Mercury pollution from decades past may have been re-released by Tasmania’s bushfires



File 20190405 114905 1kz1fq7.jpg?ixlib=rb 1.1
Tasmania’s fires may have released mercury previously absorbed by trees.
AAP Image

Larissa Schneider, Australian National University; Kathryn Allen, University of Melbourne, and Simon Haberle, Australian National University

Tasmania’s bushfires may have resulted in the release of significant amounts of mercury from burnt trees into the atmosphere. Our research shows that industrial mercury pollution from decades past has been locked up in west Tasmanian trees.

Mercury occurs naturally in Earth’s crust. Over the past 200 years, industrial activities have mobilised mercury from the crust and released it into the atmosphere. As a consequence, atmospheric mercury concentrations are now three to four times higher than in the pre-industrialisation era.

Mining is the largest source of the global atmospheric mercury, accounting for 37% of mercury emissions. When Europeans first arrived in Australia, there was, of course, no Environmental Protection Act in place to limit emissions from industrial activities. In western Tasmania, where mining has occurred for more than a century, this meant mercury was being released without control into the local atmosphere until changes in technology, market conditions, and later, regulation, conspired to reduce emissions.




Read more:
Australia emits mercury at double the global average


Because mercury is also very persistent in the environment, past mining activity has generated a reservoir of mercury that could be released to the atmosphere under certain conditions. This is a concern because even small amounts of mercury may be toxic and may cause serious health problems. In particular, mercury can threaten the normal development of a child in utero and early in its life.

Tree rings can reveal past mercury contamination

How much mercury has been released into the Australian environment and when has remained largely unknown. However, in a new study we show how mercury levels in Tasmania have dramatically changed over the past 150 years due to mining practices. Long-lived Huon pine, endemic to western Tasmania, is one of the most efficient bioaccumulators of mercury in the world. This makes it a good proxy for tracking mercury emissions in western Tasmania. If concentrations of mercury in the atmosphere are high in a given year, this can be detected in the annual ring of Huon pine for that year.

Mercury pollution from past mining practices in western Tasmania has left a lasting environmental legacy. The sampled trees contained a significant reservoir of mercury that was taken up during the peak mining period in Queenstown. Changes in mercury concentrations in the annual rings of Huon pine are closely aligned with changes in mining practices in the region.

Increased concentrations coincide with the commencement of pyritic copper smelting in Queenstown in 1896. They peak between 1910 and 1920 when smelting was at its height. In 1922, concentrations begin to decline in parallel with the introduction of a new method to separate and concentrate ores. This method required only one small furnace instead of 11 large ones. In 1934, a new dust-collection apparatus was installed in the smelter’s chimney, coinciding with the further decrease in mercury concentrations in nearby Huon pine.

Temporal tree rings of Huon pine, revealing historical mercury pollution.
Author provided

Toxic elements or compounds taken up by vegetation can also be released back into the local environment. Bushfires that burn trees that have accumulated mercury may release this mercury as vapour, dust or fine ash, potentially exposing people and wildlife to the adverse effects of mercury. It is estimated that bushfires release 210,000kg of mercury into the global atmosphere each year. As these fires become more frequent and ferocious in Australia, mercury concentrations in the atmosphere are likely to increase. Mercury released by bushfires can persist in the atmosphere for a year, allowing for long-distance transportation depending on wind strength and direction. This means that mining activity from over a century ago may have regional implications in the near future. The Tasmanian fires in December-February burned almost 200,000 hectares, including areas around Queenstown.

It is not currently possible to know how much mercury has been released by these recent fires. Our results simply highlight the potential risk and the need to better understand the amount of mercury taken up by vegetation that may one day be released back to the atmosphere via bushfires.

Re-release of historical mercury emissions by bushfires.
Author provided



Read more:
Dry lightning has set Tasmania ablaze, and climate change makes it more likely to happen again


Although there is no simple way to remove bio-accumulated mercury from trees, the history of mercury contamination recorded in tree rings provides important lessons. Decreased uptake of mercury after upgrades to the Queenstown copper smelter operations demonstrates the positive impact that good management decisions can have on the amount of mercury released into the environment.

