International Energy Agency warns against new fossil fuel projects. Guess what Australia did next?


Shutterstock

Samantha Hepburn, Deakin UniversityEven if every country meets its current climate targets, Earth’s temperature will still rise by a dangerous 2.1℃ this century, according to sobering findings from a new International Energy Agency report.

The IEA found the route to net-zero greenhouse gas emissions by 2050 was “narrow and extremely challenging”, and electricity grids in developed economies such as Australia must be zero emissions by 2053. The IEA was abundantly clear: no new fossil fuel projects should be approved.

The report couldn’t come at a worse time for the Morrison government. This week, it announced A$600 million for a major new gas-fired power plant at Kurri Kurri in New South Wales, claiming it was needed to shore up electricity supplies.

The IEA’s findings cast serious doubt on this decision, and put even more pressure on Australia ahead of crucial international climate talks in Glasgow in November. So let’s take a look at the report in more detail, and see how Australia measures up.

What the report said

The IEA report sets out a comprehensive roadmap to achieve net-zero emissions by 2050. The good news is this is still achievable. But it’ll take a lot money and enormous effort.

There must be what the report describes as a “total transformation of the energy systems that underpin our economies”. Put simply, the world’s energy economy must be grounded in solar and wind — not coal, gas and oil.

The report works from a basic principle: even if the climate pledges countries have made under the Paris agreement are fully achieved, there will still be 22 billion tonnes of global carbon dioxide emissions in 2050.

This is well short of net zero.

So the IEA set out more than 400 milestones to achieve the global energy transformation. And these absolutely must be complied with if we’re to stop catastrophic global warming and limit temperature rise to 1.5℃.

The milestones include:

Massive investment in electricity networks

Enormous amounts of money are needed to shift away from fossil fuels and meet the global electricity demand doubling over the next 30 years. Existing networks took 130 years to build — we need to build the same again in about one-sixth the time. This includes investing in hydrogen and bio-energy (energy made from organic material), which the report calls a “pillar of decarbonisation”.




Read more:
The 1.5℃ global warming limit is not impossible – but without political action it soon will be


Transport

Electric vehicles need to rapidly expand to 65% of the global fleet by 2030, and 100% by 2050. This will require an enormous increase in public electric vehicle charging units and hydrogen refuelling units. To facilitate this shift, petrol and diesel will be phased out. Many countries around the world, including the United Kingdom and Japan, have already introduced a ban on new fossil fuel cars by 2030.

Building and industry

We need to urgently retrofit homes and buildings to make them more energy efficient. Steel, cement and chemical industries, primary emitters, must shift to carbon capture and sequestration and hydrogen.

Electric vehicle
Petrol and diesel will need to be phased out by 2030, according to the International Energy Agency.
Shutterstock

But the biggest take-home message for Australia is there must be no new development in fossil fuel beyond 2021.

No new fossil fuel development

The report states:

Beyond projects already committed as of 2021, there are no new oil and gas fields approved for development in our pathway, and no new coal mines or mine extensions are required.

Global demand for oil peaked in 2019, and has declined since then, largely due to COVID-19 lockdowns. Under the roadmap, this decline will continue and reach 75% by 2050. Any growth in demand during this period will be met by growing emergent markets in renewables, green hydrogen and bio-energy.

And of course, the report states no new coal plants should be financially supported unless equipped with carbon capture and sequestration. Inefficient coal plants must be phased out by 2030.

Gas plant
The federal government just announced over a half billion dollars for a new gas-fired power plant in NSW.
Shutterstock

If the roadmap is followed, renewable energy will overtake coal by 2026, and oil and gas by 2030.

For this to happen, annual additions of 630 gigawatts of solar and 390 gigawatts of wind power will be required by 2030. This means the world needs to install the equivalent of “the world’s largest solar park roughly every day”, according to the report.

Australia, are you listening?

Australia’s gas-fired recovery plans are directly inconsistent with the IEA roadmap. The government has argued expanding fossil fuel supply is critical for energy security.

Not only did the federal government just announce over a half a billion dollars for a new gas-fired power plant in NSW, it’s also spending a further $173 million to develop the Beetaloo basin in the Northern Territory, another gas reserve.




Read more:
Paying Australia’s coal-fired power stations to stay open longer is bad for consumers and the planet


Experts, advisers and Energy Security Board chair Kerry Schott have all disagreed with these moves. They argue, in line with the IEA report, that cheaper, cleaner alternatives to gas generation, such as wind and solar, can easily provide the dispatchable power required.

The government’s stubborn fossil fuel funding will make it more difficult than it already is to stop global warming beyond 1.5℃.

Australia must immediately stop investing in new fossil fuel projects. While this may be a difficult transition to accept given the enormous scope of gas reserves in Australia, there’s no point spending vast amounts of money on new infrastructure to extract a resource that will be commercially unviable in a decade.

Australia is ignoring the economic and environmental imperatives of transitioning to a low carbon framework. This is reckless, and unfair to other countries. We have the resource capacity and economic strength to transition our energy sector, unlike many developing countries. But we choose not to.

A national embarrassment

John Kerry, the US special presidential envoy for climate, says the next round of international climate talks in Scotland is the “last best chance the world has” to avoid a climate crisis.

But Australia’s investment in new gas development stands in stark contrast to the increasingly ambitious energy commitments of other developed countries. We shouldn’t come empty-handed, with no new targets, to yet another international climate summit.




Read more:
Spot the difference: as world leaders rose to the occasion at the Biden climate summit, Morrison faltered


US President Joe Biden has vowed to cut greenhouse gas emissions by 50-52% compared with 2005 levels. He has banned new oil and gas leases on federal land, removed fossil fuel subsidies and plans to double wind capacity by 2030.

Likewise, the European Commission seeks to stop funding oil and gas projects. Denmark recently implemented a ban on future gas extraction in the North Sea. And Spain has done the same.

Australia is ignoring its global responsibilities. As a result, we’ll be hit hard by the so-called “Carbon Border Adjustment” policies from the US and European Union, which tax imported goods according to their carbon footprint.

Ultimately, our actions will leave us economically and environmentally isolated in a rapidly emerging new energy world order.




