Most native bird species are losing their homes, even the ones you see every day



Eastern-yellow robin. Some 60 per cent of the native birds of south-east mainland Australia have lost more than half of their natural habitat.
Graham Winterflood/Wikimedia Commons

Jeremy Simmonds, The University of Queensland; Alvaro Salazar, The University of Queensland; James Watson, The University of Queensland, and Martine Maron, The University of Queensland

Across parts of Australia, vast areas of native vegetation have been cleared and replaced by our cities, farms and infrastructure. When native vegetation is removed, the habitat and resources that it provides for native wildlife are invariably lost.

Our environmental laws and most conservation efforts tend to focus on what this loss means for species that are threatened with extinction. This emphasis is understandable – the loss of the last individual of a species is profoundly sad and can be ecologically devastating.




Read more:
An end to endings: how to stop more Australian species going extinct


But what about the numerous other species also affected by habitat loss, that have not yet become rare enough to be listed as endangered? These animals and plants — variously described as “common” or of “least concern” — are having their habitat chipped away. This loss usually escapes our attention.

These common species have intrinsic ecological value. But they also provide important opportunities for people to connect with nature – experiences that are under threat.

A chain used for land clearing is dragged over a pile of burning wood at a Queensland property.
Dan Peled/AAP

The “loss index”: tracking the destruction

We developed a measure called the loss index to communicate how habitat loss affects multiple Australian bird species. Our measure showed that across Victoria, and into South Australia and New South Wales, more than 60% of 262 native birds have each lost more than half of their original natural habitat. The vast majority of these species are not formally recognised as being threatened with extinction.

It is a similar story in the Brigalow Belt of central New South Wales and Queensland. The picture is brighter in the northern savannas across the top of Australia, where large tracts of native vegetation remain – notwithstanding pervasive threats such as inappropriate fire regimes.




Read more:
Fixing Australia’s extinction crisis means thinking bigger than individual species


We also found that in some areas, such as Southeast Queensland and the Wet Tropics region of north Queensland, the removal of a single hectare of forest habitat can affect up to 180 different species. In other words, small amounts of loss can affect large numbers of (mostly common) species.

Our index allowed us to compare how different groups of birds are impacted by habitat loss. Australia’s iconic parrots have been hit hard by habitat loss, because many of these birds occur in the places where we live and grow our food. Birds of prey such as eagles and owls have, as a group, been less affected. This is because many of these birds occur widely across Australia’s less developed arid interior.

This map shows the number of bird species affected by habitat loss in any region. Grey zones indicate parts of Australia where habitat loss has not occurred. Blue zones have up to 90 species affected by habitat loss, yellow is up to 120 species affected, while the highest category, red, is up to 187 species affected.
Conservation Biology

Habitat loss means far fewer birds

Our study shows many species have lost lots of habitat in certain parts of Australia. We know habitat loss is a major driver of population declines and freefalling numbers of animals globally. A measure of vertebrate population trends — the Living Planet Index — reveals that populations of more than 4,000 vertebrate species around the world are on average less than half of what they were in 1970.

In Australia, the trend is no different. Populations of our threatened birds declined by an average of 52% between 1985 and 2015. Alarmingly, populations for many common Australian birds are also trending downwards, and habitat loss is a major cause. Along Australia’s heavily populated east coast, population declines have been noted for many common species including rainbow bee-eater, double-barred finch, and pale-headed rosella.

Decling common species – rainbow bee-eater (left); double-barred finch (top right); pale-headed rosella (bottom right)
Jim Bendon, G. Winterflood, Aviceda



Read more:
Cats are not scared off by dingoes. We must find another way to protect native animals


This is a major problem for ecosystem health. Common species tend to be more numerous and so perform many roles that we depend on. Our parrots, pigeons, honeyeaters, robins, and many others help pollinate flowers, spread seeds, and keep pest insects in check. In both Europe and Australia, declines in common species have been linked to a reduction in the provision of these vital ecosystem services.

Common species are also the ones that we most associate with. Because they are more abundant and familiar, these animals provide important opportunities for people to connect with nature. Think of the simple pleasure of seeing a colourful robin atop a rural fence post, or a vibrant parrot dashing above the treetops of a suburban creek. The decline of common species may contribute to diminished opportunities for us to interact with nature, leading to an “extinction of experience”, with associated negative implications for our health and well-being.

