There are 10 catastrophic threats facing humans right now, and coronavirus is only one of them


Arnagretta Hunter, Australian National University and John Hewson, Crawford School of Public Policy, Australian National University

Four months in, this year has already been a remarkable showcase for existential and catastrophic risk. A severe drought, devastating bushfires, hazardous smoke, towns running dry – these events all demonstrate the consequences of human-induced climate change.

While the above may seem like isolated threats, they are parts of a larger puzzle of which the pieces are all interconnected. A report titled Surviving and Thriving in the 21st Century, published today by the Commission for the Human Future, has isolated ten potentially catastrophic threats to human survival.

Not prioritised over one another, these risks are:

  1. decline of natural resources, particularly water
  2. collapse of ecosystems and loss of biodiversity
  3. human population growth beyond Earth’s carrying capacity
  4. global warming and human-induced climate change
  5. chemical pollution of the Earth system, including the atmosphere and oceans
  6. rising food insecurity and failing nutritional quality
  7. nuclear weapons and other weapons of mass destruction
  8. pandemics of new and untreatable disease
  9. the advent of powerful, uncontrolled new technology
  10. national and global failure to understand and act preventatively on these risks.

The start of ongoing discussions

The Commission for the Human Future formed last year, following earlier discussions within emeritus faculty at the Australian National University about the major risks faced by humanity, how they should be approached and how they might be solved. We hosted our first round-table discussion last month, bringing together more than 40 academics, thinkers and policy leaders.

The commission’s report states our species’ ability to cause mass harm to itself has been accelerating since the mid-20th century. Global trends in demographics, information, politics, warfare, climate, environmental damage and technology have culminated in an entirely new level of risk.

The risks emerging now are varied, global and complex. Each one poses a “significant” risk to human civilisation, a “catastrophic risk”, or could actually extinguish the human species and is therefore an “existential risk”.

The risks are interconnected. They originate from the same basic causes and must be solved in ways that make no individual threat worse. This means many existing systems we take for granted, including our economic, food, energy, production and waste, community life and governance systems – along with our relationship with the Earth’s natural systems – must undergo searching examination and reform.

COVID-19: a lesson in interconnection

It’s tempting to examine these threats individually, and yet with the coronavirus crisis we see their interconnection.

The response to the coronavirus has had implications for climate change with carbon pollution reduction, increased discussion about artificial intelligence and use of data (including facial recognition), and changes to the landscape of global security particularly in the face of massive economic transition.

It’s not possible to “solve” COVID-19 without affecting other risks in some way.

Shared future, shared approach

The commission’s report does not aim to solve each risk, but rather to outline current thinking and identify unifying themes. Understanding science, evidence and analysis will be key to adequately addressing the threats and finding solutions. An evidence-based approach to policy has been needed for many years. Under-appreciating science and evidence leads to unmitigated risks, as we have seen with climate change.

The human future involves us all. Shaping it requires a collaborative, inclusive and diverse discussion. We should heed advice from political and social scientists on how to engage all people in this conversation.




Read more:
From the bushfires to coronavirus, our old ‘normal’ is gone forever. So what’s next?


Imagination, creativity and new narratives will be needed for challenges that test our civil society and humanity. The bushfire smoke over the summer was unprecedented, and COVID-19 is a new virus.

If our policymakers and government had spent more time using the available climate science to understand and then imagine the potential risks of the 2019-20 summer, we would have recognised the potential for a catastrophic season and would likely have been able to prepare better. Unprecedented events are not always unexpected.

Prepare for the long road

The short-termism of our political process needs to be circumvented. We must consider how our actions today will resonate for generations to come.

The commission’s report highlights the failure of governments to address these threats and particularly notes the short-term thinking that has increasingly dominated Australian and global politics. This has seriously undermined our potential to decrease risks such as climate change.




Read more:
Listen to your people Scott Morrison: the bushfires demand a climate policy reboot


The shift from short to longer term thinking can began at home and in our daily lives. We should make decisions today that acknowledge the future, and practise this not only in our own lives but also demand it of our policy makers.

