Australia could see fewer cyclones, but more heat and fire risk in coming months


Jonathan Pollock, Australian Bureau of Meteorology; Andrew B. Watkins, Australian Bureau of Meteorology; Catherine Ganter, Australian Bureau of Meteorology, and Paul Gregory, Australian Bureau of Meteorology

Northern Australia is likely to see fewer cyclones than usual this season, but hot, dry weather will increase the risk of fire and heatwaves across eastern and southern Australia.

The Bureau of Meteorology today released its forecast for the tropical cyclone season, which officially runs from November 1 to April 30.




Read more:
It’s only October, so what’s with all these bushfires? New research explains it


Also published today is the October to April Severe Weather Outlook, which examines the risk of other weather extremes like flooding, heatwaves and bushfires.

Warmer oceans means more cyclones

On average, 11 tropical cyclones form each season in the Australian region. Around four of those cross the coast. The total number each season is roughly related to how much cooler or warmer than average the tropical oceans near Australia are during the cyclone season.

Map showing the average number of tropical cyclones through the Australian region and surrounding waters in ENSO-neutral years, using all years of data from the 1969-70 to 2017-18 tropical cyclone season.

One of the biggest drivers of change in ocean temperatures is the El Niño–Southern Oscillation, or ENSO. During La Niña phases of ENSO, the warmest waters in the equatorial Pacific build up in the western Pacific and to the north of Australia. That region then becomes the focus for more cloud, rainfall and tropical cyclones.

But during El Niño, the warmest water shifts towards the central Pacific and away from northern Australia. This decreases the likelihood of cyclones in our region.




Read more:
Explainer: El Niño and La Niña


And when ENSO is neutral, there is little push towards above or below average numbers of cyclones.

Temperatures in the tropical Pacific Ocean have been ENSO-neutral since April and are likely to stay neutral until at least February 2020. However, some tropical patterns are El Niño-like, including higher-than-average air pressure at Darwin. This may be related to the current record-strong positive Indian Ocean Dipole – another of Australia’s major climate drivers – and the cooler waters surrounding northern Australia.

The neutral ENSO phase alongside higher-than-average air pressure over northern Australia means we expect fewer-than-average tropical cyclones in the Australian region this season. The bureau’s Tropical Cyclone Season Outlook model predicts a 65% chance of fewer-than-average cyclones.

At least one tropical cyclone has crossed the Australian coast every season since reliable records began in the 1970s, so people across northern Australia need to be prepared every year. In ENSO-neutral cyclone seasons, this first cyclone crossing typically occurs in late December.




Read more:
El Niño has rapidly become stronger and stranger, according to coral records


Other severe weather

While cyclones are one of the key concerns during the coming months, the summer months also bring the threat of several other forms of severe weather, including bushfires, heatwaves and flooding rain.

With dry soils inland, and hence little moisture available to cool the air, and a forecast for clear skies and warmer days, there is an increased chance that heat will build up over central Australia during the spring and summer months. This increases the chance of heatwaves across eastern and southern Australia when that hot air is drawn towards the coast by passing weather systems.

Australian seasonal bushfire outlook, as of August 2019. Vast areas of Australia, particularly the east coast, have an above-normal fire potential this season.
Bushfire and Natural Hazards CRC/Australasian Fire and Emergency Service Authorities Council

Likewise, the dry landscape and the chance of extreme heat also raise the risk of more bushfires throughout similar parts of Australia, especially on windy days. And with fewer natural firebreaks such as full rivers and streams, even greater care is needed in some areas.

Widespread floods are less likely this season. This is because of forecast below-average rainfall and also because dry soils mean the first rains will soak into the ground rather than run across the landscape.

However, as we saw in northern Queensland in January and February this year, when up to 2 metres of rainfall fell in less than 10 days, localised flooding can occur in any wet season if a tropical low parks itself in one location for any length of time.