To control mercury emissions globally, the United Nations Environment Programme (UNEP) has developed the Minamata Convention on Mercury. Its primary goal is to protect human health and the environment from the negative effects of mercury. Australia has signed the convention and but has yet to ratify it. Once ratified, Australia would be required to record sources of mercury and quantify emissions, including those from bushfires.

But to do this, the government must first be able to identify environmental reservoirs of mercury. Our study, the first of its kind in the Southern Hemisphere, shows that the long-lived Huon pine can be used to for this purpose. Further work to determine what other tree species record atmospheric emissions of mercury and other toxic elements in other regions of Australia is required.The Conversation

Larissa Schneider, DECRA fellow, Australian National University; Kathryn Allen, Academic, Ecosystem and Forest Sciences, University of Melbourne, and Simon Haberle, Professor, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

A ‘seiche’ wave can outpace a tsunami, and both can be triggered by meteorites and earthquakes



File 20190403 177184 r6mkdz.jpg?ixlib=rb 1.1
Waves can be generated in lakes and other bodies of water when seismic energy travels through land.
Leo Roomets / Unsplash, CC BY

Craig O’Neill, Macquarie University

A catastrophic event occurred on Earth 66 million years ago. A huge meteorite struck our planet in what is now Mexico, triggering mass extinctions of the dinosaurs and most other living creatures.

A new paper shows the first recorded victims of this impact were fish and other marine animals, stranded by a wave that left them high and dry in an ancient river in North Dakota, at a site called Tanis.

For scientists unpacking the evidence around the event, a full picture of the cataclysm has involved looking into the details of planetary surface physics during giant impacts.

But beyond the first layer of fascinating results – little glass impact beads stuck in the gills of fish, for example – one really interesting aspect of this work is around how water behaves when it’s exposed to extreme forces.

If you’ve never heard of a form of wave called a seiche, this is your chance to catch up.

This is a seiche – a standing wave – in a swimming pool, during a large earthquake in Nepal.

Waves of damage

The Chicxulub meteorite crater in coastal Mexico is strongly associated with the mass extinction of the dinosaurs (and 75% of all species), 66 million years ago.

The first victims were right at the site. Any marine creatures close to the point of impact would have been instantly vaporised (sadly leaving no fossil record), along with much of the surrounding rock.

Around the periphery, the energy of the impact melted and ejected tonnes of molten rock, which together with condensing rock vapour, formed little glass beads (“impact spherules”) that can be found in a layer around the world at this time.

The shock wave itself pulverised the adjacent rock enough to metamorphise it, forming features like “shocked quartz” – fractured quartz indicative of enormous pressures. It carried the energy equivalent of a magnitude 11 earthquake – 1,000 times more energy than the 2004 Boxing Day quake which killed almost 230,000 people.

Vast inland sea now gone

North Dakota is more than 3,000km away from the Chicxulub crater, and was a similar distance at the time of the meteorite impact event.

Separating them back then, however, was a vast inland sea that covered much of midwest USA, from Texas up to the Dakotas. Feeding into that inland sea was a river system upon which the Tanis site in North Dakota was formed. This site has preserved the earliest recorded deaths of the Chicxulub impact.

Different views of the Tanis site. A: Tanis (starred) within a regional context (large map) and on a national map (inset). B: Photo and interpretive overlay of an oblique cross-section through Tanis. C: Simplified schematic depicting the general deposits at the site (not to scale). Most fish carcasses were found at point 3.
Robert A DePalma and colleagues

The site itself is unusual. The deposition of sediments can tell us about the flow of water in the river.

Most ripples (or flame structures) indicate a southerly flow of the river before and after the Tanis deposit. However, these flow indicators point the wrong way during the time the Tanis unit formed. Water was flowing upstream, fast.

At the site are also found the fossilised remains of species, like sharks and rays, that occupied brackish water, rather than the freshwater of the stream. These had to be brought inland from the sea by something, and left to die, smothered in sediment, on a riverbank.

Stranded in Dakota

The obvious candidate is an impact tsunami. Perhaps the impact of the meteorite hitting the ocean generated a huge wave that carried fish from the inland sea, and against the flow of fresh water, to leave the creatures stranded in Dakota?

