space in your garden, or even on a balcony, you can help too. Here’s how.

For birds

Find out what bird species live in your area and which are endangered using the Birdata directory. Then select plants native to your area – your local nursery can help you out here.

The type of plants will vary on whether your local birds feed on insects, nectar, seed, fruit or meat. Use the guide below.



Wes Mountain/The Conversation, CC BY-ND

More tips

Plant dense shrubs to allow smaller birds, such as the superb fairy-wren, to hide from predatory birds.

Order hollows and nesting boxes from La Trobe University to house birds, possums, gliders and bats.

Put out water for birds, insects and other animals. Bird baths should be elevated to enable escape from predators. Clean water stations and bowls regularly.

For native stingless bees

If you live on the eastern seaboard from Sydney northward, consider installing a native stingless beehive. They require very little maintenance, and no permits or special training.

These bees are perfect for garden pollination. Suppliers of bees and hives can be found online – sometimes you can even rescue an endangered hive.

A blue banded bee at a B&B rest stops in NSW.
Author provided

Also add bee-friendly plants – sting or no sting – to your garden, such as butterfly bush, bottlebrush, daisies, eucalyptus and angophora gum trees, grevillea, lavender, tea tree, honey myrtle and native rosemary.

For other insects

Wherever you are in Australia, you can buy or make your own insect hotel. There is no standard design, because our gardens host a wide range of native insects partial to different natural materials.

An insect hotel. Note the holes, at a variety of depths, drilled into the material.
Dietmar Rabich/Wikimedia Commons, CC BY-SA

Building your insect hotel

Use recycled materials (wooden pallets, small wooden box or frames) or natural materials (wood, bamboo, sticks, straw, stones and clay).

Fill gaps in the structure with smaller materials, such as clay and bamboo.

In the wood, drill holes ranging from three to ten millimetres wide for insects to live in. Vary hole depths for different insects – but don’t drill all the way through. They shouldn’t be deeper than 30 centimetres.

Give your hotel a roof so it stays dry, and don’t use toxic paints or varnishes.

Place your insect hotel in a sheltered spot, with the opening facing the sun in cool climates, and facing the morning sun in warmer climates.

Apartment-dwellers can place their insect hotels on a balcony near pot plants. North-facing is often best, but make sure it’s sheltered from harsh afternoon sunshine and heavy rain.The Conversation

Judith Friedlander, Post-graduate Researcher, Institute for Sustainable Futures, University of Technology Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Biodiversity and our brains: how ecology and mental health go together in our cities


Zoe Myers, University of Western Australia

Mental health in our cities is an increasingly urgent issue. Rates of disorders such as anxiety and depression are high. Urban design and planning can promote mental health by refocusing on spaces we use in our everyday lives in light of what research tells us about the benefits of exposure to nature and biodiversity.

Mental health issues have many causes. However, the changing and unpredictable elements of our physical and sensory environments have a profound impact on risk, experiences and recovery.




Read more:
Green for wellbeing – science tells us how to design urban spaces that heal us


Physical activity is still the mainstay of urban planning efforts to enable healthy behaviours. Mental well-being is then a hoped-for byproduct of opportunities for exercise and social interaction.

Neuroscientific research and tools now allow us to examine more deeply some of the ways in which individuals experience spaces and natural elements. This knowledge can greatly add to, and shift, the priorities and direction of urban design and planning.

What do we mean by ‘nature’?

A large body of research has compellingly shown that “nature” in its many forms and contexts can have direct benefits on mental health. Unfortunately, the extent and diversity of natural habitats in our cities are decreasing rapidly.

Too often “nature” – by way of green space and “POS” (Public Open Space) – is still seen as something separate from other parts of our urban neighbourhoods. Regeneration efforts often focus on large green corridors. But even small patches of genuinely biodiverse nature can re-invite and sustain multitudes of plant and animal species, as urban ecologists have shown.




Read more:
The small patch of bush over your back fence might be key to a species’ survival


An urban orchard in Perth.
Zoe Myers

It has also been widely demonstrated that nature does not effect us in uniform or universal ways. Sometimes it can be confronting or dangerous. That is particularly true if nature is isolated or uninviting, or has unwritten rules around who should be there or what activities are appropriate.

These factors complicate the desire for a “nature pill” to treat urban ills.