We mustn’t wait until it’s too late

Our study aims to put the spotlight on common species. They are crucially important, and yet the erosion of their habitat gets little focus. Conserving them now is sensible. Waiting until they have declined before we act will be costly.

These species need more formal recognition and protection in conservation and environmental regulation. For example, greater attention on common species, and the role they play in ecosystem health, should be given in the assessment of new infrastructure developments under Australia’s federal environment laws (formally known as the Environment Protection and Biodiversity Conservation Act 1999).

We should be acting now to conserve common species before they slide towards endangerment. Without dedicated attention, we risk these species declining before our eyes, without us even noticing.The Conversation

Jeremy Simmonds, Postdoctoral Research Fellow in Conservation Science, The University of Queensland; Alvaro Salazar, Postdoctoral Research Fellow, The University of Queensland; James Watson, Professor, The University of Queensland, and Martine Maron, ARC Future Fellow and Professor of Environmental Management, The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Hot as shell: birds in cooler climates lay darker eggs to keep their embryos warm


The colour and brightness of birds’ eggs plays a key role in keeping them at the right temperature.
Anne Kitzman / Shutterstock

Phill Cassey, University of Adelaide and Daniel Hanley, Long Island University Post

Birds lay eggs with a huge variety of colours and patterns, from immaculate white to a range of blue-greens and reddish browns.

The need to conceal eggs from predators is one factor that gives rise to all kinds of camouflaged and hard-to-spot appearances.

Yet our research, published today in Nature Ecology & Evolution, shows that climate is even more important.

Dark colours play a crucial role in regulating temperatures in many biological systems. This is particularly common for animals like reptiles, which rely on environmental sources of heat to keep themselves warm.




Read more:
Curious Kids: why do eggs have a yolk?


Darker colours absorb more heat from sunlight, and animals with these colours are more commonly found in colder climates with less sunlight. This broad pattern is known as Bogert’s rule.

Birds’ eggs are useful for studying this pattern because the developing embryo can only survive in a narrow range of temperatures. But eggs cannot regulate their own temperature and, in most cases, the parent does it by sitting atop the clutch of eggs.

In colder environments, where the risk of predators is lower and the risk of chilling in cold temperatures is greater, parents spend less time away from the nest.

We predicted that if eggshell colour does play an important role in regulating the temperature of the embryo, birds living in colder environments should have darker eggs.

The average colour of eggshells in different areas around the world.
Wisocki et al. 2019 ‘The global distribution of avian eggshell colours suggests a thermoregulatory benefit of darker pigmentation’, Nature Ecology & Evolution, Author provided

To test the prediction, we measured eggshell brightness and colour for 634 species of birds. That’s more than 5% of all bird species, representing 36 of the 40 large groups of species called orders.

We mapped these within each species’ breeding range and found that eggs in the coldest environments (those with the least sunlight) were significantly darker. This was true for all nest types.

We also conducted experiments using domestic chicken eggs to confirm that darker eggshells heated up more rapidly and maintained their incubation temperatures for longer than white eggshells.




Read more:
It isn’t easy being blue – the cost of colour in fairy wrens


Our results show that darker eggshells are found in places with less sunlight and lower temperatures, and that these darker colours may help keep the developing embryo warm.

How future climate change will affect eggshell appearance, as well as the timing of reproduction and incubation behaviour, will be an important and fruitful avenue for future research.The Conversation

Phill Cassey, Assoc Prof in Invasion Biogeography and Biosecurity, University of Adelaide and Daniel Hanley, Assistant Professor, Long Island University Post

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Animals are disappearing from forests, with grave consequences for the fight against climate breakdown – new research



A toucan eating a fruit in the tropical wetlands of the Pantanal, Brazil.
Uwe Bergwitz/Shutterstock

Charlie Gardner, University of Kent; Jake Bicknell, University of Kent; Matthew Struebig, University of Kent, and Zoe Davies, University of Kent

It’s tempting to think that our forests would be fine if we could simply stop trees being felled or burnt. But forests – particularly tropical ones – are more than just trees. They’re also the animals that skulk and swoop among them.

Worryingly, these furry and feathered companions are rapidly disappearing – and our new research indicates that this will have grave repercussions for the role forests play in combating climate breakdown.

Healthy tropical forests swarm with life. Beyond myriad invertebrates there are seed-eating rodents, a range of leaf eaters, birds of all kinds, and often primates. However, many forests have already lost most of their largest animals, mainly as a result of hunting to supply a growing bushmeat trade.

