Wind farms are hardly the bird slayers they’re made out to be. Here’s why

File 20170616 512 12qly6u
The potential to harm local birdlife is often used to oppose wind farm development. But research into how birds die shows wind farms should be the least of our concerns.

Simon Chapman, University of Sydney

People who oppose wind farms often claim wind turbine blades kill large numbers of birds, often referring to them as “bird choppers”. And claims of dangers to iconic or rare birds, especially raptors, have attracted a lot of attention.

Wind turbine blades do indeed kill birds and bats, but their contribution to total bird deaths is extremely low, as these three studies show.

A 2009 study using US and European data on bird deaths estimated the number of birds killed per unit of power generated by wind, fossil fuel and nuclear power systems.

It concluded:

wind farms and nuclear power stations are responsible each for between 0.3 and 0.4 fatalities per gigawatt-hour (GWh) of electricity while fossil-fuelled power stations are responsible for about 5.2 fatalities per GWh.

That’s nearly 15 times more. From this, the author estimated:

wind farms killed approximately seven thousand birds in the United States in 2006 but nuclear plants killed about 327,000 and fossil-fuelled power plants 14.5 million.

In other words, for every one bird killed by a wind turbine, nuclear and fossil fuel powered plants killed 2,118 birds.

A Spanish study involved daily inspections of the ground around 20 wind farms with 252 turbines from 2005 to 2008. It found 596 dead birds.

The turbines in the sample had been working for different times during the study period (between 11 and 34 months), with the average annual number of fatalities per turbine being just 1.33. The authors noted this was one of the highest collision rates reported in the world research literature.

Raptor collisions accounted for 36% of total bird deaths (214 deaths), most of which were griffon vultures (138 birds, 23% of total mortality). The study area was in the southernmost area of Spain near Gibraltar, which is a migratory zone for birds from Morocco into Spain.

Perhaps the most comprehensive report was published in the journal Avian Conservation and Ecology in 2013 by scientists from Canada’s Environment Canada, Wildlife Research Division.

Their report looked at causes of human-related bird deaths for all of Canada, drawing together data from many diverse sources.

The table below shows selected causes of bird death out of an annual total of 186,429,553 estimated deaths caused by human activity.

Mark Duchamp, the president of Save the Eagles International is probably the most prominent person to speak out about bird deaths at wind farms. He says:

The average per turbine comes down to 333 to 1,000 deaths annually which is a far cry from the 2-4 birds claimed by the American wind industry or the 400,000 birds a year estimated by the American Bird Conservancy for the whole of the United States, which has about twice as many turbines as Spain.

Such claims from wind farm critics generally allude to massive national conspiracies to cover up the true size of the deaths.

And in Australia?

In Australia in 2006 a proposal for a 52-turbine wind farm plan on Victoria’s south-east coast at Bald Hills (now completed) was overruled by the then federal environment minister Ian Campbell.

He cited concerns about the future of the endangered orange-bellied parrot (Neophema chrysogaster), a migratory bird said to be at risk of extinction within 50 years. The Tarwin Valley Coastal Guardians, an anti wind farm group that had been opposing the proposed development.

Interest groups have regularly cited this endangered bird when trying to halt a range of developments.

These include a chemical storage facility and a boating marina. The proposed Westernport marina in Victoria happened to also be near an important wetland. But a professor in biodiversity and sustainability wrote:

the parrot copped the blame, even though it had not been seen there for 25 years.

Victoria’s planning minister at the time, Rob Hulls, described the Bald Hills decision as blatantly political, arguing the federal conservative government had been lobbied by fossil fuel interests to curtail renewable energy developments. Hulls said there had been:

some historical sightings, and also some potential foraging sites between 10 and 35 kilometres from the Bald Hills wind farm site that may or may not have been used by the orange-bellied parrot.