Read more:
Catastrophic Queensland floods killed 600,000 cattle and devastated native species


Most of all, it’s always important to follow advice from emergency services on what to do before, during and after severe weather. Know your weather, know your risk and be prepared. You can stay up to date with the latest forecast and warnings on the bureau’s website and subscribe to receive climate information emails.The Conversation

Jonathan Pollock, Climatologist, Australian Bureau of Meteorology; Andrew B. Watkins, Head of Long-range Forecasts, Australian Bureau of Meteorology; Catherine Ganter, Senior Climatologist, Australian Bureau of Meteorology, and Paul Gregory, BOM, Australian Bureau of Meteorology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

It’s only October, so what’s with all these bushfires? New research explains it



Firefighters battle bushfires in Angourie, northern New South Wales, on September 10 this year, marking another early start to the season.
Jason O’Brien/AAP

Chris Lucas, Australian Bureau of Meteorology and Sarah Harris

Summer might be more than six weeks away, but out-of-control bushfires have already torn across parts of eastern Australia in recent days, destroying homes and threatening lives.

As of Wednesday afternoon, up to 30 homes were feared lost or badly damaged by bushfires burning in northern New South Wales. About 40 fires burned across the state.

This did not come as a surprise to meteorologists and fire agencies. Record-breaking heat and windy conditions were forecast for parts of NSW and Queensland this week, prompting severe fire danger ratings.

We’re often told the Australian bushfire season is starting earlier. This year it began in September on the eastern seaboard. Last year and in 2013, significant spring fires hit NSW and in 2015 they affected much of the nation’s southeast.

But what lies behind this phenomenon? We examined seasonal fire weather history for 44 years at 39 weather stations to find the precise answer.

This analysis is the most comprehensive ever conducted in Australia. It confirms the strength of the relationship between climate drivers such as El Niño, climate change, and the Australian bushfire season. It also demonstrates that a few milder bushfire seasons do not mean climate change isn’t happening.

A house burnt by bushfires in Laidley, southeast Queensland, photographed on October 9 2019.
Scott Davis/AAP

Hot, dry, windy conditions spell fire trouble

The prerequisites for a severe bushfire season are high temperatures, low humidity, and strong winds that coincide with long periods of low rainfall.

These weather ingredients are used to calculate an area’s fire danger rating, using the Forest Fire Danger Index. The index produces a score reflecting the severity of fire weather on a given day, where zero represents minimal fire danger, 50 represents conditions where a fire ban may be issued, and 100 is considered potentially catastrophic.




Read more:
Climate change is bringing a new world of bushfires


Loss of human lives and property most often occurs on days when the index is high in a particular area. But strong seasonal fire weather doesn’t always translate to high-impact fires. Other factors in play include terrain, vegetation, ignition and the weather on the day.

In our research, we analysed the strength of the worst fire weather conditions to understand the relative severity of fire weather during different seasons and years, in relation to various climate drivers.

A Bureau of Meteorology video explaining bushfire weather.

Why is fire weather so different every year?

In Australia, the year-to-year changes in climatic conditions are largely driven by three factors: the El Niño Southern Oscillation, the Indian Ocean Dipole, and the Southern Annular Mode.

Each of these climate drivers involves either changes to sea surface temperatures, wind movements, or both. They can all can affect temperature and rainfall patterns across the Southern Hemisphere, including Australia.

Our research confirmed that across the continent over more than four decades, climate drivers have affected the variability of Australia’s fire weather.




Read more:
The phoenix factor: what home gardeners can learn from nature’s rebirth after fire


Of these drivers, the El Niño Southern Oscillation is the most influential. Weather during an El Niño phase is typically hot and dry, leading to worse seasonal bushfire conditions.

The positive phase of the Indian Ocean Dipole often coincides with El Niño and exacerbates its effects. This phase generally results in lower than average rainfall across southern Australia.

But when these two climate modes are in a negative phase, our research confirms that Australia often experiences more rain and milder bushfire conditions.

The modes evolve over many months and their effects on fire weather persist for several seasons. Their state during winter and spring is a strong indicator for the rest of the fire season for much of Australia.

The strength of the relationship between climate drivers and fire weather in spring. Purple squares show the strength of the relationship. Larger squares indicate a stronger relationship.
User provided

The Southern Annular Mode refers to the north-south movement of strong westerly winds in parts of the Southern Hemisphere. When the mode is in a prolonged negative phase, fire weather conditions in Australia are worse – particularly in NSW. This effect is pronounced in winter and spring and means less rainfall and strong westerly winds.