Hunting isn’t the only reason. Thanks to deforestation for farmland and logging, many forests today are highly fragmented. The small, unconnected patches that remain aren’t big enough to support populations of the largest species, which tend to need more space.

The disappearance of animals from otherwise intact habitats is known as defaunation, and it is leading to a growing number of empty forests not just in tropical countries, but around the world. The UK has already lost most of its largest species (think lynx, wolf, and wisent), while woodland bird numbers have declined by a quarter since 1970.




Read more:
Top five threats to UK’s wildlife (and what to do about them) – new report


The impacts of this defaunation have attracted the attention of the world’s conservation scientists, but studies to date have usually been carried out at single locations. Consequently, we lack a worldwide picture that takes into account different types of forest and the diversity of animals that are disappearing.

To fill this gap, we worked with William Baldwin-Cantello, chief adviser on forests at the World Wide Fund for Nature UK, to gather together all the existing research and perform a meta-analysis – an analysis of analyses – on the available data.

Forest flora need flourishing fauna

Our findings reveal a worrying trend. The loss of animals compromises the ability of forests to reproduce. This effect is particularly severe when primates and birds disappear, because of the key role they play in seed dispersal. Trees make fruit to entice animals to transport their seeds, because they are more likely to germinate and grow successfully if they fall further from their parent tree. So when fruit-eating animals disappear, fewer seeds are dispersed and the trees struggle to reproduce.

A black howler monkey eating a juicy cashew fruit.
akramer/Shutterstock

This animal absence will slowly change how forests look. Most tropical forests today are dominated by trees whose seeds are dispersed by animals. Over time, they are likely to be gradually replaced by trees that use the wind to reproduce. Naturally, these usually have small seeds, and therefore produce smaller trees that store less carbon for the same area of forest. As a result, forests will store less and less carbon, even if we completely halt deforestation.

This is particularly concerning because roughly 20% of the carbon dioxide we emit is absorbed by the world’s vegetation and soils, and half of this is due to tropical forests alone.

Rethinking forest health

Conserving forests is essential for the fight against climate breakdown – and, we do have a global tool at our disposal to help. Known as Reducing Emissions from Deforestation and forest Degradation, or REDD+ for short, it allows wealthy countries with large carbon footprints to pay poorer, tropical countries to protect their forests.

Of course, REDD+ is only an effective tool if the forests countries pay to protect continue to store the same amount of carbon. We usually monitor this by taking satellite images of the quantity of forest canopy remaining. But what satellite imagery can’t do is measure aspects of forest quality beneath the canopy.

Our research strongly suggests that one aspect of forest quality – defaunation – is a vital early warning sign of future losses in the carbon storing capacity of forests. In light of this, policies for managing forest carbon around the world may need a rethink.

We need to pay more attention to what’s going on beneath global forest canopies through research on the ground, though this will be difficult in remote areas. More importantly, we must make sure we’re doing all we can to conserve the full complement of animal species that live in our forests. For example, we need to heavily invest in conservation actions that help communities accustomed to hunting bushmeat to meet their dietary protein needs without harming wildlife. We must also enforce existing rules better, such as those that outlaw hunting within parks and reserves.

Preventing defaunation in forests won’t be easy. But given what we know about the critical role forest animals play, doing so will be essential if we hope to retain diverse and carbon-rich forests in the tropics and around the world. If the beauty and wonder of the forest’s animals wasn’t enough reason to protect them, we now have another: by conserving wildlife, we will be helping to save ourselves from the catastrophic effects of climate breakdown.


Click here to subscribe to our climate action newsletter. Climate change is inevitable. Our response to it isn’t.The Conversation

Charlie Gardner, Lecturer in Conservation Biology, University of Kent; Jake Bicknell, Lecturer in Conservation Biology, University of Kent; Matthew Struebig, Senior Lecturer in Biological Conservation, University of Kent, and Zoe Davies, Professor of Biodiversity Conservation, University of Kent

This article is republished from The Conversation under a Creative Commons license. Read the original article.

How barnacle geese adjust their migratory habits in the face of climate change



Shutterstock

Thomas Oudman, University of St Andrews

The climate is changing at an unprecedented rate, and so are the environments of many plant and animal species. Populations die out in places that become intolerable, and thrive in other places that have become more benign.