Read more:
The EU is considering carbon tariffs on Australian exports. Is that legal?


The Conversation


Samantha Hepburn, Director of the Centre for Energy and Natural Resources Law, Deakin Law School, Deakin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Government-owned firms like Snowy Hydro can do better than building $600 million gas plants


Arjuna Dibley, The University of MelbourneThe Morrison government today announced it’s building a new gas power plant in the Hunter Valley, committing up to A$600 million for the government-owned corporation Snowy Hydro to construct the project.

Critics argue the plant is inconsistent with the latest climate science. And a new report by the International Energy Agency has warned no new fossil fuel projects should be funded if we’re to avoid catastrophic climate change.

The move is also inconsistent with research showing government-owned companies can help drive clean energy innovation. Such companies are often branded as uncompetitive, stuck in the past and unable to innovate. But in fact, they’re sometimes better suited than private firms to take investment risks and test speculative technologies.

And if the investments are successful, taxpayers, the private sector and consumers share the benefits.

Wind farm
If government-owned firms led the way in clean energy technologies, society would benefit.
Shutterstock

Lead, not limit

Federal energy minister Angus Taylor announced the funding on Wednesday. He said the 660-megawatt open-cycle gas turbine at Kurri Kurri will “create jobs, keep energy prices low, keep the lights on and help reduce emissions”.

Experts insist the plan doesn’t stack up economically and may operate at less than 2% capacity.

But missing from the public debate is the question of how government-owned companies such as Snowy Hydro might be used to accelerate the clean energy transition.

Australian governments (of all persuasions) have not often used the companies they own to lead in clean energy innovation. Many, such as Hydro Tasmania, still rely on decades-old hydroelectric technologies. And others, such as Queensland’s Stanwell Corporation and Western Australia’s Synergy, rely heavily on older coal and gas assets.

Asking Snowy Hydro to build a gas-fired power plant is yet another example – but it needn’t be this way.




Read more:
A single mega-project exposes the Morrison government’s gas plan as staggering folly


gas plant
Snowy Hydro has been funded to build a $600 million gas plant, but it could do better.
Shutterstock

The burning question

Globally, more than 60% of electricity comes from wholly or partially state-owned companies. In Australia, despite the 20-year trend towards electricity privatisation, government-owned companies remain important power generators.

At the Commonwealth level, Snowy Hydro provides around 20% of capacity to New South Wales and Victoria. And most electricity in Queensland, Tasmania and Western Australia is generated by state government-owned businesses.

But political considerations mean government-owned electricity companies can struggle to navigate the clean energy path.

For example in April this year, the chief executive of Stanwell Corporation, Richard Van Breda, suggested the firm would mothball its coal-powered generators before the end of their technical life, because cheap renewables were driving down power prices.

Queensland’s Labor government was reportedly unhappy with the announcement, fearing voter backlash in coal regions. Breda has since stepped down and Stanwell is reportedly backtracking on its transition plans.

Such examples beg the question: can government-owned companies ever innovate on clean energy? A growing literature in economics, as well as several real-world examples, suggest that under the right conditions, the answer is yes.




Read more:
The 1.5℃ global warming limit is not impossible – but without political action it soon will be


desk showing Stanwell logo
State-owned Stanwell Corporation is reportedly back-tracking on plans to mothball its coal plants early.
Stanwell Corporation

Privatised is not always best

Economists have traditionally argued state-owned companies are not good innovators. As the argument goes, the absence of competitive market forces makes them less efficient than their private sector peers.

But recent research by academics and international policy institutions such as the OECD has shown government ownership in the electricity sector can be an asset, not a curse, for achieving technological change.

The reason runs contrary to orthodox economic thinking. While competition can lead to firm efficiency, some economists argue government-owned firms can take greater risks. Without the pressure for market-rate returns to shareholders, government enterprises may be freer to invest in more speculative technologies.

My ongoing research has shown the reality is even more complex. Whether state-owned electric companies can drive clean energy innovation depends a great deal on government interests and corporate governance rules.

For example, consider the New York Power Authority (NYPA) which, like Snowy Hydro, is wholly government owned.

New York Governor Andrew Cuomo has deliberately sought to use NYPA to decarbonise the state’s electricity grid. The government has managed the company in a way that enables it to take risks on new transmission and generation technologies that investor-owned peers cannot.

For instance, NYPA is investing in advanced sensors and computing systems so it can better manage distributed energy sources such as solar and wind. The technology will also simulate major catastrophic events, including those likely to ensue from climate change.

These investments are likely to contribute to greater grid stability and greater renewables use, benefiting not just NYPA but other electricity generators and ultimately, consumers.

Such innovation is nothing new. Also in the US, the state-owned Sacramento Municipal Utility District built one of the first utility-scale solar projects in the world in 1984.

Andrew Cuomo in front of flag
NY Governor Andrew Cuomo is using a state-owned company to aid the clean energy transition.
Mary Altaffer/AP

The way forward

More could be done to ensure Australian government-owned corporations are clean energy catalysts.

Clean energy technologies can struggle to bridge the gap from invention to widespread adoption. Public investment can bring down the price of such technologies or demonstrate their efficacy.

In this regard, government-owned companies could work with private technology firms to invest in technologies in the early stages of development, and which could have significant public benefits. For instance, in 2020, the Western Australian government-owned company Synergy sought to build a 100 megawatt battery with private sector partners.

But many problems facing state-owned companies are the result of ever-changing government policy priorities. The firms should be reformed so they are owned by government, but operated at arm’s length and with other partners. This might better enable clean energy investment without the politics.




Read more:
Australia’s states are forging ahead with ambitious emissions reductions. Imagine if they worked together


The Conversation


Arjuna Dibley, Visiting Researcher, Climate and Energy College, The University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Most people consider climate change a serious issue, but rank other problems as more important. That affects climate policy


Shutterstock/riekephotos

Sam Crawley, Te Herenga Waka — Victoria University of WellingtonStraight denial of climate change is now relatively rare. Most people believe it is happening and is a serious problem. But many rank other issues — healthcare and the economy — as more important.

This means people can’t be easily classified as either deniers or believers when it comes to climate change. In my research, I focused on understanding the complexity of climate opinion in light of the slow political response to climate change around the world.

