The science of landslides, and why they’re so devastating in PNG

File 20180306 146655 nxayso.jpeg?ixlib=rb 1.1
A magnitude 7.5 earthquake took place on February 25, 81km southwest of Porgera, Papua New Guinea.
US Geological Survey

Benjy Marks, University of Sydney

A magnitude 7.5 earthquake struck the Southern Highlands region of Papua New Guinea on February 25, 2018. This was followed by a series of aftershocks, producing widespread landslides that have killed dozens and injured hundreds. The same landslides have cut off roads, telecommunications and power to the area.


The PNG government has declared a state of emergency in the region. There is growing concern over several valleys that have been dammed by landslides and are beginning to fill with water – now ready to collapse and surge downstream, directly towards more villages.

Why is Papua New Guinea so susceptible to landslides? It’s a combination of factors – steep terrain, earthquakes and aftershocks plus recent seasonal rains have created an environment that is prone to collapse.

Read more:
Five active volcanoes on my Asia Pacific ‘Ring of Fire’ watch-list right now

How land becomes unstable

The Earth around us is generally pretty stable, but when the ground shakes during an earthquake it can start to move in ways we don’t expect.

Pressure changes during an earthquake create an effect in the soil called liquefaction, where the soil itself acts as a fluid.

When wet soil is exposed to physical pressure, other physical changes take place.

When lots of water is present in the soil, as is the case now during the monsoon season in Papua New Guinea, liquefaction can happen even more easily.

When liquefaction occurs, the earthquake creates changes due to friction. Imagine a visit to the greengrocer, where an accidental bumping of a carefully stacked pile of apples can cause cause them all to suddenly collapse. What was holding the pile together was friction between the individual apples – and when this disappears, so does the pile.

In an earthquake, two tectonic plates slip past one another deep underground, rubbing together and cracking the nearby rocks. The effects of this movement up at the surface can vary depending on the nature of the earthquake, but one feature is fairly common: small objects bounce around. The sand grains just below the surface do the same thing, but a bit less excitedly. A few metres down, grains could be bouncing around just enough to lose contact with each other, removing the friction, and becoming unstable.

A 2012 landslide in the southern highlands of Papua New Guinea.
dfataustralianaid/flickr, CC BY

Things are normally stable because they’re sitting on top of something else. When that support suddenly disappears, things tend to fall down – this is the classic dodgy folding chair problem experienced by many.

In engineering, we call this “failure” – and in the building industry it usually occurs immediately before the responsible engineer receives a call from a lawyer. Mechanically, this failure happens when the available friction isn’t enough to support the weight of the material above it.

Read more:
Explainer: after an earthquake, how does a tsunami happen?

When soil acts like fluid

Once a slope fails, it starts to fall downhill. If it really slides, then we’re back to the same situation of grains bouncing around. Now, none of the grains are resting against each other, and the whole thing is acting like a fluid.

A couple of interesting things happen at this point. First, as the grains are bouncing around, small particles start to fall through all the newly formed holes that have opened up. This occurs for the same reason that you find all the crumbs at the bottom of your cereal box, and all of the unpopped kernels at the bottom of your bowl of popcorn. Once these smaller fragments accumulate at the bottom of the flowing landslide, they can help it slide more easily, accelerating everything and increasing its destructive power.

Second, landslides typically flow faster at the surface than below, so as large particles accumulate at the top they are also the ones moving the fastest, and they start to collect at the front of the landslide. These large particles, often boulders and trees, can be incredibly damaging for any people or structures in their path.

Simulation of a landslide impacting a structure.
Benjy Marks/USyd

The image above shows a laboratory simulation of a landslide flowing down a slope and hitting a fixed wall. The spherical particles are coloured by size (small is yellow; large is blue). Data from these sorts of studies can help predict the forces that an object will feel if it gets hit by a landslide.

Watching and waiting

These complex dynamics mean that we really need to know a lot about the geography and geology of a particular slope before any kind of reliable prediction could be made about the behaviour of a particular landslide.

In the remote areas of Papua New Guinea, accumulating this data at every point on every slope is a tough challenge. Luckily, huge advancements have recently been made in remote sensing, so that planes and satellites can be used to extract this vital information.