Perhaps the final word on this topic should go to the British Royal Society for the Protection of Birds. It built a wind turbine at its Bedfordshire headquarters to reduce its carbon emissions (and in doing so, aims to minimise species loss due to climate change). It recognised that wind power is far more beneficial to birds than it is harmful.

The ConversationSimon Chapman and Fiona Crichton’s book, Wind Turbine Syndrome: a communicated disease, will be published by Sydney University Press later this year.

Simon Chapman, Emeritus Professor in Public Health, University of Sydney

This article was originally published on The Conversation. Read the original article.

Who tilts at windmills? Explaining hostility to renewables

Marc Hudson, University of Manchester

Studying the catastrophe that has been Australian climate and energy policy these past 30 years is a thoroughly depressing business. When you read great work by Guy Pearse, Clive Hamilton, Maria Taylor and Phillip Chubb, among others, you find yourself asking “why”?

Why were we so stupid, so unrelentingly shortsighted? Why did the revelation in 2004 that John Howard had called a meeting of big business to help him slow the growth of renewables elicit no more than a shrug? Why did policy-makers attack renewable energy so unrelentingly?

About now, readers will be rolling their eyes and saying either “follow the money, stupid!” or “they are blinded by their marketophilia”. Fair enough, and they have a point.

My recently published paper, titled “Wind beneath their contempt: why Australian policymakers oppose solar and wind energy”
outlines the hostility to renewables from people like former treasurer Joe Hockey, who found the wind turbines around Canberra’s Lake George “utterly offensive”, and former prime minister Tony Abbott, who funded studies into the “potential health impacts” of wind farms.

It also deals with the policy-go-round that led to a drop in investment in renewables.

In a search for explanations for this, my paper looks at what we academics call “material factors”, such as party donations, post-career jobs, blame avoidance, diminished government capacity to act, and active disinformation by incumbents.

I then turn to ideological factors such as neoliberalism, the “growth at all costs” mindset, and of course climate denial.

Where it gets fun – and possibly controversial – is when I turn to psychological explanations such as what the sociologist Karl Mannheim called “the problem of generations”. This is best explained by a Douglas Adams quote:

Anything that is in the world when you’re born is normal and ordinary and is just a natural part of the way the world works.
Anything that’s invented between when you’re fifteen and thirty-five is new and exciting and revolutionary and you can probably get a career in it.
Anything invented after you’re thirty-five is against the natural order of things.

Over the past 50 years, white heterosexual middle-class males with engineering backgrounds have felt this pattern particularly keenly, as their world has shifted and changed around them. To quote my own research paper:

This loss of the promise of control over nature occurred – by coincidence – at the same time that the British empire disintegrated, and the US empire met its match in the jungles of Vietnam, and while feminism, civil rights and gay rights all sprang up. What scholars of the Anthropocene have come to call the “Great Acceleration” from the 1950s, was followed by the great (and still incomplete) democratisation of the 1960s and 1970s.

The rising popularity of solar panels represents a similar pattern of democratisation, and associated loss of control for those with a vested interest in conventional power generation, which would presumably be particularly threatening to those attracted to status, power and hierarchy.

Consider the cringe

Here are a couple more ideas and explanations that didn’t make the cut when I wrote the research paper. First up is the “biological cringe” – analogous to the “cultural cringe”, the self-loathing Australian assumption that all things British were better.

In Ecology and Empire: Environmental History of Settler Societies, the historian Tom Griffiths notes that:

Acclimatization societies systematically imported species that were regarded as useful, aesthetic or respectably wild to fill the perceived gaps in primitive Australian nature. This “biological cringe” was remarkably persistent and even informed twentieth-century preservation movements, when people came to feel that the remnants of the relic fauna, flora and peoples, genetically unable to fend for themselves, should be “saved”.

Second, and related, is the contempt and hatred that settler colonialists can feel towards wilderness, which in turn morphs into the ideology that there should be no limits on expansion and growth.

This means that people who speak of limits are inevitably attacked. One good example is Thomas Griffith Taylor (1880-1963), an Australian scientist who fell foul of the boosters who believed the country could and should support up to 500 million people.