We’re living in unprecedented times. The catastrophic and existential risks for humanity are serious and multifaceted. And this conversation is the most important one we have today.The Conversation

Arnagretta Hunter, ANU Human Futures Fellow 2020; Cardiologist and Physician., Australian National University and John Hewson, Professor and Chair, Tax and Transfer Policy Institute, Crawford School of Public Policy, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

B&Bs for birds and bees: transform your garden or balcony into a wildlife haven



Wes Mountain/The Conversation, CC BY-NC

Judith Friedlander, University of Technology Sydney

Just like humans, animals like living near coastal plains and waterways. In fact, cities such as Sydney and Melbourne are “biodiversity hotspots” – boasting fresh water, varied topographies and relatively rich soil to sustain and nourish life.

Recent research showed urban areas can support a greater range of animals and insects than some bushland and rural habitat, if we revegetate with biodiversity in mind.




Read more:
How you can help – not harm – wild animals recovering from bushfires


Urban regeneration is especially important now, amid unfathomable estimates that more than one billion animals were killed in the recent bushfires. Even before the fires, we were in the middle of a mass extinction event in Australia and around the world.

Losing animals, especially pollinators such as bees, has huge implications for biodiversity and food supplies.

My team and I are creating a B&B Highway – a series of nest boxes, artificial hollows and pollinating plants – in Sydney and coastal urban areas of New South Wales. These essentially act as “bed and breakfasts” where creatures such as birds, bees, butterflies and bats can rest and recharge. Everyday Australians can also build a B&B in their own backyards or on balconies.

City living for climate refugees

I spoke to Charles Sturt University ecologist Dr Watson about the importance of protecting animals such as pollinators during the climate crisis. He said:

The current drought has devastated inland areas – anything that can move has cleared out, with many birds and other mobile animals retreating to the wetter, more temperate forests to the south and east.

So, when considering the wider impacts of these fires […] we need to include these climate refugees in our thinking.

Native birds like the white-winged triller have been spotted in urban areas.
Shutterstock

Many woodland birds such as honeyeaters and parrots have moved in droves to cities, including Sydney, over the last few years because of droughts and climate change, attracted to the rich variety of berries, fruits and seeds.

I also spoke to BirdLife Australia’s Holly Parsons, who said last year’s Aussie Backyard Bird Count recorded other inland birds – such as the white-winged triller, the crimson chat, pied honeyeater, rainforest pigeons and doves – outside their usual range, attracted to the richer food variety in coastal cities.




Read more:
To save these threatened seahorses, we built them 5-star underwater hotels


What’s more, there have been increased sightings of powerful owls in Sydney and Melbourne, squirrel gliders in Albury, marbled geckos in Melbourne, and blue-tongue lizards in urban gardens across south-east Australia.

With so many birds and pollinators flocking to the cities, it’s important we support them with vegetated regions they can shelter in, such as through the B&B Highway we’re developing.

The B&B Highway: an urban restoration project

B&Bs on our “highway” are green sanctuaries, containing pollinating plants, water and shelters such as beehives and nesting boxes.




Read more:
Spiders are threatened by climate change – and even the biggest arachnophobes should be worried


We’re setting up B&Bs across New South Wales in schools and community centres, with plans to expand them in Melbourne, Brisbane and other major cities. In fact, by mid-2020, we’ll have 30 B&Bs located across five different Sydney municipalities, with more planned outside Sydney.

The NSW Department of Education is also developing an associated curriculum for primary and early high school students to engage them in ecosystem restoration.

One of the biodiversity havens the author developed to attract pollinators.
Author provided

If you have space in your garden, or even on a balcony, you can help too. Here’s how.

For birds

Find out what bird species live in your area and which are endangered using the Birdata directory. Then select plants native to your area – your local nursery can help you out here.

The type of plants will vary on whether your local birds feed on insects, nectar, seed, fruit or meat. Use the guide below.



Wes Mountain/The Conversation, CC BY-ND

More tips

Plant dense shrubs to allow smaller birds, such as the superb fairy-wren, to hide from predatory birds.