But there are problems with this hypothesis. The tiny impact spherules that formed in Chicxulub can be found throughout the deposit (many clogging the gills of fish), and pockmarks in the sedimentary layers means rocks were still raining down. This means the surge of water occurred within around 15 minutes to two hours of the impact itself.

For a tsunami to travel the 3,000km from the point of impact, to the Tanis site across the inland sea, would have taken almost 18 hours. Something else killed these creatures.

The seismic waves from the impact would have travelled through the Earth much faster than a tsunami travelled across water – and arrived near Tanis between 6-13 minutes later. The authors of the Tanis study suggest these seismic waves may have triggered an unusual type of wave in the inland sea, called a seiche.

Standing waves

Seiches are standing waves in bodies of water, and are often found in large lake systems during strong winds. The winds themselves cause waves and water displacement, which can have a harmonic effect, causing the water to slosh side to side like an overfull bathtub.

However, earthquakes are also known to cause seiches. Particularly dramatic seiches are often seen in swimming pools during large quakes. The interaction of the seismic wave’s period (the time between two waves) with the timescale of waves sloshing in a pool can amplify their effect.

But seiches can affect larger bodies of water too.

During the 2011 Tohuku earthquake in Japan, seiches over 1m high were observed in Norwegian fjords more than 8,000km away. With an energy more than 1,000 times greater, the Chicxulub event could quite conceivably have generated bigger than 10 metre swells in the North American inland sea – the scale implied by the deposition of the Tanis site.

These waves in Norwegian fjords were created by seismic waves from the 2011 Tohoku earthquake in Japan.

Given a seiche can be driven by seismic waves, it’s conceivable that one drove the surge that stranded marine creatures at Tanis, resulting in the short time between the impact debris and the surge deposit.

Still lots of questions

But a lot remains unclear regarding exactly what did happen 66 million years ago.

Could the fish stranding have been driven by the first seismic activity to appear at Tanis (the P and S waves in science parlance, which travel through the interior of the Earth, arriving at Tanis 6 and 10 minutes after impact, respectively), or the more destructive but slower surface waves at the top of the Earth’s crust, which arrived 13 minutes after impact?

How might seiche waves have interacted with global hurricane-strength wind storms caused by the impact?

Would the period of sloshing of a seiche be consistent with the scale of the inland sea? (The inland sea was much larger than most lakes seiches are traditionally observed in – and may or may not have been open to the ocean). Given so little is really known about the dimensions of the inland sea, this is hard to constrain.

The Tanis site has given us an incredible window into the first few hours of a mass-extinction. But it has also highlighted how little we have probed into the fatal surface physics of these extreme events.The Conversation

Craig O’Neill, Director of the Macquarie Planetary Research Centre/Associate Professor in Geodynamics, Macquarie University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The summer bushfires you didn’t hear about, and the invasive species fuelling them



File 20190311 86707 1ji5xqu.jpg?ixlib=rb 1.1
Fire has burned through a swathe of the Tjoritja National Park.
Author provided

Christine Schlesinger, Charles Darwin University and Barry Judd, Charles Darwin University

In January 2019, fires burned across a 100-kilometre length of the iconic Tjoritja National Park in the West MacDonnell Ranges, from Ormiston Gorge nearly to the edge of Alice Springs.

These fires affected an area comparable to the recent Tasmanian fires, but attracted relatively little national attention. This is partly because the fires in Tasmania were so unusual – but we believe the fires in central Australia were just as unexpected.




Read more:
Dry lightning has set Tasmania ablaze, and climate change makes it more likely to happen again


In the past, fires of this magnitude have tended to come after heavy rain that powers the growth of native grasses, providing fuel for intense and widespread fires. But our research highlights the new danger posed by buffel grass, a highly invasive foreigner sweeping across inland Australia and able to grow fast without much water.

Far from being pristine, Tjoritja and the Western MacDonnell Ranges are now an invaded landscape under serious threat. Our changing climate and this tenacious invader have transformed fire risk in central Australia, meaning once-rare fires may occur far more often.

Buffel grass in Australia

Buffel grass is tough and fast-growing. First introduced to Australia in the 1870s by Afghan cameleers, the grass was extensively planted in central Australia in the 1960s during a prolonged drought.