Having seen his textbook banned in Western Australia for using the words “arid” and “desert”, Taylor set sail for the United States. At his farewell banquet at University of Sydney, he reinterpreted its motto Sidere mens eadem mutate (“The same spirit under a different sky”), as “Though the heavens fall I am of the same mind as my great-great-grandfather!”

I am anticipating that at least four groups will object to my speculations:
(vulgar) Marxists, for whom everything is about profits; positivists and Popperians, who will mutter about a lack of disprovability; deniers of climate science, who often don’t like being described as such; and finally, those who argue that renewables cannot possibly provide the energy return on investment required to run a modern industrial economy (who may or may not be right – we are about to find out).

The ConversationReader, of whatever category, what do you think?

Marc Hudson, PhD Candidate, Sustainable Consumption Institute, University of Manchester

This article was originally published on The Conversation. Read the original article.

The stampede of wind farm complaints that never happened

Image 20170406 16654 gto650
Why were so few complaints about wind farms investigated further? And who made these complaints anyway?

Simon Chapman, University of Sydney

National Wind Farm Commissioner, Andrew Dyer, has just released his much anticipated first annual report. The Conversation

In its first year of operation until the end of 2016, the National Wind Farm Commissioner says his office received:

  • 46 complaints relating to nine operating wind farms (there were 76 operational wind farms in Australian in 2015)

  • 42 complaints relating to 19 proposed wind farms

  • two complaints that did not specify a wind farm.

The commissioner’s office closed 67 or these 90 complaints, with the remaining 23 complaints still in process.

Of the 67 now-closed complaints, the office closed 31 because the complainant did not progress their complaint. This suggests these complaints were minor.

The office closed the file on another 32 after it sent complainants more information about their complaints.

This leaves only four, which the report describes two as being settled after negotiations between the parties, and two given the ambiguous category of “other”.

These figures are frankly astonishing.

The complaint investigating mechanism was set up after a Senate enquiry report that cost undisclosed millions to deal with a “massive” problem with wind turbines.

But the hordes of people who apparently needed a way to help them resolve matters have now gone shy.

Chair of the Senate Committee on Wind Turbines was ex-Senator John Madigan, a public critic of wind farms.

John Madigan speaking out against wind farms at the National Wind Power Fraud Rally in 2013.

Other members who signed off on the senate inquiry report included Senator Nick Xenophon, another long-time critic.

Senator Nick Xenophon criticising wind turbines on the Seven Network’s Today Tonight in 2012.

Complaints vs complainants

The National Wind Farm Commissioner’s first annual report avoids two key issues.

First, it doesn’t mention how many complainants made the 90 complaints. The anti-wind farm “movement” in Australia is often busy plaguing politicians and the few supportive media outlets that give it time.

One woman from Victoria often sends out emails to well over 100 politicians and journalists. Others join her to try to demonise wind turbines. Those in this small group appear again and again as submission authors to what have now been three senate enquires and two state government enquiries.

This phenomenon is well known in government circles. In the last three months of 2016, just 10 people submitted half of Heathrow Airport’s 25,000 noise complaints.

The second omission from the annual report is any mention of its budget or expenditure. The Office of the National Wind Farm Commissioner is independent and has its own website. But unless I missed it, there are no budget or expenditure figures in either the annual report nor the website. Is this a first for an annual report?

We know that commissioner Andrew Dyer gets A$205,000 a year for his part-time role, on a three year contract. With the numbers we now have about the low number of complaints, this sounds like a tough gig. But what about the staff and office costs, which are nowhere to be found.

No complaints in Western Australia and Tasmania

As I reported in my 2013 peer reviewed report into wind farm complaints, there were no records of complaints for Western Australia and Tasmania.

Of the total complaints about operational or planned wind farms, 40 came from Victoria, and 23 from each of South Australia and New South Wales. Just two complaints were received from Queensland about planned farms.