Order hollows and nesting boxes from La Trobe University to house birds, possums, gliders and bats.

Put out water for birds, insects and other animals. Bird baths should be elevated to enable escape from predators. Clean water stations and bowls regularly.

For native stingless bees

If you live on the eastern seaboard from Sydney northward, consider installing a native stingless beehive. They require very little maintenance, and no permits or special training.

These bees are perfect for garden pollination. Suppliers of bees and hives can be found online – sometimes you can even rescue an endangered hive.

A blue banded bee at a B&B rest stops in NSW.
Author provided

Also add bee-friendly plants – sting or no sting – to your garden, such as butterfly bush, bottlebrush, daisies, eucalyptus and angophora gum trees, grevillea, lavender, tea tree, honey myrtle and native rosemary.

For other insects

Wherever you are in Australia, you can buy or make your own insect hotel. There is no standard design, because our gardens host a wide range of native insects partial to different natural materials.

An insect hotel. Note the holes, at a variety of depths, drilled into the material.
Dietmar Rabich/Wikimedia Commons, CC BY-SA

Building your insect hotel

Use recycled materials (wooden pallets, small wooden box or frames) or natural materials (wood, bamboo, sticks, straw, stones and clay).

Fill gaps in the structure with smaller materials, such as clay and bamboo.

In the wood, drill holes ranging from three to ten millimetres wide for insects to live in. Vary hole depths for different insects – but don’t drill all the way through. They shouldn’t be deeper than 30 centimetres.

Give your hotel a roof so it stays dry, and don’t use toxic paints or varnishes.

Place your insect hotel in a sheltered spot, with the opening facing the sun in cool climates, and facing the morning sun in warmer climates.

Apartment-dwellers can place their insect hotels on a balcony near pot plants. North-facing is often best, but make sure it’s sheltered from harsh afternoon sunshine and heavy rain.The Conversation

Judith Friedlander, Post-graduate Researcher, Institute for Sustainable Futures, University of Technology Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Biodiversity and our brains: how ecology and mental health go together in our cities


Zoe Myers, University of Western Australia

Mental health in our cities is an increasingly urgent issue. Rates of disorders such as anxiety and depression are high. Urban design and planning can promote mental health by refocusing on spaces we use in our everyday lives in light of what research tells us about the benefits of exposure to nature and biodiversity.

Mental health issues have many causes. However, the changing and unpredictable elements of our physical and sensory environments have a profound impact on risk, experiences and recovery.




Read more:
Green for wellbeing – science tells us how to design urban spaces that heal us


Physical activity is still the mainstay of urban planning efforts to enable healthy behaviours. Mental well-being is then a hoped-for byproduct of opportunities for exercise and social interaction.

Neuroscientific research and tools now allow us to examine more deeply some of the ways in which individuals experience spaces and natural elements. This knowledge can greatly add to, and shift, the priorities and direction of urban design and planning.

What do we mean by ‘nature’?

A large body of research has compellingly shown that “nature” in its many forms and contexts can have direct benefits on mental health. Unfortunately, the extent and diversity of natural habitats in our cities are decreasing rapidly.

Too often “nature” – by way of green space and “POS” (Public Open Space) – is still seen as something separate from other parts of our urban neighbourhoods. Regeneration efforts often focus on large green corridors. But even small patches of genuinely biodiverse nature can re-invite and sustain multitudes of plant and animal species, as urban ecologists have shown.




Read more:
The small patch of bush over your back fence might be key to a species’ survival


An urban orchard in Perth.
Zoe Myers

It has also been widely demonstrated that nature does not effect us in uniform or universal ways. Sometimes it can be confronting or dangerous. That is particularly true if nature is isolated or uninviting, or has unwritten rules around who should be there or what activities are appropriate.

These factors complicate the desire for a “nature pill” to treat urban ills.

We need to be far more specific about what “nature” we are talking about in design and planning to assist with mental health.