Using sophisticated sensors, they can see past foliage and map the ground surface in high resolution. As satellites orbit quite regularly, small changes in the surface topography can be monitored. Scientists hope that by using this information, unstable regions that haven’t yet failed can be identified and monitored.

Read more:
Controversial artist Elizabeth Durack gave us a sensitive insight into the lives of Papuan women

Papua New Guinea is located on an active fault line and has had nine major earthquakes in the past five years. Combined with the often remote and steep terrain, together with a monsoon season that delivers repeated heavy rainfall events, it is a particularly active area for landslides to develop.

The ConversationThe dry season in Papua New Guinea will not arrive until June. During the current wet season we may see even more slopes fail due to destabilisation by the recent earthquakes.

Benjy Marks, Lecturer in Geomechanics, University of Sydney

This article was originally published on The Conversation. Read the original article.


California’s other drought: A major earthquake is overdue

File 20180126 100908 1qg3z3l.jpg?ixlib=rb 1.1
Fires break out across San Francisco after the April 18, 1906 earthquake.

Richard Aster, Colorado State University

California earthquakes are a geologic inevitability. The state straddles the North American and Pacific tectonic plates and is crisscrossed by the San Andreas and other active fault systems. The magnitude 7.9 earthquake that struck off Alaska’s Kodiak Island on Jan. 23, 2018 was just the latest reminder of major seismic activity along the Pacific Rim.

Tragic quakes that occurred in 2017 near the Iran-Iraq border and in central Mexico, with magnitudes of 7.3 and 7.1, respectively, are well within the range of earthquake sizes that have a high likelihood of occurring in highly populated parts of California during the next few decades.

The earthquake situation in California is actually more dire than people who aren’t seismologists like myself may realize. Although many Californians can recount experiencing an earthquake, most have never personally experienced a strong one. For major events, with magnitudes of 7 or greater, California is actually in an earthquake drought. Multiple segments of the expansive San Andreas Fault system are now sufficiently stressed to produce large and damaging events.

The good news is that earthquake readiness is part of the state’s culture, and earthquake science is advancing – including much improved simulations of large quake effects and development of an early warning system for the Pacific coast.

The last big one

California occupies a central place in the history of seismology. The April 18, 1906 San Francisco earthquake (magnitude 7.8) was pivotal to both earthquake hazard awareness and the development of earthquake science – including the fundamental insight that earthquakes arise from faults that abruptly rupture and slip. The San Andreas Fault slipped by as much as 20 feet (six meters) in this earthquake.

Although ground-shaking damage was severe in many places along the nearly 310-mile (500-kilometer) fault rupture, much of San Francisco was actually destroyed by the subsequent fire, due to the large number of ignition points and a breakdown in emergency services. That scenario continues to haunt earthquake response planners. Consider what might happen if a major earthquake were to strike Los Angeles during fire season.

Collapsed Santa Monica Freeway bridge across La Cienega Boulevard, Los Angeles after the
Northridge earthquake, Jan. 17, 1994.

Robert A. Eplett/FEMA

Seismic science

When a major earthquake occurs anywhere on the planet, modern global seismographic networks and rapid response protocols now enable scientists, emergency responders and the public to assess it quickly – typically, within tens of minutes or less – including location, magnitude, ground motion and estimated casualties and property losses. And by studying the buildup of stresses along mapped faults, past earthquake history, and other data and modeling, we can forecast likelihoods and magnitudes of earthquakes over long time periods in California and elsewhere.

However, the interplay of stresses and faults in the Earth is dauntingly chaotic. And even with continuing advances in basic research and ever-improving data, laboratory and theoretical studies, there are no known reliable and universal precursory phenomena to suggest that the time, location and size of individual large earthquakes can be predicted.

Major earthquakes thus typically occur with no immediate warning whatsoever, and mitigating risks requires sustained readiness and resource commitments. This can pose serious challenges, since cities and nations may thrive for many decades or longer without experiencing major earthquakes.

California’s earthquake drought

The 1906 San Francisco earthquake was the last quake greater than magnitude 7 to occur on the San Andreas Fault system. The inexorable motions of plate tectonics mean that every year, strands of the fault system accumulate stresses that correspond to a seismic slip of millimeters to centimeters. Eventually, these stresses will be released suddenly in earthquakes.