But for many species, population growth in new places does not keep up with the decline elsewhere. For some species, such as polar bears, such benign places do not even exist. And even if they do, species still face a significant problem: they need to find them.

This problem is perhaps more serious for migratory animals, which have to adjust to not one, but several changing environments that they visit throughout the year. Even after finding a new habitat one year, they must find it again the next, and every year after that. How on earth do these creatures know where to go?

This question is not trivial: many migratory populations are declining. What seems to be killing them is their inability to adjust to multiple changing habitats at once. The problem might be that it is hard for them to learn new migratory habits.

Geese lead the way

But a few migratory species are thriving. Among them are barnacle geese, a small-sized goose that winters in Europe and traditionally breeds on the Arctic tundras of Siberia, Svalbard and Greenland. So, how are they doing so well?

The barnacle goose faced extinction in the 1950s.
Shutterstock

We barely know the exact routes of many migratory species, let alone how these have changed over time. But here, barnacle geese are the exception. Ever since their near extinction in the 1950s, when fewer than 500 geese were left, scientists have been monitoring their numbers. The geese were observed in their wintering area at the Solway Firth, between Scotland and England, all along the Norwegian coast during spring migration and up to Svalbard.

Each spring from the 1970s onwards, researchers went to Helgeland on Norway’s west coast to observe the geese arriving from the UK to fill their bellies on grass. These fat reserves are essential to complete the second part of their journey north to Svalbard, where they breed.

In the early 1990s, bird researchers discovered a handful of barnacle geese in Vesterålen, 350km to the north-west of Helgeland, while they were counting pink-footed geese – another vulnerable goose population. Since then, the number of barnacle geese in Vesterålen in spring has been increasing steadily.

From the 2000s onwards, goose observers at the traditional feeding site in Helgeland started to see numbers go down. Currently, the majority of the whole population (now 40,000 birds strong) stops off in Vesterålen.

Rapid adjustments? Certainly. The number of geese in Vesterålen in spring has actually grown faster than can be explained by the birth rate alone, meaning that what we’re seeing is not just “the survival of the fittest”. In addition, many individual geese must have switched to feeding in Vesterålen later in life.

Barnacle geese calling.
Juha Saari/Xeno-Canto, CC BY-SA1.4 MB (download)

Along with counting geese, international research groups have been catching geese in the breeding areas on Svalbard since the 1960s, fitting juvenile geese with plastic leg rings with letter codes. This allowed goose observers along the Norwegian coast to actually know which bird they were looking at, and even how old it was.

Since 2000, these observers have gathered enough observations of ringed barnacle geese each year to allow proper calculations. This has enabled us to show that geese are indeed switching to Vesterålen in big numbers. In addition, the probability for individual geese to move to Vesterålen has been increasing, and young birds are far more likely to switch than older ones.

Adapting to climate change

So are these changes a response to climate change? We analysed the grass growth during the feeding period at both locations, which we could estimate from daily temperature and sunshine levels. The start of grass growth in spring has advanced more than three weeks since the 1970s, leading to a strong increase in grass availability during the goose staging period in spring at both locations. But availability is not all that counts.

Barnacle geese arrive in Norway at the end of April. In the 1970s, the snow usually had just melted at that time, and the first grass shoots were coming up. In recent years, the grass was already long when the geese arrived, and contained more cellulose. This is much more difficult for geese to digest than young grass, resulting in a lower rate of fat storage.

Vesterålen is further north, and spring starts much later than in Helgeland. This means that due to climate warming, the annual timing of grass growth in Vesterålen now is how it used to be in Helgeland. Fresh new grass now is just emerging in Vesterålen when the geese arrive, enabling the geese to gain weight fast. So yes, the switch makes sense.

Does that mean that the geese know that the new place is better? Not necessarily. Most of the switchers are young birds, which do not have much experience. Instead, we think that they follow experienced birds to Vesterålen, perhaps after they have arrived in Helgeland to find there is not enough food to go around. Geese operate in families, staying close to their long-term partners and relatives. They might exchange more information than we know.

It’s the group travelling that does the trick for geese, allowing them to profit from the discoveries of others. The question that remains is why other bird species have not evolved in the same way. Perhaps geese have always lived in a more dynamic environment than other migratory species.