Introductions of the drought-resistant plant for cattle feed and dust suppression have continued, and in recent decades buffel grass has become a ubiquitous feature of central Australian landscapes, including Tjoritja.

Buffel grass has now invaded extensive areas in the Northern Territory, Queensland, Western Australia and South Australia and is spreading into New South Wales and Victoria. It was legally recognised as a key threat in 2014, but so far only South Australia has prohibited its sale and created statewide zoning to enforce control or destruction.

Buffel grass crowds out other plants, creating effective “monocultures” – landscapes dominated by a single species. In central Australia, where Aboriginal groups retain direct, active and enduring links to Country, buffel grass makes it hard or impossible to carry out important cultural activities like hunt game species, harvest native plant materials or visit significant sites.

Buffel grass impacts on Anangu Pitjantjatjara Yankunytjatjara communities in central Australia.

But buffel grass isn’t only a threat to biodiversity and Indigenous cultural practices. In January the Tjoritja fires spread along dry river beds choked with buffel, incinerating many large old-growth trees. Much like the alpine forests of Tasmania, the flora of inland river systems has not adapted to frequent and intense fires.

We believe the ability of the fires to spread through these systems, and their increased intensity and size, can be directly attributed to buffel grass.

Fire and buffel grass

Because of the low average rainfall, widespread fires in central Australia have been rare in the recorded past, only following unusual and exceptionally high rainfall.

This extreme rain promoted significant growth of native grasses, which then provided fuel for large fires. There could be decades between these flood and fire cycles. However, since the Tjoritja (previously West MacDonnell Ranges) National Park was established in the 1990s, there have been three large-scale fires in 2001, 2011 and 2019.

What has changed? The 2001-02 and 2011-12 fires both came after heavy rainfall years. In fact, 2011 saw one of the biggest La Niña events on record.

Climate change predictions suggest that central Australia will experience longer and more frequent heatwaves. And although total annual rainfall may stay the same, it’s predicted to fall in fewer days. In other words, we’ll see heavy storms and rainfall followed by long heatwaves: perfect conditions for grass to grow and then dry, creating abundant fuel for intense fires.

The remains of a corkwood tree after an unplanned bushfire in an area heavily invaded by buffel grass near Simpsons Gap. Very few large old corkwood trees now remain in this area.
Author provided

If central Australia, and Tjoritja National Park in particular, were still dominated by a wide variety of native grasses and plants, this might not be such a problem. But buffel grass was introduced because it grows quickly, even without heavy rain.

The fires this year were extraordinary because there was no unusually high rainfall in the preceding months. They are a portent of the new future of fire in these ecosystems, as native desert plant communities are being transformed into dense near-monocultures of introduced grass.

The fuel that buffel grass creates is far more than native plant communities, and after the fire buffel grass can regenerate more quickly than many native species.

So we now have a situation in which fuel loads can accumulate over much shorter times. This makes the risk of fire in invaded areas so high that bushfire might now be considered a perpetual threat.

Changing fire threat

In spinifex grasslands, traditional Aboriginal burning regimes have been used for millennia to renew the landscape and promote growth while effectively breaking up the landscape so old growth areas are protected and large fires are prevented. Current fire management within Tjoritja “combines traditional and scientific practices”.

However, these fire management regimes do not easily translate to river environments invaded by buffel grass. These environments have, to our knowledge, never been targeted for burning by Aboriginal peoples. Since the arrival of buffel grass, there is now an extremely high risk that control burns can spread and become out-of-control bushfires.

Even when control burns are successful, the rapid regrowth of buffel grass means firebreaks may only be effective for a short time before risky follow-up burning is required. And there may no longer be a good time of year to burn.




Read more:
How invasive weeds can make wildfires hotter and more frequent


Our research suggests that in areas invaded by buffel grass, slow cool winter burns – typical for control burning – can be just as, or more, damaging for trees than fires in hot, windy conditions that often cause fires to spread.

Without more effective management plans and strategies to manage the changing fire threat in central Australia, we face the prospect of a future Tjoritja in which no old-growth trees will remain. This will have a devastating impact on the unique desert mountain ranges.