But the central-southern stretch of the San Andreas Fault has not slipped since 1857, and the southernmost segment may not have ruptured since 1680. The highly urbanized Hayward Fault in the East Bay region has not generated a major earthquake since 1868.

Reflecting this deficit, the Uniform California Earthquake Rupture Forecast estimates that there is a 93 percent probability of a 7.0 or larger earthquake occurring in the Golden State region by 2045, with the highest probabilities occurring along the San Andreas Fault system.

Perspective view of California’s major faults, showing forecast probabilities estimated by the third Uniform California Earthquake Rupture Forecast. The color bar shows the estimated percent likelihood of a magnitude 6.7 or larger earthquake during the next 30 years, as of 2014. Note that nearly the entire San Andreas Fault system is red on the likelihood scale due to the deficit of large earthquakes during and prior to the past century.

Can California do more?

California’s population has grown more than 20-fold since the 1906 earthquake and currently is close to 40 million. Many residents and all state emergency managers are widely engaged in earthquake readiness and planning. These preparations are among the most advanced in the world.

For the general public, preparations include participating in drills like the Great California Shakeout, held annually since 2008, and preparing for earthquakes and other natural hazards with home and car disaster kits and a family disaster plan.

No California earthquake since the 1933 Long Beach event (6.4) has killed more than 100 people. Quakes in 1971 (San Fernando, 6.7); 1989 (Loma Prieta; 6.9); 1994 (Northridge; 6.7); and 2014 (South Napa; 6.0) each caused more than US$1 billion in property damage, but fatalities in each event were, remarkably, dozens or less. Strong and proactive implementation of seismically informed building codes and other preparations and emergency planning in California saved scores of lives in these medium-sized earthquakes. Any of them could have been disastrous in less-prepared nations.

Remington Elementary School in Santa Ana takes part in the 2015 Great California Shakeout.

Nonetheless, California’s infrastructure, response planning and general preparedness will doubtlessly be tested when the inevitable and long-delayed “big ones” occur along the San Andreas Fault system. Ultimate damage and casualty levels are hard to project, and hinge on the severity of associated hazards such as landslides and fires.

Several nations and regions now have or are developing earthquake early warning systems, which use early detected ground motion near a quake’s origin to alert more distant populations before strong seismic shaking arrives. This permits rapid responses that can reduce infrastructure damage. Such systems provide warning times of up to tens of seconds in the most favorable circumstances, but the notice will likely be shorter than this for many California earthquakes.

Early warning systems are operational now in Japan, Taiwan, Mexico and Romania. Systems in California and the Pacific Northwest are presently under development with early versions in operation. Earthquake early warning is by no means a panacea for saving lives and property, but it represents a significant step toward improving earthquake safety and awareness along the West Coast.

The ConversationManaging earthquake risk requires a resilient system of social awareness, education and communications, coupled with effective short- and long-term responses and implemented within an optimally safe built environment. As California prepares for large earthquakes after a hiatus of more than a century, the clock is ticking.

Richard Aster, Professor of Geophysics, Colorado State University

This article was originally published on The Conversation. Read the original article.

I’ve always wondered: do nuclear tests affect tectonic plates and cause earthquakes or volcanic eruptions?

File 20171106 1061 16ni4lh.jpg?ixlib=rb 1.1
A detection station for seismic activity at Bilibion, a remote corner of Russia.
The Official CTBTO Photostream (Copyright CTBTO Preparatory Commission) , CC BY

Jane Cunneen, Curtin University

This is an article from I’ve Always Wondered, a new series where readers send in questions they’d like an expert to answer. Send your question to

Do underground nuclear tests affect Earth’s tectonic plates, and cause earthquakes or volcanic eruptions? – Anne Carroll, Victoria

Apart from escalating global fears about conflict, North Korea’s recent nuclear tests have raised questions about geological events caused by underground explosions.

Some media reports suggest the tests triggered earthquakes in South Korea. Others report the explosions may trigger a volcanic eruption at Paektu Mountain, about 100km from the test site.

So can an underground test cause an earthquake? The short answer is yes: a nuclear explosion can cause small earthquakes. But it is unlikely to affect the earth’s tectonic plates or cause a volcanic eruption.