I conducted an online survey in the UK and found 78% of respondents were extremely or fairly certain climate change is happening.

But when asked to rank eight issues (climate change, healthcare, education, crime, immigration, economy, terrorism and poverty) from most to least important to the country, 38% ranked climate change as least important, with a further 15% placing it seventh out of eight.

Recent pledges from a number of large countries to reach net zero in greenhouse gas emissions by 2050 have led Climate Action Tracker to project that limiting warming to 2℃ by 2100 may be possible.

Although this progress is heartening, it has taken many years to reach this point and the challenges in actually meeting these emission targets cannot be overstated.

Climate ranking in other countries

I found similar results in other countries. Based on a Eurobarometer survey of 27,901 European Union citizens, a majority of the populations in all EU member countries are concerned about climate change, but only 43% across the EU rank it in the top four most important issues for the world. There are some differences between countries — climate change tends to be ranked higher in Nordic countries and lower in Eastern Europe.

Fewer than 5% of 3,445 respondents in the 2017 New Zealand Election Study said the environment was the most important election issue and an even smaller number specifically mentioned climate change.




Read more:
NZ election 2020: survey shows voters are divided on climate policy and urgency of action


Why are some people more engaged with climate change than others? People’s worldview or ideology seem to be particularly important.

In many countries — including, as illustrated in my research, the UK and New Zealand — there are partisan and political divides in climate change with supporters of right-wing parties less likely to support climate change policies or to see it as an important issue.

People who support free-market economics, hold authoritarian attitudes or have exclusionary attitudes towards minorities are also less likely to engage with climate change.

Consequences for climate policy

In democracies, politicians often respond to public opinion; ignoring it risks being voted out at the next election. But the degree to which they do so depends on how important the issue is to the public relative to other issues.

If people are not thinking about an issue when they go to vote, politicians are less likely to give that issue much attention. As my research shows, people in most countries don’t give climate change a high importance ranking, and politicians are therefore not under enough public pressure to take the difficult steps required to combat climate change.

There are other reasons for the slow political response to climate change, besides the low importance of climate change among the public. Vested interests, such as fossil fuel companies, are undoubtedly involved in slowing the adoption of strong climate policies in many countries.




Read more:
Climate explained: Why are climate change skeptics often right-wing conservatives?


Although only a minority of the population, climate change deniers may also make some politicians hesitate to act. But, regardless of the influence of vested interests and deniers, it is difficult for politicians to act on climate change when the public believes other issues are more important.

Understanding the relationship between public opinion and climate policy can help focus the efforts of climate campaigners. Perhaps less attention could be paid to the influence of vested interests.

Given the deep ideological reasons climate change deniers have for their disbelief, it’s unlikely they will be convinced otherwise. Fortunately, this may not be required to move climate policy forward.

As my research reveals, the majority of the public want action on climate change but tend to be more concerned about other issues. Campaigners might find it useful to focus their attention on persuading this section of the population about the urgency of climate action.The Conversation

Sam Crawley, Researcher, Te Herenga Waka — Victoria University of Wellington

This article is republished from The Conversation under a Creative Commons license. Read the original article.

We found a secret history of megadroughts written in tree rings. The wheatbelt’s future may be drier than we thought


An almost-dry dam, surrounded by wheat fields, in WA’s wheatbelt region.
Shutterstock

Alison O’Donnell, The University of Western Australia; Edward Cook, Columbia University, and Pauline Grierson, The University of Western AustraliaDrought over the last two decades has dealt a heavy blow to the wheatbelt of Western Australia, the country’s most productive grain-growing region. Since 2000, winter rainfall has plummeted by almost 20% and shifted grain-growing areas towards the coast.

Our recent research, however, found these dry conditions are nothing out of the ordinary for the region.

In fact, after analysing rings in centuries-old tree trunks, we found the region has seen far worse “megadroughts” over the last 700 years. Australia’s instrumental climate records only cover the last 120 or so years (at best), which means these historic droughts may not have previously been known to science.

Our research also found the 20th century was the wettest of the last seven centuries in the wheatbelt. This is important, because it means scientists have likely been underestimating the actual risk of drought – and this will be exacerbated by climate change.

What we can learn from ancient trees

We estimate the risk of extreme climate events, such as droughts, cyclones and floods, based on what we know from instrumental climate records from weather stations. Extending climate records by hundreds or even thousands of years means scientists would be able to get a much better understanding of climate variability and the risk of extreme events.

_Callitris_ trees overlooking a salt lake
Callitris trees overlooking a salt lake. We pulled a column of wood from these tree trunks to investigate past climate changes in the region.
Alison O’Donnell, Author provided

Thankfully we can do just that in many parts of the world using proxy records — things like tree rings, corals, stalagmites and ice cores in Antarctica. These record evidence of past climate conditions as they grow.

For example, trees typically create a new layer of growth (“growth ring”) around their trunks, just beneath the bark, each year. The amount of growth generally depends on how much rain falls in the year. The more it rains, the more growth and the wider the ring.

Tree rings of Callitris columellaris.
Alison O’Donnell, Author provided

We used growth rings of native cypress trees (Callitris columellaris) near a large salt lake at the eastern edge the wheatbelt region. These trees can live for up to 1,000 years, perhaps even longer.

We can examine the growth rings of living trees without cutting them down by carefully drilling a small hole into the trunk and extracting a column (“core”) of wood about the size of a drinking straw. By measuring the ring widths, we developed a timeline of tree growth and used this to work out how much rain fell in each year of a tree’s life.

This method allowed us to reconstruct the last 668 years of autumn-winter rainfall in the wheatbelt.

A tree trunk with a blue scientific instrument attached
A tree borer – a hollow drill used to extract ‘cores’ of wood from tree trunks.
Alison O’Donnell, Author provided

A history of megadroughts

One of the most pressing questions for the wheatbelt is whether the decline in autumn-winter rainfall observed in recent decades is unusual or extreme. Our extended record of rainfall lets us answer this question.

Yes, rainfall since 2000 was below the 668-year average — but it was not extremely low.