We need to acknowledge that invasive buffel grass and a changing climate have changed the face of fire risk in central Australia. We need a coordinated response from Australia’s federal and state governments, or it will be too late to stop the ecological catastrophe unfolding before us.


The authors acknowledge the contribution of Shane Muldoon, Sarah White, Erin Westerhuis, CDU Environmental Science and Management students, and NT Parks and Wildlife staff to the research at experimental sites and ongoing tree monitoring in central Australia.The Conversation

Christine Schlesinger, Senior Lecturer in Environmental Science and Ecology, Charles Darwin University and Barry Judd, Professor, Indigenous Social Research, Charles Darwin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

To reduce fire risk and meet climate targets, over 300 scientists call for stronger land clearing laws



File 20190308 150700 3qu1wc.jpg?ixlib=rb 1.1
Without significant tree cover, dry and dusty landscapes can result.
Don Driscoll, Author provided

Martine Maron, The University of Queensland; Andrea Griffin, University of Newcastle; April Reside, The University of Queensland; Bill Laurance, James Cook University; Don Driscoll, Deakin University; Euan Ritchie, Deakin University, and Steve Turton, CQUniversity Australia

Australia’s high rates of forest loss and weakening land clearing laws are increasing bushfire risk, and undermining our ability to meet national targets aimed at curbing climate change.

This dire situation is why we are among the more than 300 scientists and practitioners who have signed a declaration calling for governments to restore, or better strengthen regulations to protect native vegetation.




Read more:
Land clearing on the rise as legal ‘thinning’ proves far from clear-cut


Land clearing laws have been contentious in several states for years. New South Wales relaxed its land clearing controls in 2017, triggering concerns over irreversible environmental damage. Although it is too early to know the impact of those changes, a recent analysis found that land clearing has increased sharply in some areas since the laws changed.

The Queensland Labor government’s 2018 strengthening of land clearing laws came after years of systematic weakening of these protections. Yet the issue has remained politically divisive. While discussing a federal inquiry into the impact of these policies on farmers, federal agriculture minister David Littleproud suggested that the strenthening of regulations may have worsened Queensland’s December bushfires.

We argue such an assertion is at odds with scientific evidence. And, while the conservation issues associated with widespread land clearing are generally well understood by the public, the consequences for farmers and fire risks are much less so.

Tree loss can increase fire risk

During December’s heatwave in northern Queensland, some regions were at “catastrophic” bushfire risk for the first time since ratings began. Even normally wet rainforests, such as at Eungella National Park inland from Mackay, sustained burns in some areas during “unprecedented” fire conditions.

There is no evidence to support the suggestion that 2018’s land clearing law changes contributed to the fires. No changes were made to how vegetation can be managed to reduce fire risk. This is governed under separate laws, which remained unaltered.

In fact, shortly after the fires, Queensland’s land clearing figures were released. They showed that in the three years to June 2018, an area equivalent to roughly 570,000 Melbourne Cricket Grounds (1,138,000 hectares) of bushland was cleared, including 284,000 hectares of remnant (old-growth) ecosystems.

Tree clearing can worsen fire risk in several ways. It can affect the regional climate. In parts of eastern Australia, tree cover reductions are estimated to have increased summer surface temperatures by up to 2℃ and southwest Western Australia by 0.4–0.8℃, reduced rainfall in southeast Australia, and made droughts hotter and longer.

Removing forest vegetation depletes soil moisture. Large, intact areas of forest typically have cooler, wetter microclimates buffered from extreme temperatures. Over time, some forest types can even become fire-resistant, but smaller patches of trees are typically drier and more flammable.

Trees also form a natural windbreak that can slow the spread of bushfires. An analysis of the 2005 Wangary fire in South Australia found that fires spread most rapidly through paddocks, rather than through areas lined with native trees.

Trends from 1978 to 2017 in the annual (July to June) sum of the daily Forest Fire Danger Index, an indicator of the severity of fire weather conditions. Positive trends, shown in the yellow to red colours, indicate increasing length and intensity of the fire weather season. Areas where there are sparse data coverage, such as central parts of Western Australia, are faded.
CSIRO/Bureau of Meteorology/State of the Climate 2018

Finally, Australia’s increasing risk of bushfire and worsening drought are driven by global climate change, to which land clearing is a major contributor.