Read more:
Increasing tree cover may be like a ‘superfood’ for community mental health


Why does biodiversity matter?

The exponential accessibility and affordability of lab and mobile technologies, such as fMRI and EEG measuring brain activity, have vastly widened the scope of studies of mental health and nature. Researchers are able, for example, to analyse responses to images of urban streetscapes versus forests. They can also track people’s perceptions “on the move”.

Research shows us biodiverse nature has particular positive benefit for mental well-being. Multi-sensory elements such as bird or frog sounds or wildflower smells have well-documented beneficial effects on mental restoration, calm and creativity.

Other senses – such as our sense of ourselves in space, our balance and equilibrium and temperature – can also contribute to us feeling restored by nature.

Acknowledging the crucial role all these senses play shifts the focus of urban design and planning from visual aesthetics and functional activity to how we experience natural spaces. This is particularly important in ensuring we create places for people of all abilities, mobilities and neurodiversities.

Neuroscientific research also shows an “enriched” environment – one with multiple diverse elements of interest – can prompt movement and engagement. This helps keep our brains cognitively healthy, and us happier.




Read more:
Reducing stress at work is a walk in the park


Beyond brain imaging of experiences in nature, there is growing and compelling evidence that contact with diverse microbiomes in the soil and air has a profound effect on depression and anxiety. Increasing our interaction with natural elements through touch – literally getting dirt under our nails – is both psychologically therapeutic and neurologically nourishing.

We also have increasing evidence that air, noise and soil pollution increase risk of mental health disorders in cities.

What does this mean for urban neighbourhoods?

These converging illustrations suggest biodiverse urban nature is a priority for promoting mental health. Our job as designers and planners is therefore to multiply opportunities to interact with these areas in tangible ways.

A residential street in Perth.
Zoe Myers

The concept of “biophilia” isn’t new. But a focus on incidental and authentic biodiversity helps us apply this very broad, at times unwieldy and non-contextual, concept to the local environment. This grounds efforts in real-time, achievable interventions.

Using novel technologies and interdisciplinary research expands our understanding of the ways our environments affect our mental well-being. This knowledge challenges the standardised planning of nature spaces and monocultured plantings in our cities. Neuroscience can therefore support urban designers and planners in allowing for more flexibility and authenticity of nature in urban areas.

Neuroscientific evidence of our sensory encounters with biodiverse nature points us towards the ultimate win-win (-win) for ecology, mental health and cities.


Dr Zoe Myers is the author of Wildness and Wellbeing: Nature, Neuroscience, and Urban Designn (Palgrave Macmillan, 2020).The Conversation

Zoe Myers, Lecturer, Australian Urban Design Research Centre, University of Western Australia

This article is republished from The Conversation under a Creative Commons license. Read the original article.

How many species on Earth? Why that’s a simple question but hard to answer



File 20190423 15194 1hz5xme.jpg?ixlib=rb 1.1
How many species still to name? That’s a good question.
Shutterstock/ju see

Tanya Latty, University of Sydney and Timothy Lee, University of Sydney

You’d think it would be a simple piece of biological accounting – how many distinct species make up life on Earth?

But the answer may come as a bit of a shock.

We simply don’t know.

We know more accurately the number of books in the US Library of Congress than we know even the order or magnitude – millions and billions and so on – of species living on our planet, wrote the Australian-born ecologist Robert May.




Read more:
Trapdoor spider species that stay local put themselves at risk


Current estimates for the number of species on Earth range between 5.3 million and 1 trillion.

That’s a massive degree of uncertainty. It’s like getting a bank statement that says you have between $5.30 and $1 million in your account.

So why don’t we know the answer to this fundamental question?

It’s hard to count life

Part of the problem is that we cannot simply count the number of life forms. Many live in inaccessible habitats (such as the deep sea), are too small to see, are hard to find, or live inside other living things.

New species are discovered on almost every dive, says David Attenborough.

So, instead of counting, scientists try to estimate the total number of species by looking for patterns in biodiversity.