The last two decades may seem particularly bad because our expectations of rainfall in the wheatbelt are likely based on memories of higher rainfall. But this frequent wet weather has actually been the anomaly. Our tree rings revealed the 20th century was wetter than any other in the last 700 years, with 12% more rain in the autumn-winter seasons on average than the 19th century.




Read more:
500 years of drought and flood: trees and corals reveal Australia’s climate history


Before the 20th century, the wheatbelt saw five droughts that were longer and more severe than any we’ve experienced in living memory, or have recorded in instrumental records. This includes two dry periods in the late 18th and 19th centuries that persisted for more than 30 years, making them “megadroughts”.

While the most recent dry period has persisted for almost two decades so far, rainfall during this period is at least 10% higher than it was in the two historical megadroughts.

This suggests prolonged droughts are a natural and relatively common feature of the wheatbelt’s climate.

An aerial view of the tree-ring site, home to trees that can live up to 1,000 years.
Hannah Etchells, Author provided

So how does human-caused climate change play into this?

It’s likely both natural climate variability and human-caused climate change contributed to the wheatbelt’s recent decline in rainfall. Unfortunately, it’s also likely their combined influence will lead to even less rainfall in the near future.

What happens now?

Our findings have important implications for assessing the risk of drought. It’s now clear we need to look beyond these instrumental records to more accurately estimate the risk of droughts for the wheatbelt.

But currently, proxy climate records like tree rings aren’t generally used in drought risk models, as there aren’t many of them in the regions scientists want to research.

Improving risk estimates leads to better informed decisions around preparing for and managing the effects of droughts and future natural disasters.




Read more:
To help drought-affected farmers, we need to support them in good times as well as bad


Our findings are a confronting prospect for the future of farming in the wheatbelt.

Australian farmers have shown tremendous innovation in their ability to adapt in the face of drought, with many shifting from livestock to crops. This resilience will be critical as farmers face a drier, more difficult future.The Conversation

Alison O’Donnell, Research Fellow in Dendroclimatology, The University of Western Australia; Edward Cook, Ewing Lamont Research Professor, Director Of Tree-Ring Lab, Columbia University, and Pauline Grierson, Director, West Australian Biogeochemistry Centre, The University of Western Australia

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Climate explained: is natural gas really cheaper than renewable electricity?


Shutterstock/AVN Photo Lab

Ralph Sims, Massey University


CC BY-ND

Climate Explained is a collaboration between The Conversation, Stuff and the New Zealand Science Media Centre to answer your questions about climate change.

If you have a question you’d like an expert to answer, please send it to climate.change@stuff.co.nz


The government wants us to phase out fossil fuels. Yet natural gas is much cheaper for households to buy per kWh than electricity. Why?

Natural gas is often touted as a transition fuel to use while we move away from coal and oil and as renewable energies continue to mature technologically and economically.

But the key point to note is that we simply cannot continue to produce greenhouse gases and the demand for natural gas, as for coal and oil, will soon have to decline rapidly.

In its draft package of recommendations to the government, New Zealand’s Climate Change Commission has called for a stop to new connections to the natural gas grid for commercial and residential buildings after 2025.

In that context, comparing the retail price of gas with electricity is not useful unless all other costs and likely future trends are considered.




Read more:
‘Renewable’ natural gas may sound green, but it’s not an antidote for climate change


The natural gas grid

Natural gas is extracted from gas fields and processed to “scrub” out other gases and condensates. The resulting gas, mainly methane, is then distributed through pipelines.

In New Zealand, natural gas is reticulated around much of the North Island, but it is not available in the South Island, where bottled liquid petroleum gas (LPG) is the alternative.

LPG is pressurised butane and propane that come from the scrubbed natural gas condensates as well as from oil refineries. A few cars such as taxis still use LPG, as do gas barbecues.

Natural gas is also combusted in gas-fired power stations to generate electricity. In New Zealand, this accounts for around 15% of total generation. Large volumes of gas are purchased relatively cheaply by power-generating companies and the electricity is then distributed through the grid to homes and businesses.

Cost comparison

The retail cost of electricity varies but is typically around 25 cents per kWh (also known as “c/unit”) for domestic users. Some retailers offer cheaper rates during “off-peak” times (to heat water for example).

The retail price for natural gas also varies and can be around 8c/kWh in Auckland or 5c/kWh in Wellington. If used for cooking, it can be cheaper than electricity. But to heat a building, an electric heat pump can be a cheaper option than a gas heater.

A heat pump concentrates the heat taken from the outside air and “pumps” it into the house very efficiently. One kWh of electricity consumed to run a heat pump can produce 3-4kWh of heat energy inside the house. It can also run the process in reverse and cool the air inside during hot summer days.

When comparing the cost of gas with electricity, two other cost factors must be considered. Under New Zealand’s Emissions Trading Scheme, there is a cost on the carbon dioxide produced when the gas is combusted because, like LPG, it is a fossil fuel and produces greenhouse gases.




Read more:
Reducing methane is crucial for protecting climate and health, and it can pay for itself – so why aren’t more companies doing it?


The current cost per tonne of carbon dioxide emitted is around NZ$35 (or around 1c per kWh of gas), but it is likely to increase significantly over the next few years. This will be added to domestic gas bills. Electricity bills are less affected by carbon price rises because (more than 80% of electricity) in New Zealand is generated from low-carbon renewable resources.

The other cost to consider is the fixed connection charge for having a gas pipeline coming into the house. This cost also varies, but in Auckland some customers pay $1.15 per day. In Wellington, some pay $1.60 per day.

A house running fully on electricity will avoid this fixed cost. There will be a fixed daily supply charge for the electricity connection but most homes have to pay this anyway in order to have lighting and electrical appliances.

Additional risks

When gas is combusted inside a building to provide heat, the process consumes oxygen and produces water vapour. If ventilation is poor, oxygen levels drop and carbon monoxide is also produced, which can lead to poisonous air.

The water vapour results in condensation, obvious on windows at certain times of the day. That, too, can lead to unhealthy mould in poorly ventilated homes.

And there are further risks with gas. As exemplified by an explosion last year in a Christchurch home, natural gas (methane) is volatile as well as toxic.
Of course there are also risks with using electricity, though fairly rare, such as getting an electric shock or vermin eating through plastic cable coverings and shorting the wires, which can start fires.