Farmers on the frontline of environmental risk

Extensive tree clearing also leads to problems for farmers, including rising salinity, reduced water quality, and soil erosion. Governments and rural communities spend significant money and labour redressing the aftermath of excessive clearing.

Sensible regulation of native vegetation removal does not restrict existing agriculture, but rather seeks to support sustainable production. Retained trees can help deal with many environmental risks that hamper agricultural productivity, including animal health, long-term pasture productivity, risks to the water cycle, pest control, and human well-being.

Rampant tree clearing is undoing climate policy too. Much of the federal government’s A$2.55 billion Emissions Reduction Fund has gone towards tree planting. But it would take almost this entire sum just to replace the trees cleared in Queensland since 2012.




Read more:
Stopping land clearing and replanting trees could help keep Australia cool in a warmer future


In 2019, Australians might reasonably expect that our relatively wealthy and well-educated country has moved beyond a frontier-style reliance on continued deforestation, and we would do well to better acknowledge and learn lessons from Indigenous Australians with respect to their land management practices.

Yet the periodic weakening of land clearing laws in many parts of Australia has accelerated the problem. The negative impacts on industry, society and wildlife are numerous and well established. They should not be ignored.The Conversation

Martine Maron, ARC Future Fellow and Associate Professor of Environmental Management, The University of Queensland; Andrea Griffin, Senior Lecturer, School of Psychology, University of Newcastle; April Reside, Researcher, Centre for Biodiversity and Conservation Science, The University of Queensland; Bill Laurance, Distinguished Research Professor and Australian Laureate, James Cook University; Don Driscoll, Professor in Terrestrial Ecology, Deakin University; Euan Ritchie, Associate Professor in Wildlife Ecology and Conservation, Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, and Steve Turton, Adjunct Professor of Environmental Geography, CQUniversity Australia

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia needs a national plan to face the growing threat of climate disasters


Robert Glasser, Australian National University

We are entering a new era in the security of Australia, not because of terrorism, the rise of China, or even the cybersecurity threat, but because of climate change. If the world warms beyond 2℃, as seems increasingly likely, an era of disasters will be upon us, with profound implications for how we organise ourselves to protect Australian lives, property and economic interests, and our way of life.

The early warning of this era is arriving almost daily, in news reports from across the globe of record-breaking heatwaves, prolonged droughts, massive bushfires, torrential flooding, and record-setting storms.

In a new special report from the Australian Strategic Policy Institute, I argue that Australia is not facing up to the pace of these worsening threats. We need a national strategy to deal specifically with climate disaster preparedness.




Read more:
Explainer: are natural disasters on the rise?


Even without climate change, the impact of these natural hazards is enormous. More than 500 Australians – roughly the same number who died in the Vietnam War – die each year from heat stress alone. The annual economic costs of natural disasters are projected to increase to A$39 billion by 2050. This is roughly equivalent to what the federal government spends each year on the Australian Defence Force.

Climate change will dramatically increase the frequency and severity of many of these hazards. The number of record hot days in Australia has doubled in the past 50 years, and heatwaves have become longer and hotter. Extreme fire weather days have increased in recent decades in many regions of Australia. Shorter and more intense rainstorms that trigger flash floods and urban flooding are also becoming more frequent, and sea level has been rising at an accelerated rate since 1993.

Australians are already exposed to a wide range of the hazards that climate change is amplifying. Almost 4 million of our people, and about 20% of our national economic output, are in areas with high or extreme risk of tropical cyclones. Meanwhile, 2.2 million people and 11% of economic activity are in places with high or extreme risk of bushfire.

Chronic crisis

As the frequency of extreme events increases, we are likely to see an increase in events happening at the same time in different parts of the country, or events following hard on the heels of previous ones. Communities may weather the first few setbacks but, in their weakened state, be ultimately overwhelmed.

Large parts of the country that are currently marginally viable for agriculture are increasingly likely to be in chronic crisis, from the compounding impacts of the steady rise of temperature, drought and bushfires.