Our study found records of only 129 people who had ever complained about wind farms since the first one was built in Western Australia in the 1980s.

Three years later, after the door is left open for complaints, a mere 90 are received from an unknown number of individuals.

Wind turbines and sickness?

This is all very awkward for those who argue wind turbines cause illness. How is it that if wind farms are a direct cause of illness, that 67 wind farms around the country (88%) saw not one complaint, about health or anything else across a whole year?

The stock answer given here by wind farm opponents is that wind farm illness is like sea sickness: only a few get it. So in the whole of two states, and across 88% of wind farms, there’s apparently no-one with susceptibility to wind farm illness.

Former Prime Minister Tony Abbott, who described wind farms as “ugly”, “noisy” and “visually awful”, threw the senate committee a giant political bone.

The committee, and the Office of the Wind Farm Commissioner, put up their “we’re open” shingle and invited the alleged throngs of suffering rural residents to air their problems.

This annual report shows very few did, and the great majority of “complaints” dissolved by being sent information.

This sorry episode in appeasing the wind farm obsessions of a tiny number of cross-bench senators needs to have its time called, fast.

Simon Chapman, Emeritus Professor in Public Health, University of Sydney

This article was originally published on The Conversation. Read the original article.

Alan Jones goes after wind farms again, citing dubious evidence

Simon Chapman, University of Sydney

Last week, Sydney radio announcer Alan Jones lambasted those concerned about climate change and what he called “renewable energy rubbish”.

Jones has been loose with the facts in the past, having been Factchecked in 2015 after confusing kilowatts with megawatts and quoting a cost for wind power he later confessed “where the 1502 [dollars per megawatt hour that he stated] comes from, I have absolutely no idea”.

Jones, who chaired the much hyped but poorly attended 2013 national rally against wind farms in June 2014 (see photo) told his listeners last week wind farms are “buggering up people’s health”.

He also said “harrowing evidence” had been given by sufferers to the 2014-15 Senate Select Committee on Wind Farms chaired by (now ex-) Senator John Madigan. He along with Bob Day, David Leyonhjelm, Chris Back and Nick Xenophon have been vocal opponents of wind farms.

Their report predictably savaged wind farms, while Labor Senator Anne Urquhart’s minority report was the only one I found to be evidence-based.

Jones then went on to interview Dr Mariana Alves-Periera, from the private Lusophona University in Portugal (world university ranking 1,805, and impact ranking 2,848) whom he described as a distinguished international figure.

She was “recognized internationally” and had published “over 50” scientific papers over 30 years, something of a modest output. Jones, who may or may not have read any of these publications, told listeners her findings were “indisputable”, there was “no opposing scientific evidence” and again in emphasis, “none of [her papers] have been disputed” to which Alves-Periera agreed instantly “no they haven’t”.

This is an interesting interpretation of the scientific reception that has greeted the work of the Lisbon group on the unrecognized diagnosis of “vibroacoustic disease” (or VAD), a term they have made their own.

I first encountered Alves-Periera when she spoke via videoconference to a NHMRC meeting on wind farms and health in 2011. She spoke to a powerpoint presentation which highlighted the case of a schoolboy who lived near wind turbines. Her claim was the boy’s problems at school were due to his exposure to the turbines, as were cases of “boxy foot” in several horses kept on the same property.

Intrigued by this n=1 case report, I set out with a colleague to explore the scientific reception that “vibroacoustic disease” had met. We published our findings in the Australian and New Zealand Journal of Public Health 2013.

We found only 35 research papers on VAD. None reported any association between VAD and wind turbines. Of the 35 papers, 34 had a first author from the Lusophona University-based research group. Remarkably, 74% of citations to these papers were self-citations by members of the group.

In other words, just shy of three quarters of all references to VAD were from the group who were promoting the “disease”. In science, median self-citation rates are around 7%. We found two unpublished case reports from the group presented at conferences which asserted that VAD was “irrefutably demonstrated” to be caused by wind turbines. We listed eight reasons why the scientific quality of these claims were abject.