While gas may appear cheaper, this applies only to certain energy uses (such as cooking). Overall, the cost of gas is likely to rise significantly in the near future.

The Climate Change Commission’s final advice to government is due at the end of May and will provide a time frame for the end of new gas connections — but there is no intention to disconnect existing gas supplies to buildings at this stage.The Conversation

Ralph Sims, Professor, School of Engineering and Advanced Technology, Massey University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

How climate change is erasing the world’s oldest rock art


This Warty Pig is part of a panel dated to more than 45,500 years in age.
Basran Burhan/Griffith University, Author provided

Jillian Huntley, Griffith University; Adam Brumm, Griffith University; Adhi Oktaviana, Griffith University; Basran Burhan, Griffith University, and Maxime Aubert, Griffith UniversityIn caves on the Indonesian island of Sulawesi, ancient peoples marked the walls with red and mulberry hand stencils, and painted images of large native mammals or imaginary human-animal creatures.

These are the oldest cave art sites yet known — or at least the oldest attributed to our species. One painting of a Sulawesi warty pig was recently dated as at least 45,500 years old.

Since the 1950s, archaeologists have observed these paintings appear to be blistering and peeling off the cave walls. Yet, little had been done to understand why.

So our research, published today, explored the mechanisms of decay affecting ancient rock art panels at 11 sites in Sulawesi’s Maros-Pangkep region. We found the deterioration may have gotten worse in recent decades, a trend likely to continue with accelerating climate change.

These Pleistocene (“ice aged”) cave paintings of Indonesia have only begun to tell us about the lives of the earliest people who lived in Australasia. The art is disappearing just as we’re beginning to understand its significance.

Australasia’s rock art

Rock art gives us a glimpse into the ancient cultural worlds of the artists and the animals they may have hunted or interacted with. Even rare clues into early people’s beliefs in the supernatural have been preserved.

Climate change could erase ancient Indonesian cave art.

We think humans have been creating art of some kind in Australasia — which includes northern Australia, Papua New Guinea and Indonesia — for a very long time. Used pigments are among the earliest evidence people were living in Australia more than 60,000 years ago.




Read more:
Buried tools and pigments tell a new history of humans in Australia for 65,000 years


Tens of thousands of distinctive rock art sites are scattered across Australasia, with Aboriginal people creating many styles of rock art across Australia.

Until as recently as 2014, scholars thought the earliest cave art was in Europe — for example, in the Chauvet Cave in France or El Castillo in Spain, which are 30,000 to 40,000 years old. We now know people were painting inside caves and rockshelters in Indonesia at the same time and even earlier.

Hand stencils in one of the study sites at Leang Sakapao cave.
Linda Siagian, Author provided

Ongoing surveys throughout Australasia turn up new rock art sites every year. To date, more than 300 painted sites have been documented in the limestone karsts of Maros-Pangkep, in southern Sulawesi.

Cave paintings in Sulawesi and Borneo are some of the earliest evidence we have that people were living on these islands.

Tragically, at almost every new site we find in this region, the rock art is in an advanced stage of decay.

Big impacts from small crystals

To investigate why these prehistoric artworks are deteriorating, we studied some of the oldest known rock art from the Maros-Pangkep region, scientifically dated to between at least 20,000 and 40,000 years old.

Expanding and contracting salt crystals are causing rock art to flake off the cave walls.
Linda Siagian, Author provided

Given these artworks have survived over such a vast period, we wanted to understand why the painted limestone cave surfaces now appear to be eroding so rapidly.

We used a combination of scientific techniques, including using high-powered microscopes, chemical analyses and crystal identification to tackle the problem. This revealed that salts growing both on top of and behind ancient rock art can cause it to flake away.




Read more:
Indonesian cave paintings show the dawn of imaginative art and human spiritual belief


Salts are deposited on rock surfaces via the water they’re absorbed in. When the water solution evaporates, salt crystals form. The salt crystals then swell and shrink as the environment heats and cools, generating stress in the rock.

In some cases, the result is the stone surface crumbling into a powder. In other instances, salt crystals form columns under the hard outer shell of the old limestone, lifting the art panel and separating it from the rest of the rock, obliterating the art.

On hot days, geological salts can grow to more than three times their initial size. On one panel, for example, a flake half the size of a hand peeled off in under five months.

Climate extremes under global warming

Australasia has an incredibly active atmosphere, fed by intense sea currents, seasonal trade winds and a reservoir of warm ocean water. Yet, some of its rock art has so far managed to survive tens of thousands of years through major episodes of climate variation, from the cold of the last ice age to the start of the current monsoon.

Limestone karsts in a field
Limestone karsts of Maros and Pangkep Regencies, in South Sulawesi, Indonesia.
Shutterstock

In contrast, famous European cave art sites such as Altamira in Spain and Lascaux in France are found in deep caves, in more stable (temperate) climates, so threats to rock art are different and generally weathering is less aggressive.

But now greenhouse gases are magnifying climatic extremes. In fact, global warming can be up to three times higher in the tropics, and the wet-dry phases of the monsoon have become stronger in recent decades, along with more numerous La Niña and El Niño events.




Read more:
Climate explained: will the tropics eventually become uninhabitable?


The net effect is that temperatures are higher, there are more hot days in a row, droughts are lasting longer, and other extreme weather such as storms (and the flooding they cause) are more severe and frequent.

What’s more, monsoonal rains are now captured in rice fields and aquaculture ponds. This promotes the growth of art-destroying salt crystals by raising humidity across the region and especially in nearby caves, prolonging the shrink and swell cycles of salts.

Three people hold a torch to cave wall
Makassar’s culture heritage department, Balai Pelestarian Cagar Budaya, undertaking rock art monitoring in Maros-Pangkep.
Rustan Lebe/Griffith University, Author provided

What happens now?

Apart from the direct threats associated with industrial development — such as blasting away archaeological sites for mining and limestone quarrying — our research makes it clear global warming is the biggest threat to the preservation of the trpoics’ ancient rock art.

There’s a pressing need for further research, monitoring and conservation work in Maros-Pangkep and across Australasia, where cultural heritage sites are under threat from the destructive impacts of climate change.