We need to be far more specific about what “nature” we are talking about in design and planning to assist with mental health.




Read more:
Increasing tree cover may be like a ‘superfood’ for community mental health


Why does biodiversity matter?

The exponential accessibility and affordability of lab and mobile technologies, such as fMRI and EEG measuring brain activity, have vastly widened the scope of studies of mental health and nature. Researchers are able, for example, to analyse responses to images of urban streetscapes versus forests. They can also track people’s perceptions “on the move”.

Research shows us biodiverse nature has particular positive benefit for mental well-being. Multi-sensory elements such as bird or frog sounds or wildflower smells have well-documented beneficial effects on mental restoration, calm and creativity.

Other senses – such as our sense of ourselves in space, our balance and equilibrium and temperature – can also contribute to us feeling restored by nature.

Acknowledging the crucial role all these senses play shifts the focus of urban design and planning from visual aesthetics and functional activity to how we experience natural spaces. This is particularly important in ensuring we create places for people of all abilities, mobilities and neurodiversities.

Neuroscientific research also shows an “enriched” environment – one with multiple diverse elements of interest – can prompt movement and engagement. This helps keep our brains cognitively healthy, and us happier.




Read more:
Reducing stress at work is a walk in the park


Beyond brain imaging of experiences in nature, there is growing and compelling evidence that contact with diverse microbiomes in the soil and air has a profound effect on depression and anxiety. Increasing our interaction with natural elements through touch – literally getting dirt under our nails – is both psychologically therapeutic and neurologically nourishing.

We also have increasing evidence that air, noise and soil pollution increase risk of mental health disorders in cities.

What does this mean for urban neighbourhoods?

These converging illustrations suggest biodiverse urban nature is a priority for promoting mental health. Our job as designers and planners is therefore to multiply opportunities to interact with these areas in tangible ways.

A residential street in Perth.
Zoe Myers

The concept of “biophilia” isn’t new. But a focus on incidental and authentic biodiversity helps us apply this very broad, at times unwieldy and non-contextual, concept to the local environment. This grounds efforts in real-time, achievable interventions.

Using novel technologies and interdisciplinary research expands our understanding of the ways our environments affect our mental well-being. This knowledge challenges the standardised planning of nature spaces and monocultured plantings in our cities. Neuroscience can therefore support urban designers and planners in allowing for more flexibility and authenticity of nature in urban areas.

Neuroscientific evidence of our sensory encounters with biodiverse nature points us towards the ultimate win-win (-win) for ecology, mental health and cities.


Dr Zoe Myers is the author of Wildness and Wellbeing: Nature, Neuroscience, and Urban Designn (Palgrave Macmillan, 2020).The Conversation

Zoe Myers, Lecturer, Australian Urban Design Research Centre, University of Western Australia

This article is republished from The Conversation under a Creative Commons license. Read the original article.

How many species on Earth? Why that’s a simple question but hard to answer



File 20190423 15194 1hz5xme.jpg?ixlib=rb 1.1
How many species still to name? That’s a good question.
Shutterstock/ju see

Tanya Latty, University of Sydney and Timothy Lee, University of Sydney

You’d think it would be a simple piece of biological accounting – how many distinct species make up life on Earth?

But the answer may come as a bit of a shock.

We simply don’t know.

We know more accurately the number of books in the US Library of Congress than we know even the order or magnitude – millions and billions and so on – of species living on our planet, wrote the Australian-born ecologist Robert May.




Read more:
Trapdoor spider species that stay local put themselves at risk


Current estimates for the number of species on Earth range between 5.3 million and 1 trillion.

That’s a massive degree of uncertainty. It’s like getting a bank statement that says you have between $5.30 and $1 million in your account.

So why don’t we know the answer to this fundamental question?

It’s hard to count life

Part of the problem is that we cannot simply count the number of life forms. Many live in inaccessible habitats (such as the deep sea), are too small to see, are hard to find, or live inside other living things.

New species are discovered on almost every dive, says David Attenborough.

So, instead of counting, scientists try to estimate the total number of species by looking for patterns in biodiversity.

In the early 1980s, the American entomologist Terry Erwin famously estimated the number of species on Earth by spraying pesticides into the canopy of tropical rainforest trees in Panama. At least 1,200 species of beetle fell to the ground, of which 163 lived only on a single tree species.