The 2019 winter saw a persistent negative Southern Annular Mode, as did the 2013 and 2018 winter and spring seasons. There was a strong El Niño event and positive Indian Ocean Dipole in 2015. Australia’s bushfire season started earlier than usual in each of these years.

The converse is also true. In 2011 a strong La Niña (the opposite of an El Niño) resulted in milder bushfire seasons, as did the negative Indian Ocean Dipole of 2016.

Climate change is a culprit too

Long-term climate change in Australia is an undeniable reality. The State of the Climate 2018 report for Australia notes strong land surface temperature increases and a 10-20% decline in cool season rainfall across southern Australia since the 1970s. These changes are closely associated with increasing human greenhouse gas emissions, as well as natural variability.

The changed conditions has led to an average increase in the severity of seasonal bushfire weather across Australia – especially in southern parts of the continent. The increased severity affects all seasons but in particular spring, which means that, on average, the bushfire season is starting earlier.

NSW Premier Gladys Berejiklian visits the control room at the NSW Rural Fire Service headquarters in Sydney on October 9, 2019.
AAP/James Gourley

Pulling it all together

Our research has made clear that climate modes bring large and rapid swings to the fire weather, while human-induced climate change gradually increases background fire weather conditions. The trend generally means an earlier start to the bushfire seasons than in the past.




Read more:
Grim fire season looms but many Australians remain unprepared


Climate change is definitely playing a role in producing the earlier start to bushfire seasons and overall more extreme seasons, particularly in southeastern Australia. However, the natural variations in climate modes continue to play a key role, meaning we should not expect every bushfire season to be worse than the last as a result of climate change.

Similarly, a few milder bushfire seasons among a string of record high seasons does not mean that climate change should be dismissed.The Conversation

Chris Lucas, Senior Research Scientist, Australian Bureau of Meteorology and Sarah Harris, Manager Research and Development, Country Fire Authority

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The phoenix factor: what home gardeners can learn from nature’s rebirth after fire


Kingsley Dixon, Curtin University

A startling phenomenon occurs after a bushfire tears through a landscape. From the blackened soil springs an extraordinary natural revival – synchronised germination that carpets the landscape in flowers and colour.

So what is it in bushfires that gives plants this kiss of life? The answer is smoke, and it is increasingly transforming everything from large-scale land regeneration to nurseries and home gardening.

The mystery of seed germination

Burnt plants survive bushfires in various ways. Some are protected by woody rootstocks and bark-coated stems; others resprout from underground buds. But most plants awaken their soil seed bank, which may have lain dormant for decades, or even a century.

However, this smoke-induced seed germination is not easily replicated by humans trying to grow the plants themselves. Traditionally, many native Australian flora species – from fringe-lilies to flannel flowers and trigger plants – could not be grown easily or at all from seed.

The fringe-lily, the seed of which has been found to germinate after smoke treatment.
Flickr

In recent decades this has meant the plants were absent from restoration programs and home gardens, reducing biodiversity.

In 1989, South African botanist and double-PhD Dr Johannes de Lange grappled with a similar conundrum. He was trying to save the critically rare Audonia capitata, which was down to a handful of plants growing around Cape Town. The seed he collected could not be germinated, even after heat and ash treatments from fire. Extinction looked inevitable.

But during a small experimental fire, a wind change enveloped de Langer in thick
smoke. With watering eyes, he realised that smoke might be the mysterious phoenix factor that would coax the seeds to life. By 1990 he had shown puffing smoke onto soil germinated his rare species in astonishing numbers.

The technique is simple. Create a smouldering fire of dry and green leafy material and pass the smoke into an enclosed area where seed has been sown into seed trays or spread as a thin layer. Leave for one hour and water sparingly for ten days to prevent the smoke from washing out of the seed mix. The rest is up to nature.

Diagram showing the various ways that smoke is applied to seeds.
Supplied by Simone Pedrini

Taking smoke germination to the world

Soon after the de Lange discovery, I visited the Kirstenbosch National Botanic Garden in Cape Town. I was shown a few trays of seedlings out the back – some from seeds treated with smoke, some without. The difference was stark. Smoke-treated seeds produced a riot of green, compared to others that resulted in sparse, straggling seedlings.