Read more:
Rio Tinto just blasted away an ancient Aboriginal site. Here’s why that was allowed


In particular, we urgently need to document the remaining rock art in great detail (such as with 3D scanning) and uncover more sites before this art disappears forever.

If humans are ultimately causing this problem, we can take steps to correct it. Most importantly, we need to act now to stop global temperature increases and drastically cut emissions. Minimising the impacts of climate change will help preserve the incredible artworks Australasia’s earliest people left to us.




Read more:
Indonesian cave paintings show the dawn of imaginative art and human spiritual belief


The Conversation


Jillian Huntley, Research Fellow, Griffith University; Adam Brumm, Professor, Griffith University; Adhi Oktaviana, PhD Candidate, Griffith University; Basran Burhan, PhD candidate, Griffith University, and Maxime Aubert, Professor, Griffith University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The budget should have been a road to Australia’s low-emissions future. Instead, it’s a flight of fancy


Shutterstock

John Quiggin, The University of QueenslandLooking at other nations around the world, the path to cutting greenhouse gas emissions seems clear.

First, develop wind and solar energy and battery storage to replace coal- and gas-fired electricity. Then, replace petrol and diesel cars with electric vehicles running off carbon-free sources. Finally, replace traditionally made steel, cement and other industries with low-carbon alternatives.

In this global context, the climate policies announced in Tuesday’s federal budget are a long-odds bet on a radically different approach. In place of the approaches adopted elsewhere, the Morrison government is betting heavily on alternatives that have failed previous tests, such as carbon capture and storage. And it’s blatantly ignoring internationally proven technology, such as electric vehicles.

The government could have followed the lead of our international peers and backed Australia’s clean energy sector to create jobs and stimulate the post-pandemic economy. Instead, it’s sending the nation on a fool’s errand.

Prime Minister Scott Morrison, left, and Treasurer Josh Frydenberg shake hands
Prime Minister Scott Morrison, left, and Treasurer Josh Frydenberg should have used the budget to create jobs in the clean economy.
Mick Tsikas/AAP

Carbon-capture folly

The Morrison government is taking a “technology, not taxes” approach to emissions reduction. Rather than adopt a policy such as a carbon price – broadly considered the most effective and efficient way to cut emissions – the government has instead pinned its hopes on a low-emissions technology plan.

That means increased public spending on research and development, to accelerate the commercialisation of low emissions technologies. The problems with this approach are most obvious in relation to carbon capture and storage (CCS).

The budget contains A$263.7 million to fund new carbon capture and storage projects. This technology promises to capture some – but to date, not all – carbon dioxide at the point of emission, and then inject it underground. It would allow continued fossil fuel use with fewer emissions, but the process is complex and expensive.

In fact, recent research found of 39 carbon-capture projects examined in the United States, more than 80% ended in failure.




Read more:
The 1.5℃ global warming limit is not impossible – but without political action it soon will be


The government’s CCS funding is focused on capturing CO₂ from gas projects. This is despite the disappointing experience of Australia’s only CCS project so far, Chevron’s Gorgon gas field off Western Australia.

Some 80% of emissions from the operation were meant to be captured from 2016. But the process was delayed for three years, allowing millions of tonnes of CO₂ to enter the atmosphere. As of January this year, the project was still facing technical issues.

CCS from gas will be expensive even if it can be made to work. Santos, which has proposed a CCS project at its Moomba gas plant in South Australia, suggests a cost of $A30 per tonne of CO₂ captured.

This money would need to come from the government’s Climate Solutions Fund, currently allocated about A$2 billion over four years. If Moomba’s projected emissions reduction of 20 million tonnes a year were realised, this project alone would exhaust the fund.

two men stand over equipment
Plans to capture carbon from Chevron’s Gorgon gas project have not gone to plan.
Chevron Australia

What about electric vehicles?

There is a striking contrast between the Morrison government’s enthusiasm for carbon capture, and its neglect of electric vehicles.

It ought to be obvious that if Australia is to achieve a target of net-zero emissions by 2050 – which Treasurer Josh Frydenberg this week reiterated was his government’s preference – the road transport sector must be decarbonised by then.

The average age of Australian cars is about 10 years. This implies, given fairly steady sales, an average lifespan of 20 years. This in turn implies most petrol or diesel vehicles sold after 2030 will have to be taken off the road before the end of their useful life.

In any case, such vehicles will probably be very difficult to buy within 15 years. Manufacturers including General Motors and Volvo have announced plans to stop selling petrol and diesel vehicles by 2035 or earlier.

But the Morrison government has ruled out consumer incentives to encourage electric vehicle uptake – a policy at odds with many other nations, including the US.




Read more:
The US jumps on board the electric vehicle revolution, leaving Australia in the dust


Despite the “technology, not taxes” mantra, this week’s federal budget ignored electric vehicles. This includes a A$10 billion infrastructure spend which did not include charging stations as part of highway upgrades.

Unless the government takes action soon, Australian motorists will be faced with the choice between a limited range of second-rate petrol and diesel vehicles, or electric vehicles for which key infrastructure is missing.

It’s hard to work out why the government is so resistant to doing anything to help electric vehicles. Public support appears strong. There are no domestic carmakers left to protect.

The car retail industry is generally unenthusiastic about electric vehicles. Its business model is built on combining competitive sticker prices with a high-margin service and repair business, and electric vehicles don’t fit this model.

At the moment (although not for much longer), electric vehicles are more expensive than traditional cars to buy upfront. But they are cheaper to run and service.

There are fears of job losses in car maintenance as electric vehicle uptake increases. However, car dealers have adjusted to change in the past, and can do so in future.

electric vehicle on charge
The budget ignored electric vehicles.
Shutterstock

Wishful thinking

The Morrison government is still edging towards announcing a 2050 net-zero target in time for the United Nations Climate Change Conference in Glasgow this November. But as Prime Minister Scott Morrison himself has emphasised, there’s no point having a target without a strategy to get there.

Yet at this stage, the government’ emissions reduction strategy looks more like wishful thinking than a road map.