In 2014 Alves-Periera and a colleague defended their work in a letter to the journal and I replied. They described themselves as the “lead researchers in vibroacoustic disease”. But as we had shown, they are almost the only researchers who were ever active on this topic, with self-citation rates seldom seen in research.

Other experts have taken a different view of the group’s work. One of the world’s leading acousticians Geoff Leventhall who also spoke at the NHMRC’s 2011 meeting, wrote in a 2009 submission to the Public Service Commission of Wisconsin about the Lisbon group’s VAD work.

The evidence which has been offered [by them] is so weak that a prudent researcher would not have made it public.

Another expert said:

vibroacoustic disease remains an unproven theory belonging to a small group of authors and has not found acceptance in the medical literature

And most recently, the UK’s Health Protection Agency said the:

disease itself has not gained clinical recognition.

Leventhall concluded his review by saying:

One is left with a very uncomfortable feeling that the work of the VAD group, as related to the effects of low levels of infrasound and low frequency noise exposure, is on an extremely shaky basis and not yet ready for dissemination. The work has been severely criticised when it has been presented at conferences. It is not backed by peer reviewed publications and is available only as conference papers which have not been independently evaluated prior to presentation.

Jones told his listeners the reason wind turbines are not installed on Bondi Beach, down Sydney’s Macquarie Street or Melbourne’s Collins Street was because governments “know they are harmful to health”. His beguiling logic here might perhaps also be the same reason we don’t see these iconic locations given over to mining or daily rock concerts. Most people would understand there are other factors that explain the absence of both wind turbines, mines or daily rock concerts in such locations.

Jones has given air time to a Victorian woman who is a serial complainant about her local wind farm and who has written:

Around the Macarthur wind farm, residents suffer from infrasound emitted by the turbines, even when they’re not operating.

At a time when we are seeing unparalleled increases in renewable energy and reductions in fossil fuels all over the world, one wonders why this is still public discussion in Australia.

The Conversation

Simon Chapman, Emeritus Professor in Public Health, University of Sydney

This article was originally published on The Conversation. Read the original article.

Wind and solar PV have won the race – it’s too late for other clean energy technologies

Andrew Blakers, Australian National University

Across the world, solar photovoltaics (PV) and wind are the dominant clean energy technologies. This dominance is likely to become overwhelming over the next few years, preventing other clean energy technologies (including carbon capture and storage, nuclear and other renewables) from growing much.

As the graph below shows, PV and wind constitute half of new generation capacity installed worldwide, with fossil, nuclear, hydro and all other renewable energy sources making up the other half. In Australia this dominance is even clearer, with PV and wind constituting virtually all new generation capacity.

Moreover, this trend is set to continue. Wind and PV installation rates grew by 19% in 2015 worldwide, while rates for other technologies were static or declined.

PV and wind dominate because they have already achieved commercial scale, are cheap (and set to get cheaper), and are not constrained by fuel availability, environmental considerations, construction materials, water supply, or security issues.

In fact, PV and wind now have such a large head start that no other low-emission generation technology has a reasonable prospect of catching them. Conventional hydro power cannot keep pace because each country will sooner or later run out of rivers to dam, and biomass availability is severely limited.

Heroic growth rates would be required for nuclear, carbon capture and storage, concentrating solar thermal, ocean energy and geothermal to span the 20- to 200-fold difference in annual installation scale to catch wind and PV – which are themselves growing rapidly.

Both wind and PV access massive economies of scale. Their ability to saturate national electricity markets around the world severely constrains other low-emission technologies. Some of the other technologies may become significant in some regions, but these will essentially be niche markets, such as geothermal in Iceland, or hydro power in Tasmania.

Around 80% of the energy sector could be electrified in the next two decades, including electrification of land transport (vehicles and public transport) and electric heat pumps for heat production. This will further increase opportunities for PV and wind, and allows for the elimination of two-thirds of greenhouse gas emissions (based upon sectoral breakdown of national emissions data).