A tray of seedlings where seed was treated with smoke, left, compared to a non-treated tray.
Supplied by author

But was smoke just an isolated African phenomenon, I wondered? Would 150 years of frustrated efforts to germinate some of Australia’s most spectacular and colourful species – from grevillea and fan-flowers to rare native heaths – also be transformed by smoke?

At first, the answer appeared to be no, as every attempt with Australian wildflower seed failed. But after many trials, which I oversaw as Director of Science at the Western Australian Botanic Garden, success came in 1993. Extra time in the smoke house and a serendipitous failure in the automated watering system resulted in the germination of 25 different species with seedlings. Some were thought to have never been germinated by humans before, such as wild-picked yellow bells (Geleznowia verrucosa) or the giant feather rush (Loxocarya gigas).




Read more:
The exquisite blotched butterfly orchid is an airy jewel of the Australian landscape


This discovery meant for the first time smoke could be used for difficult-to-germinate species for the home gardener and cut flower growers. These days more than 400 species of native seeds, and potentially more than 1,000, respond to smoke treatment. They include kangaroo paw, cotton-tails, spinifex, native bush food tomatoes and fragrant boronias.

Highway plantings, mine site restoration and, importantly, efforts to save threatened plant species now also benefit greatly from the smoke germination technique. For example, smoke houses are now a regular part of many nurseries, which also purchase smoke water to soak seeds for sowing later.

Kangaroo paw seeds respond well to smoke treatment.
Supplied by the author

In mine site restoration, direct application of smoke to seeds dramatically improves germination performance. This translates into multimillion-dollar savings in the cost of seed.

Smoke is also a powerful research tool used to audit native soil seed banks, which includes demonstrating the adverse affects of prescribed burning in winter and spring on native species survival.

Collaboration with research groups in the US, China, Europe and South America has expanded the use of smoke to germinate similarly stubborn seed around the world.

So what is smoke’s secret ingredient?

In 2013, an Australian research team made a breakthrough in determining which of the 4,000 chemicals in a puff of smoke resulted in such starting germination. They patented the chemical and published the discovery in the journal Science.

The smoke chemical, part of the butenolide group of molecules, was named karrikinolide, inspired by the local Indigenous Noongar word for smoke, karrik.

Karrikinolide is no shrinking violet of a molecule: just half a teaspoon is enough to germinate a hectare of bushland, which equates to 20 million seeds.




Read more:
How the land recovers from wildfires – an expert’s view


Smoke is sold to home gardeners and for commercial use in the form of smoke water, smoke-impregnated disks, or smoke granules. All contain the magical karrikinolide molecule.

Why not try it at home?

Home gardeners can try smoking their own seeds – but what you burn matters. Wood smoke can be toxic to seeds. Making your own smoke from leafy material and dry straw ensures you have the right combustible materials for germination.

At least 400 native seed species, and possibly up to 1,000, have been found to respond to smoke treatment.
Supplied by author

For the home gardener, having a bottle of smoke water on hand or constructing your own smokehouse can make all the difference to germinating many species – including those stubborn parsley seeds. To find out more, a webinar at this link shows you how to use smoke and even construct your own smoke apparatus.The Conversation

Kingsley Dixon, John Curtin Distinguished Professor, Curtin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Climate change is bringing a new world of bushfires


Dale Dominey-Howes, University of Sydney

Spring has barely arrived, and bushfires are burning across Australia’s eastern seaboard. More than 50 fires are currently burning in New South Wales, and some 15,000 hectares have burned in Queensland since late last week.

It’s the first time Australia has seen such strong fires this early in the bushfire season. While fire is a normal part of Australia’s yearly cycle and no two years are alike, what we are seeing now is absolutely not business as usual.




Read more:
Grim fire season looms but many Australians remain unprepared


And although these bushfires are not directly attributable to climate change, our rapidly warming climate, driven by human activities, is exacerbating every risk factor for more frequent and intense bushfires.

The basics of a bushfire

For some bushfire 101, a bushfire is “an uncontrolled, non-structural fire burning in grass, scrub, bush or forest”. This means the fire is in vegetation, not a building (non-structural), and raging across the landscape – hence, uncontrolled.

For a bushfire to get started, several things need to come together. You need fuel, low humidity (which also often means the fuel itself has a low moisture content and is easier to burn), and oxygen. It also helps to have an unusually high ambient temperature and winds to drive the fire forward.