Read more:
Australia’s states are forging ahead with ambitious emissions reductions. Imagine if they worked together


The Conversation


John Quiggin, Professor, School of Economics, The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The outlook for coral reefs remains grim unless we cut emissions fast — new research


Morgan Pratchett, ARC Centre of Excellence for Coral Reef Studies, CC BY-ND

Christopher Cornwall, Te Herenga Waka — Victoria University of Wellington and Verena Schoepf, University of AmsterdamThe twin stress factors of ocean warming and acidification increasingly threaten coral reefs worldwide, but relatively little is known about how various climate scenarios will affect coral reef growth rates.

Our research, published today, paints a grim picture. We estimate that even under the most optimistic emissions scenarios, we’ll see dramatic reductions in coral reef growth globally.
The good news is that 63% of all reefs in this emissions scenario will still be able to grow by 2100.

But if emissions continue to rise unabated, we predict 94% of coral reefs globally will be eroding by 2050. Even under an intermediate emissions scenario, we project a worst-case outcome in which coral reefs on average will no longer be able to grow vertically by 2100.

The latter scenarios would have dramatic consequences for marine biodiversity and the millions of people who depend on healthy, actively growing coral reefs for livelihoods and shoreline protection. This highlights the urgency and importance of acting now to drastically reduce carbon dioxide emissions.

Coral reefs are home to more than 830,000 species and provide coastal communities with food and income through fisheries and tourism.

The Great Barrier Reef alone contributes A$6.4 billion to the Australian economy. Critically, coral reefs also protect coastlines from storm surges and create land for many low-lying Indo-Pacific island nations.

Marine heatwaves, caused by ongoing ocean warming, have already had a severe impact on coral reef ecosystems by triggering mass bleaching events. These events are becoming more frequent and intense, and cause mass die-offs across large areas.

Bleaching at the Great Barrier Reef
Marine heatwaves trigger mass bleaching and coral die-offs.
Morgan Pratchett, ARC Centre of Excellence for Coral Reef Studies, CC BY-ND

Ocean acidification also reduces the growth of corals by limiting their ability to build their skeletons from calcium carbonate. Together, these stressors threaten the ability of coral reefs to grow and keep up with sea level rise.

Complex impacts from ocean warming and acidification

Our understanding of how ocean warming and acidification threaten reef-forming species has improved considerably over the past decade. However, understanding how coral reef growth will be altered by climate change is more complex than simply measuring rates of change from individual taxonomic groups of corals.

Our study of 183 reefs worldwide provides the first quantitative estimate of how most of the processes that control reef growth respond to climate change and affect carbonate accumulation and growth rates.

Coral reef
Coral on the Great Barrier Reef during the 2020 bleaching event.
Morgan Pratchett, ARC Centre of Excellence for Coral Reef Studies, CC BY-ND

Reefs grow by layering calcium carbonate, produced either by corals and coralline algae. The amount of calcium carbonate built by these reefs depends on many factors.

Cyclones, waves and currents can flush parts of the reef away. Acidifying ocean water means more dissolves chemically. And there is a biological carbonate exchange, known as bio-erosion. Sponges, parrotfish, sea urchins and algae can all eat it, but then return some as defecated sand.

Depending on which of these processes dominates, coral reefs either grow and accrete vertically, or they start to erode. Most of these processes vary for each reef, and almost all are affected by climate change.




Read more:
The Great Barrier Reef outlook is ‘very poor’. We have one last chance to save it


To complicate matters, the frequency and intensity of marine heatwaves will vary geographically, making it difficult to estimate to what degree coral mass bleaching events will reduce coral cover.

In our research, we applied these local and global processes to 233 locations on 183 distinct coral reefs that vary in their species compositions and physical complexity. We found significant variability in responses to ocean acidification and warming.

Geographical and species variability

We predict coral mass bleaching events will have the largest impact on carbonate production across all sites. The world’s coral reefs have already been transformed dramatically by these events over the past few decades.

Coral bleaching at the Maledives
Coral reef in the Maldives, before coral mass bleachign event.
Chris Perry, CC BY-ND



Read more:
We just spent two weeks surveying the Great Barrier Reef. What we saw was an utter tragedy


Diver and equipment at a coral reef
Experimental setup used to measure calcification coralline algae on the Great Barrier Reef.
Guillermo Diaz-Pulido, CC BY-ND

We used the documented impacts of the 2016 mass bleaching on the Great Barrier Reef, which affected a large range of reefs with different species compositions, depths and latitudes. During this event, each reef experienced varying heat stress, which manifested in different levels of coral cover loss.

This information helped us to calibrate models to predict heat-stress events globally between now and 2100 and to gauge the future magnitudes of heat stress and their impact on our study sites.

We found currently degraded reefs fared poorly in our model, even under lower emissions scenarios. Reefs whose carbonate production was more robust against the effects of climate change tended to be those with high present-day carbonate production rates, higher contributions from coralline algae (which are also vulnerbable, but comparatively more resistant to warming than corals) and low rates of bio-erosion.

Hope for coral reefs

In higher emissions scenarios, even reefs dominated by coralline algae began to suffer as ocean acidification and warming intensified. It is also important to note that such reefs will provide different, and perhaps reduced, services compared to coral-dominated reefs because they are structurally less complex.

People standing on a coal reef
Team members assess coral health during the 2016 bleaching event in the Kimberley, Western Australia.
Christopher Cornwall, CC BY-ND

We did not explore in depth whether remaining coral reef communities could gain tolerance to rising temperatures over time. This could manifest as an increase in the proportional abundance of heat-tolerant species as more heat-sensitive corals die during mass bleaching events.

Surviving corals could acclimatise or even adapt. But whether these mechanisms could provide hope for the continued growth of coral reefs in the future — and if so, to what extent — is largely unknown. Nor can we say if more heat-tolerant corals could sustain similar rates of reef growth and structural complexity.

Coral reef in Chagos
A coral reef in Chagos before a bleaching event in April 2016.
Chris Perry, CC BY-ND

The best hope to save coral reefs and their ecological, societal and economic benefits is to reduce our carbon emissions dramatically, and quickly. Even under our projected intermediate scenarios we expect mean global erosion of coral reefs.

Under the lowest emissions scenario we examined, we expect profound changes in coral reef growth rates and their ability to provide ecosystem services. In this scenario, only some reefs will be able to keep pace with rising sea levels.