Think of shorebirds, which have been dependent on the same shorelines and inter-tidal areas for thousands of years. For them, the current rate of climate change might be something they have not evolved to deal with. Perhaps we are creating a world in which all birds would be better off acting like geese.The Conversation

Thomas Oudman, Postdoctoral Researcher, School of Biology, University of St Andrews

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Cable ties probably won’t stop magpie attacks – here are a few things to try instead



Stylish? No. Effective? Probably not.
Tony Wills/Wikimedia Commons, CC BY

Bill Bateman, Curtin University

Every spring in Australia is heralded by reports of magpies swooping at people. While it is of little comfort to those at the receiving end of a surprise attack, such events are actually quite rare when one considers the number of magpies across Australia, and the fact that they love to share our urban habitat with us.

According to one estimate, fewer than 10% of magpies swoop, and even fewer of these do so consistently. It is almost always males that swoop, and they only do so when they have chicks in the nest. Once the chicks are out the males seem to calm down; presumably they perceive nest-bound chicks as most vulnerable.

Swooping behaviour also seems to vary across Australia – at least according to Magpie Alert!, a website on which the public can report magpie attacks. Many more swoops have been reported in the eastern states than in Western Australia, and fewest of all in Tasmania.




Read more:
Bird-brained and brilliant: Australia’s avians are smarter than you think


But regardless of their relative rarity, being the target of a swooping attack by a magpie can be frightening. It has resulted in injuries and, tragically this week, the death of a 76-year-old cyclist in Wollongong.

What can we do to avoid ending up on the receiving end? Is any of the advice meted out each year on avoiding attacks actually worthwhile, or backed by evidence? As with just about everything involving biology, the answer is “it depends”.

Some magpies never attack pedestrians but go for cyclists; others do the opposite. And some hold a deep animus against posties on bikes, and reserve their fury solely for them. Even more astonishingly, some magpies seem to really have it in for particular people, and will preferentially attack them.

Although Australian magpies are not related to true crows, they do share similar levels of intelligence. US researchers have shown that American crows recognise people who have trapped them to band them, give alarm calls when they next see them, and even pass on that information to untrapped birds who also sound the alarm when they see trappers.

It seems likely that Australian magpies do the same, effectively holding a grudge against particular people. Unfortunate posties, travelling the same route each day and meeting the same magpies, seem to end up on the naughty list through no fault of their own.

Cyclists do seem to invoke more extreme reactions than pedestrians, judging by the fact that magpies appear to pursue cyclists farther. It therefore stands to reason that the best response to a swooping attack while cycling would be to get off and push your bike.

You will of course be wearing a bike helmet, and as magpies swoop from behind, this will offer protection against its sharp beak.

Sadly it seems that the classic tactic of attaching cable ties to your helmet does little to deter a determined magpie, beyond the fact that some strategic placing can help keep them away from your ears. Ditto the idea of painting eyes on the back of your helmet or hat.

More reassuringly, however, magpies really only swoop in the vicinity of their nest, so once you have moved away you should be safe. If you become aware of swooping attacks in a certain area the best thing is to avoid it – even just crossing the road should be sufficient.

If you can’t do that, at least wear a hat and sunglasses; these will help reduce the chance of a determined magpie pecking a sensitive area. Turning to face magpies may also help – many birds do not appreciate being stared at, and as magpies prefer to swoop from behind, this may be a good tactic if you find yourself cornered in a park.

If you have magpies in your garden, perhaps the most appealing way of avoiding attacks is to become their best friend. Given that magpies have long memories, a few judicious offerings of mince or similar tidbits throughout the year can help you befriend them, making them much more amenable to your presence come spring.

But don’t overfeed them – it’s just a friendly bribe, not a full-blown dependency.




Read more:
Magpies can form friendships with people – here’s how


If all else fails, simply console yourself with the fact that swooping season only lasts a few weeks. For the rest of the year magpies are peaceful urban nighbours who delight us with their distinctive song.

Bear that in mind, and we can hopefully reach a détente with our feathered (and occasionally flustered) friends. In the meantime, if you are unlucky enough to be swooped, remember to help others avoid the same fate by posting the details to Magpie Alert!.The Conversation

Bill Bateman, Associate professor, Curtin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Buffet buddies: footage reveals that fierce leopard seals work together when king penguin is on the menu



A wild leopard seal on South Georgia.
James Robbins, Author provided

David Hocking, Monash University; Alistair Evans, Monash University, and James Robbins, Plymouth University

Some people don’t like sharing their food – we all have a friend who gets cranky when you steal a chip from their plate. For wild animals, this makes sense, because any food shared is energy lost that could otherwise have been used to pursue more food.