In Australia, we divide bushfires into two types based on the shape and elevation of the landscape.

First are flat grassland bushfires. These are generally fast-moving, fanned by winds blowing across flattish open landscapes, and burn through an area in 5–10 seconds and may smoulder for a few minutes. They usually have low to medium intensity and can damage to crops, livestock and buildings. These fires are easy to map and fight due to relatively straightforward access.




Read more:
The summer bushfires you didn’t hear about, and the invasive species fuelling them


Second are hilly or mountainous bushfires. These fires are slower-moving but much more intense, with higher temperatures. As they usually occur in forested, mountainous areas, they also have more dead vegetation to burn and are harder to access and fight.

They burn slowly, passing through an area in 2-5 minutes and can smoulder for days. Fires in upper tree canopies move very fast. Mountainous bushfires actually speed up as they burn up a slope (since they heat and dry out the vegetation and atmosphere in front of the fire, causing a runaway process of accelerating fire movement).

Climate change and bushfire risk

To be clear, as previously reported, the current bushfires are not specifically triggered by climate change.

However, as bushfire risk is highest in warm to hot, dry conditions with low humidity, low soil and fuel load moisture (and are usually worse during El Niño situations) – all factors that climate change in Australia affects – climate change is increasing the risk of more frequent and intense bushfires.

Widespread drought conditions, very low humidity, higher than average temperatures in many places, and strong westerly winds driven by a negative Southern Annular Mode (all made worse by human-induced climate change) have collided right now over large areas of the eastern seaboard, triggering extremely unusual bushfire conditions – certainly catching many communities unawares before the start of the official bushfire season.




Read more:
The air above Antarctica is suddenly getting warmer – here’s what it means for Australia


Different regions of Australia have traditionally experienced peak bushfire weather at different times. This has meant that individual households, communities and the emergency services have had specific periods of the year to prepare. These patterns now seem to be breaking down, and bushfires are happening outside these regular places and times.

Map of bushfire seasons.
Bureau of Meteorology

New challenges for the emergency services

While experts recently forecast a worse-than-average coming bushfire season, the current emergency has essentially exploded out of nowhere.

Many Australian communities do know how to prepare but there is always some apathy at the start of bushfire season around getting households and communities bushfire-ready. When it’s still relatively cold and feeling like the last whisps of winter are still affecting us, bushfire preparation seems very far off.

Compounding our worsening bushfire conditions, we are increasingly building in bushfire-prone areas, exposing people and homes to fire. This tips the scales of risk further in favour of catastrophic losses. Sadly too, these risks always disproportionately affect the most vulnerable.




Read more:
Natural disasters are affecting some of Australia’s most disadvantaged communities


With such extensive fires over wide areas, the current emergency points to an extremely frightening future possibility: that emergency services become more and more stretched, responding to fires, floods, storms, tropic cyclones and a myriad other natural hazards earlier in each hazard season, increasingly overlapping.

Our emergency services do an amazing job but their resources and the energy of their staff and volunteers can only go so far.

Regularly the emergency services of one area or state are deployed to other areas to help respond to emergencies.

But inevitably, we will see large-scale disasters occurring simultaneously in multiple territories, making it impossible to share resources. Our emergency management workforce report they are already stressed and overworked, and losing the capacity to share resources will only exacerbate this.

Immediate challenges will be to continue funding emergency management agencies across the nation, ensuring the workforce has the necessary training and experience to plan and respond to a range of complex emergencies, and making sure local communities are involved in actively planning for emergencies.The Conversation

Dale Dominey-Howes, Professor of Hazards and Disaster Risk Sciences, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Grim fire season looms but many Australians remain unprepared



Burnt out cars in Tingha, New South Wales, in February 2019.
AAP/Dave Hunt

Richard Thornton, Bushfire and Natural Hazards CRC

Bushfires are predicted to be worse than normal across much of Australia this summer but research shows many people, especially those in high-risk areas, remain unprepared.

The latest Australian Seasonal Bushfire Outlook shows the 2019-20 fire season has the potential to be an active season across the country, following a very warm and dry start to the year.

The east coast of Queensland, New South Wales, Victoria and Tasmania, as well as parts of southern Western Australia and South Australia, face above-normal fire potential. It means communities in those areas, and across Australia, should start planning their emergency fire response.