The scale of those impacts will be unprecedented, and the patterns that the hazards take will change in ways that are difficult to predict. Australia’s fire season, for example, is already getting longer. Other research suggests that tropical cyclones are forming further from the Equator as the planet warms, putting new areas of eastern Australia in harm’s way.

This emerging era of disasters will increasingly stretch emergency services, undermine community resilience, and escalate economic costs and losses of life. Federal, state and local governments all need to start preparing now for the unprecedented scale of these emerging challenges.

Queensland as a case study

Queensland’s recent experience illustrates what could lie ahead for all of Australia. Late last year, a major drought severely affected the state. At that time, a senior manager involved in coordinating the state’s rebuilding efforts following Cyclone Debbie commented that his team was in the ironic situation of rebuilding from floods during a drought. The drought was making it difficult to find water to mix with gravel and to suppress the dust associated with rebuilding roads.

The drought intensified, contributing to an outbreak of more than 140 bushfires. This was followed and exacerbated by an extreme heatwave, with temperatures in the 40s that smashed records for the month of November. Bushfire conditions in parts of Queensland were classified as “catastrophic” for the first time since the rating scale was developed in 2009. More than a million hectares of bush and farmland were destroyed – the largest expanse of Queensland affected by fire since records began.

Just days later, Tropical Cyclone Owen approached the Queensland coast, threatening significant flooding and raising the risk of severe mudslides from the charred hillsides. Owen set an Australian record in dumping 681 millimetres of rain in just 24 hours – more than Melbourne usually receives in a year. It did not, however, diminish the drought gripping much of the state.

A few weeks later, record rains flooded more than 13.25 million hectares of Northern Queensland, killing hundreds of thousands of drought-stressed cattle. As two Queensland graziers wrote at the time: “Almost overnight we have transitioned from relative drought years to a flood disaster zone.”

Time to prepare

We need to begin preparing now for this changing climate, by developing a national strategy that outlines exactly how we move on from business as usual and adopt a more responsible approach to climate disaster preparedness.

It makes no sense for the federal government to have two separate strategies (as it currently does) for disaster resilience and climate change adaptation. Given that 90% of major disasters worldwide are from climate-related hazards such as storms, droughts and floods, these two strategies should clearly be merged.

One of the prime objectives of the new strategy should be to scale up Australia’s efforts to prevent hazards from turning into disasters. Currently, the federal government spends 30 times more on rebuilding after disasters than it does on reducing the risks in the first place.




Read more:
Properties under fire: why so many Australians are inadequately insured against disaster


Australia should be leading global calls for urgent climate action, not just because we’re so vulnerable to climate hazards, but also for traditional national security reasons. We are the wealthiest nation in a region full of less-developed countries that are hugely vulnerable to climate change. Shocks to their food security, economic interests and political stability will undermine our own national security.

No military alliance, deployment of troops or new weapon system will adequately protect Australia from this rapidly escalating threat. The only effective “forward defence” is to reduce greenhouse gases globally, including in Australia, as quickly as possible. Without far greater ambition on this front, the scale of the disasters that lie ahead will overwhelm even the most concerted efforts to strengthen the resilience of Australian communities.


This is an edited version of an article that originally appeared on The Strategist.The Conversation

Robert Glasser, Honorary Associate Professor, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Townsville floods show cities that don’t adapt to risks face disaster


Cecilia Bischeri, Griffith University

A flood-ravaged Townsville has captured public attention, highlighting the vulnerability of many of our cities to flooding. The extraordinary amount of rain is just one aspect of the disaster in Queensland’s third-biggest city. The flooding, increasing urban density, the management of the Ross River Dam, and the difficulties of dealing with byzantine insurance regulations have left the community with many questions about their future.

These questions won’t be resolved until we enhance the resilience of cities and communities against flooding. Adaptation needs to become an integral part of living with the extremes of the Australian environment. I discuss how to design and create resilient urban landscapes later in this article.




Read more:
Queensland’s floods are so huge the only way to track them is from space


Flood risk and insurance

Another issue that affects many households and businesses is the relationship between insurance claims and 1-in-100-year flood event overlay maps. Projected rises in flood risks under climate change have led to concerns that parts of Townsville and other cities will become “uninsurable” should the costs of cover become prohibitive for property owners.