Storage and integration

What about the oft-cited problems with the variable nature of photovoltaics and wind energy? Fortunately, there is range of solutions that can help them achieve high levels of grid penetration.

While individual PV and wind generators can have very variable outputs, the combined output of thousands of generators is in fact quite predictable when coupled with good weather forecasting and smoothed out over a wide area.

What’s more, PV and wind often produce power under different weather conditions – storms favour wind, whereas calm conditions are often sunny. Rapid improvements in high-voltage DC transmission allows large amounts of power to be transmitted cheaply and efficiently over thousands of kilometres, meaning that the impact of local weather is less important.

Another option is “load management”, in which power demands for things like domestic and commercial water heating, and household and electric car battery charging, are moved from night time to day to coincide with availability of sun and wind. Existing hydro and gas or biogas generators, operated for just a small fraction of the year, can also help.

Finally, mass power storage is already available in the form of pumped hydro energy storage (PHES), in which surplus energy is used to pump water uphill to a storage reservoir, which is then released through a turbine to recover around 80% of the stored energy later on. This technology constitutes 99% of electricity storage worldwide and is overwhelmingly dominant in terms of new storage capacity installed each year (3.4 Gigawatts in 2015).

Australia already has several PHES facilities, such as Wivenhoe near Brisbane and Tumut 3 in the Snowy Mountains. All of these are at least 30 years old, but more can be built to accommodate the storage needs of new wind and PV capacity. Modelling underway at the Australian National University shows that reservoirs containing enough water for only 3-8 hours of grid operation is sufficient to stabilise a grid with about 90% PV and wind – mostly to shift daytime solar power for use at night.

This would require only a few hundred hectares of reservoirs for the Australian grid, and could be accomplished by building a series of “off-river” pumped hydro storages. Unlike conventional “on-river” hydro power, off-river PHES requires pairs of hectare-scale reservoirs, rather like oversized farm dams, located in steep, hilly, farm country, separated by an altitude difference of 200-1000 metres, and joined by a pipe containing a pump and turbine.

One example is the proposed Kidston project in an old gold mine in north Queensland. In these systems water goes around a closed loop, they consume very little water (evaporation minus rainfall), and have a much smaller environmental impact than river-based systems.

How renewables can dominate Australian energy

In Australia, if wind and PV continue at the installation rate required to reach the 2020 renewable energy target (about 1 GW per year each), we would hit 50% renewable electricity by 2030. This rises to 80% if the installation rates double to 2 GW per year each under a more ambitious renewable energy target – the barriers to which are probably more political than technological.

PV and wind will be overwhelmingly dominant in the renewable energy transition because there isn’t time for another low-emission technology to catch them before they saturate the market.

Wind, PV, PHES, HVDC and heat pumps are proven renewable energy solutions in large-scale deployment (100-1,000 GW installed worldwide for each). These technologies can drive rapid and deep cuts to the energy sector’s greenhouse emissions without any heroic assumptions.

Apart from a modest contribution from existing hydroelectricity, other low-emission technologies are unlikely to make significant contributions in the foreseeable future.

The Conversation

Andrew Blakers, Professor of Engineering, Australian National University

This article was originally published on The Conversation. Read the original article.

World’s largest wind farm study finds sleep disturbances aren’t related to turbine noise

Simon Chapman, University of Sydney

During the Abbott government, the often recalcitrant Senate cross bench was thrown a big, juicy bone plainly intended to sweeten their disposition toward government bills which needed their support to pass. The anti- wind farm Senators were outraged with the National Health and Medical Research Council’s (NHMRC) 2015 report on wind farms which found no strong evidence of health effects from turbine exposure. There have been 25 reviews with similar findings published since 2003. The government may have promised these Senators the gift of the office of the National Wind Farm Commissioner which by February 2015 had received just 42 complaints about 12 wind farms, seven of which have not even been built.