The ingredients for a bad fire season

Above-normal bushfire potential refers to the ability of a large fire to take hold. It takes into account recent and predicted weather for a particular area, the dryness of the land and forests, and recent fire history.

The year to date has been unusually warm and dry for large parts of Australia. In fact it has been the fifth-driest start to the year on record, and the driest since 1970. Some areas, such as New South Wales into southeastern Queensland, are into their third year of dry conditions.

Vast areas of Australia, particularly the east coast, have an above-normal fire potential this season.
BNHCRC

The warming trend means that above average temperatures now tend to occur in most years, and 2019 has followed this pattern. These high temperatures further dry the landscape and vegetation.




Read more:
The summer bushfires you didn’t hear about, and the invasive species fuelling them


An early start to the fire season has been declared in many areas across eastern Australia. The dry landscape means that any warm and windy conditions are likely to see elevated fire risk. However in some drought-affected areas, poor growth of grass and annual plants means that vegetation loads are reduced, which may lower the fire risk.

The climate outlook for the next few months is also a crucial factor. Of particular interest are the future tendencies of Pacific sea surface temperature associated with the El Niño-Southern Oscillation, as well as the Indian Ocean Dipole, major climate drivers over Australia.

Climate change doesn’t create bushfires, but can make them worse

Heat, drought, flood and fire are not new phenomena for Australia. What is different now is that there is an underlying 1℃ increase in average temperatures since industrial times began – the result of climate change – which means that the variability of normal events sits on top of that. So climate change alone doesn’t create a bad fire season, but can make the weather conditions conducive to very large and destructive fires.

A bushfire threatened homes near Lake Macquarie in August this year.
AAP/Darren Pateman

Weather records are routinely being broken and all indications are that temperatures will continue to increase.

We cannot be sure what this means for extreme hazards like bushfire. This is an area in critical need of further research into weather prediction, land planning, infrastructure development, population trends and community awareness.

Firefighting resources are finite

The distribution and readiness of firefighting resources are also considered when calculating fire potential.

In Victoria’s East Gippsland, for example, forests have been extremely dry for many years. If a fire were to start under bad conditions, there is a high likelihood it would grow too large for local resources, and they would need to call for extra support from elsewhere.




Read more:
Curious Kids: how do bushfires start?


Fire seasons are lengthening and overlapping across states, and indeed across the globe. So we need to think of new ways of dealing with bushfires, floods, cyclones, and heatwaves. The old ways of sharing resources such as aerial firefighting equipment, and fire fighters between Australian states and other countries, may not always be possible. So we need to discover better ways to manage all our resources.

Overlapping fire seasons means the sharing of fire crews and equipment between states may not always be possible.
AAP

Be prepared, and get your kids involved

Research has identified significant trends of vulnerability linked to demographic changes, such as a growing and ageing population. For example, the population of those aged over 85 is predicted to double in the next 25 years. The general population is also increasingly shifting into traditionally hazard-prone areas such as forested or coastal rural areas.

Our research is consistently showing that many Australians, especially those in high risk areas, are not sufficiently ready for fire and have not established fire plans well ahead of time. For example, people may underestimate the risks to life and property if the fire danger is not rated as “catastrophic”. The research showed many properties were under-insured and some people overestimated the response capacity of fire services.

Experts say all Australians, not just those in high-risk areas, should prepare for the bushfire season.
AAP

So, make sure you’ve got a plan, talk about it with your family and ensure you have back up plans B, C and D. Include your children in planning to help them prepare, and don’t forgot about your pets and animals too.

Backed by the research, emergency warnings to people under the threat of a fire have been transformed in recent years. But do not wait for a warning, as it might be too late. Everyone should be aware of their surroundings.

The latest outlook report is the work of the Bureau of Meteorology and fire and land management agencies around the country, brought together by the Bushfire and Natural Hazards Cooperative Research Centre.