We owe it to our children and grandchildren to reduce emissions now, if we have any hope of them witnessing the majestic nature of coral reef ecosystems.The Conversation

Christopher Cornwall, Rutherford Discovery Fellow, Te Herenga Waka — Victoria University of Wellington and Verena Schoepf, Assistant Professor, University of Amsterdam

This article is republished from The Conversation under a Creative Commons license. Read the original article.

A great start, but still not enough: why Victoria’s new climate target isn’t as ambitious as it sounds


Anita Foerster, Monash University; Alice Bleby, UNSW, and Anne Kallies, RMIT UniversityIn a great start towards net zero emissions by 2050, the Victorian Government recently released their Climate Change Strategy, committing to halving greenhouse emissions by 2030.

Victoria’s leadership, alongside commitments from other Australian states and territories, stands in stark contrast to the poor climate performance of our federal government.

But is it enough? Climate scientists are urging Australia to do more to reduce emissions and to do it quicker if we’re going to avert dangerous global warming. In fact, a recent Climate Council report claims achieving net zero emissions by 2050 is at least a decade too late.

We think the Victorian government has the legal mandate to do more. But we also recognise that ambitious climate action at the state level is hindered by a lack of commitment at the federal level.

Using law to drive emissions reductions

Victoria’s new strategy was developed under the Climate Change Act 2017, state legislation requiring the government to set interim emissions reduction targets on the way to net zero by 2050.

It spreads the job of achieving these targets across the economy, with different ministers responsible for pledging emissions reductions actions and reporting on progress over time.

Laws like this are emerging around the world to set targets and hold governments accountable for delivering on them. They’re a key tool to deliver on international commitments under the Paris Agreement to limit global warming to well below 2℃.

Although Australia has set a national target for emissions reduction under the Paris Agreement, it’s widely considered to be inadequate, and there’s currently no framework climate law at the national level. Independent Zali Steggall introduced such a bill in 2020, but the Morrison government hasn’t supported it.

Victoria’s new strategy lacks detail

Victoria’s Climate Change Strategy contains many exciting climate policy announcements, including:

  • renewable energy zones and big batteries in the regions
  • all government operations including schools and hospitals powered by 100% renewables by 2025
  • targets and subsidies for electric vehicle uptake
  • commitments to support innovation in hard-to-abate sectors such as agriculture.

It also recognises the need to phase out natural gas and accelerate Victoria’s renewable hydrogen industry.

These policies are designed to reduce emissions while supporting economic growth and job creation. Yet they are scant on detail.

There’s heavy reliance on achieving emissions reductions in the energy sector — arguably, this is the low-hanging fruit. Policies in transport and agriculture are far less developed, with no quantification of targeted emissions reductions to 2030.

Cows in a paddock
Victoria has committed to support innovation in hard-to-abate sectors such as agriculture.
Shutterstock

This makes it difficult to assess whether the sector pledges will drive enough change to achieve the government’s interim targets (ambitious or otherwise) and support a trajectory to net zero.

It has taken several years to develop the Climate Change Strategy. This makes the lack of detail and the undeveloped nature of some pledges a big concern.

There are also few safeguards in the Climate Change Act to ensure pledges add up to achieving targets, or that ministers across sectors deliver on them. Much depends on the political will of the government of the day.

Why Victoria’s targets aren’t enough

The Victorian Government proposes targets to reduce emissions by 28–33% on 2005 levels by 2025, and by 45–50% on 2005 levels by 2030.

The government claims these targets are ambitious. Compared to current federal government targets, this is true.




Read more:
Australia’s states are forging ahead with ambitious emissions reductions. Imagine if they worked together


However, the target ranges are lower than those recommended in 2019 by the Independent Expert Panel, established under the Climate Change Act to advise the government on target setting.

The panel recommended targets of 32–39% by 2025 and 45–60% by 2030 as Victoria’s “fair share” contribution to limiting warming to well below 2℃ in accordance with Paris Agreement goals. And it acknowledged these recommended ranges still wouldn’t be enough to keep warming to 1.5℃, in the context of global efforts.

Solar panels on a roof
Reducing emissions in the energy sector is low-hanging fruit.
Shutterstock

Ultimately, Victoria’s targets don’t match what scientists are now telling us about the importance of cutting emissions early to avoid the worst impacts of climate change.

A pragmatic approach or a missed opportunity?

In setting the targets, the state government has clearly taken a politically pragmatic approach.

The government claims the targets are achievable and suggests they would’ve set more ambitious targets if the federal government made a stronger commitment to climate action.

Yes, the current lack of climate ambition at the federal level in Australia is a very real constraint on progress in some areas such as energy, where a coordinated approach is crucial. But this shouldn’t outweigh aligning to best available science.

State governments have many regulatory, policy and economic levers at their disposal, with opportunities to drive significant change and innovation. And Victoria has already demonstrated strong progress in emissions reduction and renewables in the energy sector, easily meeting and exceeding previous targets.

Under the Climate Change Act, the Victorian Government will need to set new, more ambitious targets in five years.

But waiting five years goes against Victoria’s aim to lead the nation on climate action and contribute fairly to global efforts to mitigate global warming. More ambitious, science-aligned targets now would’ve been a valuable signal for industry and a sign of real climate leadership.

We need stronger laws

Without doubt, the new Climate Change Strategy is a significant step forward on an issue that’s plagued Australian politics for years. Victoria has showed framework climate laws can drive government action on climate change.




Read more:
Conservative but green independent MP Zali Steggall could break the government’s climate policy deadlock


But there are also opportunities to bolster the Climate Change Act by aligning targets to science, strengthening legal obligations to drive timely progress, and including an ongoing role for independent experts to advise on target setting and oversee progress.

Finally, it’s important to get on with the job at a federal level.

Zali Steggall’s Climate Change Bill 2020 picks up on best practice climate laws from around the world. It’s also supported by industry groups and investors.

Victoria’s experience suggests it’s surely time for Australia to take this important step.The Conversation

Anita Foerster, Senior Lecturer, Monash University; Alice Bleby, PhD Candidate, UNSW, and Anne Kallies, Senior Lecturer, RMIT University

This article is republished from The Conversation under a Creative Commons license. Read the original article.