So it was a big surprise to discover wild leopard seals feeding alongside one another while eating king penguins at South Georgia, a remote island in the southern Atlantic Ocean. On top of this, they may have even been cooperating with each other to eat these enormous seabirds.

Location of the study.
James Robbins

We report this fascinating observation in a new study published today in the journal Polar Biology.

Can’t we just all get along?

Leopard seals have a ferocious reputation as one of the top predators in the Antarctic ecosystem. They are infamously the “principal enemy of the penguin”, as immortalised in the film Happy Feet.




Read more:
When mammals took to water they needed a few tricks to eat their underwater prey


But when they eat penguins, leopard seals are normally highly territorial, scaring off rivals by lunging at them with a fearsome set of teeth. Animal-mounted cameras have even revealed that leopard seals ambush each other to steal captured prey.

But that’s not what was seen when the film crew working on the Netflix documentary series Our Planet visited South Georgia. Instead, they were astonished to find wild leopard seals floating alongside one another dining together on a king penguin carcass, taking it in turns to tear off pieces of food.

Too costly to fight

Given how aggressive leopard seals normally are around food, why were these seals behaving so out of character?

Consider this: if you were at an all-you-can-eat buffet and a stranger sat at your table and began eating your food, would you chase them away or let them share with you, knowing you could easily get more afterwards?

When food is very abundant, it may well be cheaper to share than to fight. Penguin colonies offer a near-constant supply of potential prey, attracting scores of predators. In this case, up to 36 leopard seals were seen near the colony at the same time.

So if a seal paused feeding to scare or fight off a rival, there is a good chance a third seal would sneak in and steal the food. In this situation it makes more sense to focus on eating as much as possible, as fast as possible – tolerating some food theft if necessary so as to avoid wasting energy on fighting that would risk losing the prey altogether.

The seals didn’t get along perfectly all the time. We saw some aggression, but perhaps this is to be expected if they are just tolerating each other out of necessity.

Even in our observations, the seals didn’t always get along – note the prey item floating in the water where it could easily be stolen by a third seal.
Dion Poncet

Do leopard seals cooperate to eat large prey?

Another explanation for these unexpected observations is that leopard seals might be cooperating to make it easier to consume such large prey.

Unlike northern seals, leopard seals don’t have clawed paws to help them hold prey. Instead, they have paddle-like flippers with tiny claws, forcing them to vigorously thrash the prey from side to side in their teeth to tear it into pieces small enough to swallow. This energy-intensive eating style is even harder when the prey is large – like adult king penguins.

Unlike northern seals, leopard seals have a paddle-like flipper that lacks the large claws needed to hold and tear food.
James Robbins
Tools of the trade: Leopard seals use their strong front teeth to kill penguins, while the trident-shaped cheek teeth act as a sieve for trapping tiny krill.
David Hocking

Alternatively, if two animals hold the prey between them, one can act as an anchor while the other tears off a chunk of meat. This saves a lot of energy that would otherwise be wasted shaking the prey around.

Group feeding behaviours filmed using a drone, showing two leopard seals dining together on an adult king penguin.
Illustration by Kai Hagberg. Photos by Silverback Films.

This type of cooperative food processing is actually quite common among aquatic top predators, such as killer whales and crocodiles, that can’t easily hold onto food.

The unusual case of the sharing seal

This last possibility made us rethink the interpretation of a famous encounter between a wild leopard seal and National Geographic photographer Paul Nicklen. On entering the water, Nicklen was repeatedly approached by a seal that appeared to be trying to feed him a penguin in an act of unexpected altruism. But perhaps this was not a free gift, but an offer to cooperate.




Read more:
The birdlife of South Georgia is handed another chance


The latest discovery is a great example of how new technology can help researchers make close-hand observations of wild animals. By using a camera drone, the film-makers could fly above the animals without disturbing them, allowing them to observe behaviours that have so far gone unnoticed.

The remoteness of Antarctic ecosystems can make it hard to connect with the wildlife there, but these advances in technology are helping to provide new windows into this icy world. The Conversation

Wild leopard seal lunging at scavenging seabirds off Bird Island, South Georgia.
James Robbins

David Hocking, Postdoctoral fellow, Monash University; Alistair Evans, Associate Professor, Monash University, and James Robbins, Visiting researcher, Plymouth University

This article is republished from The Conversation under a Creative Commons license. Read the original article.