In the early 1980s, the American entomologist Terry Erwin famously estimated the number of species on Earth by spraying pesticides into the canopy of tropical rainforest trees in Panama. At least 1,200 species of beetle fell to the ground, of which 163 lived only on a single tree species.

Assuming that each tree species had a similar number of beetles, and given that beetles make up about 40% of insects (the largest animal group), Erwin arrived at a controversial estimate of 30 million species on Earth.

Many scientists believe the 30 million number is far too high. Later estimates arrived at figures under 10 million.

In 2011, scientists used a technique based on patterns in the number of species at each level of biological classification to arrive at a much lower prediction of about 8.7 million species.

A jewel beetle, one of the more colourful species of insect alive today.
Shutterstock/Suttipon Thanarakpong

All creatures great and very, very small

But most estimates of global biodiversity overlook microorganisms such as bacteria because many of these organisms can only be identified to species level by sequencing their DNA.

As a result the true diversity of microorganisms may have been underestimated.

After compiling and analysing a database of DNA sequences from 5 million microbe species from 35,000 sites around the world, researchers concluded that there are a staggering 1 trillion species on Earth. That’s more species than the estimated number of stars in the Milky Way galaxy.

But, like previous estimates, this one relies on patterns in biodiversity, and not everyone agrees these should be applied to microorganisms.

It’s not just the microorganisms that have been overlooked in estimates of global biodiversity. We’ve also ignored the many life forms that live inside other life forms.

Most – and possibly all – insect species are the victim of at least one or more species of parasitic wasp. These lay their eggs in or on a host species (think of the movie Aliens, if the aliens had wings). Researchers suggest that the insect group containing wasps may be the largest group of animals on the planet.

A parasitic wasp finds a host for her young.

What do we mean by species?

A more fundamental problem with counting species comes down to a somewhat philosophical issue: biologists do not agree on what the term “species” actually means.

The well-known biological species concept states that two organisms belong to the same species if they can interbreed and produce fertile offspring. But since this concept relies on mating, it cannot be used to define species of asexual organisms such as many microorganisms as well as some reptiles, birds and fish.

It also ignores the fact that many living things we consider separate species can and do interbreed. For example, dogs, coyotes and wolves readily interbreed, yet are usually considered to be separate species.

Three six-to-seven-month-old hybrids between a male western gray wolf and a female western coyote resulting from artificial insemination.
PLOS One (L. David Mech et al), CC BY

Other popular species definitions rely on how similar individuals are to one another (if it looks like a duck, it is a duck), their shared evolutionary history, or their shared ecological requirements.

Yet none of these definitions are entirely satisfactory, and none work for all life forms.

There are at least 50 different definitions of a species to choose from. Whether or not a scientist chooses to designate a newly found life form as a new species or not can come down to their philosophical stance about the nature of a species.

The cost of species loss

Our ignorance about the true biodiversity on our planet has real consequence. Each species is a potential treasure trove of solutions to problems including cures for disease, inspirations for new technologies, sources of new materials and providers of key ecosystem services.

Yet we are living in an age of mass extinction with reports of catastrophic insect declines, wide-scale depopulation of our oceans and the loss of more than 50% of wildlife within the span of a single human life.

Our current rate of biodiversity loss means we are almost certainly losing species faster than we are naming them. We are effectively burning a library without knowing the names or the contents of the books we are losing.

So while our estimate of the number of species on the planet remains frustratingly imprecise, the one thing we do know is that we have probably named and described only a tiny percentage of living things.




Read more:
Squid team finds high species diversity off Kermadec Islands, part of stalled marine reserve proposal


New species are turning up all the time, at a rate of roughly 18,000 species each year. For example, researchers in Los Angeles found 30 new species of scuttle fly living in urban parks, while researchers also in the US discovered more than 1,400 new species of bacteria living in the belly buttons of university students.

Even if we take the more conservative estimate of 8.7 million species of life on Earth, then we have only described and named about 25% of life forms on the planet. If the 1 trillion figure is correct, then we have done an abysmally poor job, with 99.99% of species still awaiting description.