Although a nuclear explosion releases a lot of energy in the immediate region, the amount of energy is small compared to other stresses on tectonic plates.

Read more: What earthquake science can tell us about North Korea’s nuclear test

What are tectonic plates?

Tectonic plates are slabs of the earth’s crust which move very slowly over the surface of the earth. Mountain ranges form at the edges of the plates when they collide, and ocean basins form when they move apart.

Tectonic plates are slabs of the earth’s crust.

Volcanoes occur mostly where plates are colliding. One plate overrides another, pushing it down to where it may partly melt. The partially melted rock – also known as lava – then rises to the surface, causing a volcano.

The movement of tectonic plates also causes earthquakes, which is why 90% of them occur at the plate boundaries. All but the deepest earthquakes occur along faults, which are breaks in the crust where rocks can move past each other in response to stress. This stress can be from both natural events and human activities.

Human induced earthquakes

Induced seismicity” is the term used to describe earthquakes caused by human activities.

Human induced earthquakes can be caused by anything that changes the stresses on rocks beneath the surface. These include processes that add or remove great loads from the surface, such as mining, building dams or tall buildings.

Other processes that change the amount of pressure on rocks can include fluid injection from drilling, or extraction of water from aquifers.

Human-induced earthquakes have been reported from every continent except Antarctica. Induced earthquakes only occur where there is already some stress on the rocks. The human activity adds enough stress to the rocks to reach the “tipping point” and trigger the earthquake.

Nuclear explosions can induce small earthquakes along existing faults near a test site. Some underground nuclear tests have fractured the ground surface above the explosions, causing movement on faults adjacent to explosion sites.

Earthquakes from nuclear testing

The 3 September 2017 North Korean nuclear test generated shock waves equivalent to a magnitude 6.3 earthquake. Eight minutes later, a magnitude 4.1 event was detected at the same site. This may have been linked to a collapse of a tunnel related to the blast.

Several small earthquakes measured since the event may have been induced by the nuclear test, but the largest is only a magnitude 3.6. An earthquake of this size would not be felt outside of the immediate area.

Read more: North Korea tests not just a bomb but the global nuclear monitoring system

The largest induced earthquake ever measured from nuclear testing was a magnitude 4.9 in the Soviet Union. An earthquake of this size can cause damage locally but does not affect the full thickness of the earth’s crust. This means it would not have any effect on the movement of tectonic plates.

Historical data from nuclear testing (mostly in the USA) shows that earthquakes associated with nuclear testing typically occur when the explosion itself measures greater than magnitude 5, 10–70 days after the tests, at depths of less than 5km, and closer than around 15km to the explosion site. More recent studies have concluded that nuclear tests are unlikely to induce earthquakes more than about 50km from the test site.

Volcanic eruptions

Concerns have also been raised about the risk of volcanic eruptions induced by the nuclear tests in North Korea. Paektu Mountain is about 100km from the test site and last erupted in 1903.

Mount Paektu is an active volcano on the border between North Korea and China.
Google Maps

In the 1970s, the USA conducted a number of nuclear tests in the Aleutian Islands, a volcanic island arc chain containing 62 active volcanoes.

One of the blasts, named Cannikin, was the largest underground nuclear test ever conducted by the USA. There were fears that the blast would cause a huge earthquake and tsunami. The blast did result in some induced earthquakes, but the largest was a magnitude 4.0 and there was no increase in volcanic activity.

Based on this evidence, it seems unlikely a nuclear test by North Korea will trigger an eruption of Paektu Mountain. If the volcano was on the verge of erupting, then an induced earthquake from a nuclear blast could influence the timing of the eruption. However, given the distance from the test site then even this is not likely.

Monitoring nuclear tests

The Comprehensive Nuclear Test Ban Treaty Organisation (CTBTO) has a global monitoring system to detect nuclear tests, including seismometers to measure the shock waves from the blast and other technologies.

Global network of seismic monitoring stations.
CTBTO / The Conversation, CC BY-NC-ND

Seismologists can analyse the seismic data to determine if the shock waves were from a naturally occurring earthquake or a nuclear blast. Shock waves from nuclear blasts have different properties to those from naturally occurring earthquakes.