Council flood data used for urban planning and land-use strategies is also used by insurers to assess the flood risk to individual properties. Insurers then price the risk accordingly.




Read more:
Lessons in resilience: what city planners can learn from Hobart’s floods


However, in extraordinary circumstances, when the flooded land is actually larger than the area marked by the flood overlay map, complications emerge. In fact, that part of the community living outside the map’s boundaries is considered flood-free. Thus, those pockets of the community may have chosen not to have flood insurance and not have emergency plans, which leaves them even worse off after floods. This is happening in Townsville.

Yet this is nothing new. Many people experienced very similar circumstances in 2011. Flood waters covered as much land as Germany and France combined. Several communities were left on their knees.

Notwithstanding the prompt and vast response of the federal government and Queensland’s state authorities, a few years later Townsville is going through something alarmingly similar.

Adaptation to create resilient cities

To find a solution, we need to rethink how to implement the Queensland Emergency Risk Management Framework. That is no easy task. However, it starts with shifting the perspective on what is considered a risk – in this case, a flooding event.

Floods, per se, are not a natural disaster. Floods are part of the natural context of Queensland as can be seen below, for instance, in the Channel Country.

Floods are part of the Australian landscape. Here trees mark the seasonal riverbeds in the Queensland outback between Cloncurry and Mount Isa.
Cecilia Bischeri, Author provided

The concept of adaptation as a built-in requirement of living in this environment then becomes pivotal. In designing and developing future-ready cities, we must aim to build resilient communities.

This is the ambitious project I am working on. It involves different figures and expertise with a shared vision and the support of government administrations that are willing to invest in a future beyond their elected term of office.

Ideas for Gold Coast Resilientscape

I live and work in the City of Gold Coast. Water is a fundamental part of the city’s character and beauty. In addition to the ocean, a complex system of waterways shapes a unique urban environment. However, this also exposes the city to a series of challenges, including flooding.

Last September, an updated flood overlay map was made available to the community. The map takes into account the projections of a 0.8 metre increase in the sea level and 10% increases in storm tide intensity and rainfall intensity.

These factors are reflected in the 1-in-100-year flood overlay. It shows undoubtedly that the boundaries between land and water are changeable.

Building walls between the city and water as the primary flood protection strategy is not a solution. A rigid border can actually intensify the catastrophe. New Orleans and the levee failures during the passage of Hurricane Katrina in 2005 provide a stark illustration of this.

Instead, what would happen and what would our cities look like if we designed green and public infrastructures that embody flooding as part of the natural context of our cities and territory?




Read more:
Design for flooding: how cities can make room for water


The current project, titled RESILIENTSCAPE: A Landscape for Gold Coast Urban Resilience, considers the role of architecture in enhancing the resilience of cities and communities against flooding. The proposal, in a nutshell, explores the possibilities that urban landscape design and implementation provide for resilience.

RESILIENTSCAPE focuses on the Nerang River catchment and the Gold Coast Regional Botanic Gardens, in the suburb of Benowa. The river and gardens were adopted as a case study for a broader strategy that aims to promote architectural solutions for a resilient City of Gold Coast. The project investigates the possibility of using existing green pockets along the Nerang River to store and retain excess water during floods.

Gold Coast Regional Botanic Gardens is one of the green areas along the Nerang River that could be used to store and retain flood water.
Batsv/Wikimedia Commons, CC BY-SA

These green spaces, however, will not just serve as “water tanks”. If mindfully planned, the green spaces can double up as public parks and facilities. This would enrich the community’s social realm and maximise their use and return on investment.

The design of a landscape responsive to flooding can, by improving local urban resilience, dramatically change the impact of these events.

The goal of creating urban areas that are adaptive to an impermanent water landscape is the main driver of the project. New Orleans after Hurricane Katrina and New York after Sandy are investing heavily in this direction and promoting international design competitions and community participation to mould a more resilient future. Queensland, what are we waiting for?




Read more:
Floods don’t occur randomly, so why do we still plan as if they do?



This article has been updated to clarify the use of flood data by insurers in assessing risk and the cost of cover.The Conversation

Cecilia Bischeri, Lecturer in Architecture, Griffith University

This article is republished from The Conversation under a Creative Commons license. Read the original article.