For more information on how to prepare and be ready for the fire season, consult your local fire service website.The Conversation

Richard Thornton, Chief Executive Officer, Bushfire and Natural Hazards CRC

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Amazon is on fire – here are 5 things you need to know



Huge fires are raging across multiple regions of the Amazon Basin.
Guaira Maia/ISA

Danilo Ignacio de Urzedo, University of Sydney

Record fires are raging in Brazil’s Amazon rainforest, with more than 2,500 fires currently burning. They are collectively emitting huge amounts of carbon, with smoke plumes visible thousands of kilometres away.

Fires in Brazil increased by 85% in 2019, with more than half in the Amazon region, according to Brazil’s space agency.

This sudden increase is likely down to land degradation: land clearing and farming reduces the availability of water, warms the soil and intensifies drought, combining to make fires more frequent and more fierce.




Read more:
Amazon rainforests that were once fire-proof have become flammable


1. Why the Amazon is burning

The growing number of fires are the result of illegal forest clearning to create land for farming. Fires are set deliberately and spread easily in the dry season.

The desire for new land for cattle farming has been the main driver of deforestation in the Brazilian Amazon since the 1970s.

Ironically, farmers may not need to clear new land to graze cattle. Research has found a significant number of currently degraded and unproductive pastures that could offer new opportunities for livestock.

New technical developments also offer the possibility of transforming extensive cattle ranches into more compact and productive farms – offering the same results while consuming less natural resources.

2. Why the world should care

The devastating loss of biodiversity does not just affect Brazil. The loss of Amazonian vegetation directly reduces rain across South America and other regions of the world.

The planet is losing an important carbon sink, and the fires are directly injecting carbon into the atmosphere. If we can’t stop deforestation in the Amazon, and the associated fires, it raises real questions about our ability to reach the Paris Agreement to slow climate change.

The Brazilian government has set an ambitious target to stop illegal deforestation and restore 4.8 million hectares of degraded Amazonian land by 2030. If these goals are not carefully addressed now, it may not be possible to meaningfully mitigate climate change.

3. What role politics has played

Since 2014, the rate at which Brazil has lost Amazonian forest has expanded by 60%. This is the result of economic crises and the dismantling of Brazilian environmental regulation and ministerial authority since the election of President Jair Bolsonaro in 2018.

Bolsonaro’s political program includes controversial programs that critics claim will threaten both human rights and the environment. One of his first acts as president was to pass ministerial reforms that greatly weakened the Ministry of the Environment




Read more:
Amazon deforestation, already rising, may spike under Bolsonaro


Regulations and programs for conservation and traditional communities’ rights have been threatened by economic lobbying.

Over the last months, Brazil’s government has announced the reduction and extinction of environmental agencies and commissions, including the body responsible for combating deforestation and fires.

4. How the world should react

Although Brazil’s national and state governments are obviously on the front line of Amazon protection, international actors have a key role to play.

International debates and funding, alongside local interventions and responses, have reshaped the way land is used in the tropics. This means any government attempts to further dismantle climate and conservation policies in the Amazon may have significant diplomatic and economic consequences.

For example, trade between the European Union and South American trading blocs that include Brazil is increasingly infused with an environmental agenda. Any commercial barriers to Brazil’s commodities will certainly attract attention: agribusiness is responsible for more than 20% of the country’s GDP.

Brazil’s continued inability to stop deforestation has also reduced international funding for conservation. Norway and Germany, by far the largest donors to the Amazon Fund, have suspended their financial support.

These international commitments and organisations are likely to exert considerable influence over Brazil to maintain existing commitments and agreements, including restoration targets.




Read more:
The world protests as Amazon forests are opened to mining


5. There is a solution

Brazil has already developed a pioneering political framework to stop illegal deforestation in the Amazon. Deforestation peaked in 2004, but dramatically reduced following environmental governance, and supply change interventions aiming to end illegal deforestation.

Environmental laws were passed to develop a national program to protect the Amazon, with clearing rates in the Amazon falling by more than two-thirds between 2004 and 2011.

Moreover, private global agreements like the Amazon Beef and Soy Moratorium, where companies agree not to buy soy or cattle linked to illegal deforestation, have also significantly dropped clearing rates.

We have financial, diplomatic and political tools we know will work to stop the whole-sale clearing of the Amazon, and in turn halt these devastating fires. Now it is time to use them.




Read more:
Huge wildfires in the Arctic and far North send a planetary warning


The Conversation


Danilo Ignacio de Urzedo, PhD candidate, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.