Assuming that each tree species had a similar number of beetles, and given that beetles make up about 40% of insects (the largest animal group), Erwin arrived at a controversial estimate of 30 million species on Earth.

Many scientists believe the 30 million number is far too high. Later estimates arrived at figures under 10 million.

In 2011, scientists used a technique based on patterns in the number of species at each level of biological classification to arrive at a much lower prediction of about 8.7 million species.

A jewel beetle, one of the more colourful species of insect alive today.
Shutterstock/Suttipon Thanarakpong

All creatures great and very, very small

But most estimates of global biodiversity overlook microorganisms such as bacteria because many of these organisms can only be identified to species level by sequencing their DNA.

As a result the true diversity of microorganisms may have been underestimated.

After compiling and analysing a database of DNA sequences from 5 million microbe species from 35,000 sites around the world, researchers concluded that there are a staggering 1 trillion species on Earth. That’s more species than the estimated number of stars in the Milky Way galaxy.

But, like previous estimates, this one relies on patterns in biodiversity, and not everyone agrees these should be applied to microorganisms.

It’s not just the microorganisms that have been overlooked in estimates of global biodiversity. We’ve also ignored the many life forms that live inside other life forms.

Most – and possibly all – insect species are the victim of at least one or more species of parasitic wasp. These lay their eggs in or on a host species (think of the movie Aliens, if the aliens had wings). Researchers suggest that the insect group containing wasps may be the largest group of animals on the planet.

A parasitic wasp finds a host for her young.

What do we mean by species?

A more fundamental problem with counting species comes down to a somewhat philosophical issue: biologists do not agree on what the term “species” actually means.

The well-known biological species concept states that two organisms belong to the same species if they can interbreed and produce fertile offspring. But since this concept relies on mating, it cannot be used to define species of asexual organisms such as many microorganisms as well as some reptiles, birds and fish.

It also ignores the fact that many living things we consider separate species can and do interbreed. For example, dogs, coyotes and wolves readily interbreed, yet are usually considered to be separate species.

Three six-to-seven-month-old hybrids between a male western gray wolf and a female western coyote resulting from artificial insemination.
PLOS One (L. David Mech et al), CC BY

Other popular species definitions rely on how similar individuals are to one another (if it looks like a duck, it is a duck), their shared evolutionary history, or their shared ecological requirements.

Yet none of these definitions are entirely satisfactory, and none work for all life forms.

There are at least 50 different definitions of a species to choose from. Whether or not a scientist chooses to designate a newly found life form as a new species or not can come down to their philosophical stance about the nature of a species.

The cost of species loss

Our ignorance about the true biodiversity on our planet has real consequence. Each species is a potential treasure trove of solutions to problems including cures for disease, inspirations for new technologies, sources of new materials and providers of key ecosystem services.

Yet we are living in an age of mass extinction with reports of catastrophic insect declines, wide-scale depopulation of our oceans and the loss of more than 50% of wildlife within the span of a single human life.

Our current rate of biodiversity loss means we are almost certainly losing species faster than we are naming them. We are effectively burning a library without knowing the names or the contents of the books we are losing.

So while our estimate of the number of species on the planet remains frustratingly imprecise, the one thing we do know is that we have probably named and described only a tiny percentage of living things.




Read more:
Squid team finds high species diversity off Kermadec Islands, part of stalled marine reserve proposal


New species are turning up all the time, at a rate of roughly 18,000 species each year. For example, researchers in Los Angeles found 30 new species of scuttle fly living in urban parks, while researchers also in the US discovered more than 1,400 new species of bacteria living in the belly buttons of university students.

Even if we take the more conservative estimate of 8.7 million species of life on Earth, then we have only described and named about 25% of life forms on the planet. If the 1 trillion figure is correct, then we have done an abysmally poor job, with 99.99% of species still awaiting description.

It’s clear our planet is absolutely teeming with life, even if we cannot yet put a number to the multitudes. The question now is how much of that awe-inspiring diversity we choose to save.The Conversation

Tanya Latty, Senior Lecturer, School of Life and Environmental Sciences, University of Sydney and Timothy Lee, Associate Lecturer in Life and Environmental Sciences, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.