It’s clear our planet is absolutely teeming with life, even if we cannot yet put a number to the multitudes. The question now is how much of that awe-inspiring diversity we choose to save.The Conversation

Tanya Latty, Senior Lecturer, School of Life and Environmental Sciences, University of Sydney and Timothy Lee, Associate Lecturer in Life and Environmental Sciences, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

What Australia can learn from Victoria’s shocking biodiversity record



File 20190320 93057 1dzh716.jpg?ixlib=rb 1.1
The endangered Brush-tailed Rock-wallaby is one of Victoria’s threatened species.
TARONGA ZOO/AAP

Geoffrey Wescott, Deakin University

Victoria is struggling with biodiversity conservation, according to a State of the Environment report tabled in parliament this week. While the scorecard is bleak – not one of the state’s key biodiversity indicators ranks as “good” – the report itself gives some hope.

For the first time the Commissioner for Environmental Sustainability, who prepared the report, offers proactive recommendations to the Victorian government for improving its performance, and has linked these goals to international sustainability targets. It’s an comprehensive and ambitious effort, and offers some good lessons to the rest of Australia.




Read more:
Australia among the world’s worst on biodiversity conservation


Alarming results

Victoria is the most densely populated state in Australia, the most cleared of native vegetation, and has the smallest percentage of public land.

The State of the Environment report uses a traffic light method to summarise the status, trend and data quality of 170 indicators spread over 12 scientific assessment areas (everything from general air and water quality to specific environments such as marine and coasts, plus issues such as waste and energy).

The indicators paint a picture that does not look good for biodiversity. None of these indicators are rated “good”; seven are “fair”, 21 “poor”, and seven “unknown”. In terms of trends, just one is improving, seven are stable, and 18 are deteriorating (nine are unclear).

National park declarations have slowed substantially on land in recent years – the first Andrews government (2014-18) was the first Victorian government in a quarter of a century not to increase national parks. Not a single additional marine area has been protected since 2002.

In contrast, conservation on private land is fair and trending upward according to the report card (probably largely due to the efforts of Trust for Nature). A substantial cash injection for the trust from Victoria’s rolling fund would likely see outsized results, although this is not a specific recommendation in the report.

The reports offers two critical recommendations for improving biodiversity:

  • increase private land conservation and invest in local government capability to enforce existing protective guidelines, and

  • appoint a Chief Biodiversity Scientist to counsel the Secretary and Environment Minister to improve the impact of biodiversity research.

Creating a Chief Biodiversity Scientist is a good starting point for an area that has received decreasing effort, over the past decade in particular. However, it must be only the first step in raising the lowly position of biodiversity conservation, not only in the environment department but across the entire government.

Beyond passive reporting

This years report moves beyond simply relaying data in two ways: first, with 20 specific recommendations to the government, and secondly by using the United Nation’s framework of environmental accounting to tie the report to the global Sustainable Development Goals.

The report claims this is the first attempt to apply the UN’s Sustainable Development Goals to a sub-national environmental report. Given the number of federated nations around the world (the United States, Brazil and Canada, for a start), putting the spotlight on state or provincial environmental responsibilities is a significant and laudable step.

In the more immediate future, the report gives the Victorian government 20 recommendations linked to the Sustainable Development Goals, across a range of categories: Traditional Owner leadership, climate change, air and water quality, land, forests, fire, marine and coastal environments, water resources, waste and resource recovery, energy, transport, and “megatrends”.

The 20 recommendations are solidly based on the findings across the 12 assessment areas. These show that only 11% of status indicators are “good”, whereas 32% are “poor”, with the trend demonstrating only 10% are improving, 30% stable and 30% deteriorating.




Read more:
Why biodiversity is key to our survival


While the State of the Environment report naturally focuses on Victoria, there are plenty of lessons and ideas here for the rest of the country.

Now the onus is firmly on the self-proclaimed “most progressive government in Australia” to act.The Conversation

Geoffrey Wescott, Honorary Research Fellow, School of Life and Environmental Sciences, Deakin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.