Testing was much more common before the CTBTO was formed: between 1945 and 1996 more than 2,000 nuclear tests were conducted worldwide, including 1,032 by the USA and 715 by the Soviet Union.

The ConversationSince 1996 only three countries have tested nuclear devices: India, Pakistan and North Korea. North Korea has conducted six underground nuclear tests at the same site between 2006 and 2017.

Jane Cunneen, Research Fellow, Curtin University

This article was originally published on The Conversation. Read the original article.


Explainer: after an earthquake, how does a tsunami happen?

Jane Cunneen, Curtin University

Friday’s earthquake off Mexico was the largest in that region in over a century, and will add pressure to a region already being battered by several other natural disasters.

The earthquake occurred off the west coast of southern Mexico 69 km below the surface, with a magnitude of 8.1, making it the largest earthquake worldwide since 2015, when a magnitude 8.4 generated a tsunami off the coast of Chile.

It will be some time before we know the full extent of the earthquake damage in Mexico. Recent assessments recorded more than 60 deaths and significant damage.

Read more: What earthquake science can tell us about North Korea’s nuclear test

The earthquake also generated a tsunami with a series of waves over one metre high striking the Mexico coast over a period of more than six hours.

The wave travelled west across the Pacific Ocean towards New Zealand, but initial warnings triggered for that country have now been cancelled.

Why do some earthquakes create tsunamis?

Most earthquakes occur along the edges of tectonic plates, known as plate boundaries. The Mexico earthquake occurred where the Cocos plate is colliding with the North American plate.

An area of about 200 by 50 km was pushed up by the earthquake, moving the water overlying it. The sea floor was uplifted by only a few metres, but this is enough to displace several cubic kilometres of water and send a series of waves outwards from the earthquake epicentre.

The tsunami waves travel away from the earthquake epicentre in all directions. The height of the tsunami waves on shore depends on several factors, such as the distance and direction from the earthquake epicentre, the depth and shape of the sea floor, and shape of the coast line.

Read more: Explainer: how to prepare for a tsunami

About 75% of tsunamis occur at subduction zones, including some of the largest in recent history such as the 2004 Indian Ocean (Boxing Day) tsunami which claimed more than 250,000 lives.

The remainder are caused by underwater landslides, volcanic eruptions, and (rarely) meteorite impacts.

Only the largest earthquakes (more than 7.5 magnitude) are capable of generating a tsunami that will travel more than 100 km. About two tsunamis occur every year which cause damage near their source, and about two per decade cause damages or deaths on distant shores (more than 1000 km from the source).

How do we know when a tsunami is on the way?

The earthquake in Mexico was detected by international seismic networks within minutes, immediately activating regional and national tsunami warning systems. Mexico is a member of the Pacific Tsunami Warning System, which has two regional centres – one in Hawaii and one in Japan.

These centres monitor the seismic networks 24/7 so that they can react immediately when an event is detected. Many countries have 24/7 national tsunami warning centres as well. Each country and local government area then decides how to respond to the information and whether to evacuate coastal areas in case of a tsunami.

Following an earthquake, a warning message is immediately broadcast to national and local government agencies and disaster management offices. Over the next few hours, tsunami warning centre staff will monitor the global network of sea level stations including offshore tsunameter buoys which will tell them if a tsunami wave was generated.

Read more: Why social media apps should be in your disaster kit

Estimates of the earthquake magnitude and location are revised hourly or as more information becomes available, and this updated information is broadcast to authorities and the media. The information continues to be reviewed as the first waves reach the shoreline, helping to provide better wave height estimates for countries further from the earthquake epicentre.

At the local level, responses differ from country to country but the warning messages are usually broadcast through media channels including television, radio and internet. Many people will also receive information through social media.

Some countries send alerts directly to cell phones, and tourist areas may have tsunami sirens on popular beaches.

Responding quickly and appropriately to these alerts can save lives.

The ConversationFortunately on this occasion the tsunami triggered was only small. But the human impact of the earthquake itself is high, and the death toll will probably get worse.

Jane Cunneen, Research Fellow, Curtin University

This article was originally published on The Conversation. Read the original article.


Fracking and Earthquakes


Why Buildings Fall in Earthquakes


Plate Tectonics Explained