In August 2015, the Senate Select Committee on Wind Turbines published its report. The Committee was chaired by Senator John Madigan, an open opponent of wind farms, and consisted of eight members. Six of these had form in savagely criticising wind farms. The content of their final report was therefore utterly predictable, with Labor’s Senator Anne Urquhart’s minority dissenting report shining like a beacon of respect for evidence.

There was no greater display of the naked demonising agenda of the Madigan-aligned group’s anti wind farm show trial than the total absence in their report of any mention of the world’s largest and most important study of the question of whether living near wind farms was harmful to health.

Health Canada’s Wind Turbine Noise and Health study published its preliminary findings on October 30, 2014. Senator Urquhart’s minority report noted that many submissions to the inquiry recognised the great contribution of the Health Canada “Wind Turbine Noise and Health Study” to the body of knowledge on the potential impacts of wind farms on human health. But the 181-page report made no mention of the study.

The study data were collected between May and September 2013 from adults aged 18 to 79 (606 males, 632 females), randomly selected from each household. They lived between 0.25 and 11.22km from wind turbines in two Canadian provinces, Ontario and Prince Edward Island.

In March, the Health Canada study group published its full findings in a series of open-access papers in the Journal of the Acoustical Society of America, the world’s most cited acoustical research journal, and in Sleep, a leading journal in sleep research. Here is a summary of some of its chief findings.

Do wind turbines increase the prevalence of health problems and sleep disturbance?

The researchers assessed self-reported sleep quality over the past 30 days using the Pittsburgh Sleep Quality Index and a wrist monitor to record the total sleep time, and the rate of awakening bouts and how long these last, for a total of 3,772 nights.

Averaged over a year, the measured sound of the turbines reached a maximum of 46 dB(A) with an average of 35.6. Forty six decibels is around the sound of a dishwasher operating in a kitchen.

Since January 2012, I have collected and catalogued a remarkable 247 different symptoms and diseases wind farm opponents claim are caused or exacerbated by wind turbines in humans and animals.

But the Health Canada study found that:

Self-reported health effects (e.g., migraines, tinnitus, dizziness, etc.), sleep disturbance, sleep disorders, quality of life, and perceived stress were not related to wind turbine noise levels.

Both self-reported and objectively measured sleep outcomes consistently revealed no apparent pattern or statistically significant relationship to wind turbine noise levels.

But, unsurprisingly, sleep was affected by whether residents had other health conditions (including sleep disorders), their caffeine consumption, and whether they were personally annoyed by blinking lights on the wind turbines.

Sleeping problems affect around 29% of all communities, regardless of whether they are near wind farms or not.

Do wind turbines cause measurable stress?

The researchers used a recognised scale to measure self-reported stress (the perceived stress scale – PSS) as well as recording hair cortisol concentrations, resting blood pressure, and heart rate.

However, the majority (77%–89%) of the variance in the perceived stress scale (PSS) scores was unaccounted for by differences in these objective measures. And wind turbine noise exposure had no apparent influence on any of them.

Again, the study concluded that the findings did not support an association between exposure to wind turbines and elevated self-reported or objectively defined measures of stress.

Do wind turbines annoy people?

Expressions such as being “hot and bothered” are well understood. When people are annoyed by something in their life, this can lead to the onset of symptoms. Being annoyed is not health problem in itself, but chronic annoyance can have health consequences.

The Health Canada study reported:

Visual and auditory perception of wind turbines as reported by respondents increased significantly with increasing wind turbine noise levels as did high annoyance toward several wind turbine features, including the following: noise, blinking lights, shadow flicker, visual impacts, and vibrations … Beyond annoyance, results do not support an association between exposure to wind turbine noise up to 46 dBA and the evaluated health-related endpoints.

The prevalence of residents reporting that they were very or extremely annoyed by wind turbine noise increased from 2.1% to 13.7% when sound pressure levels were below 30 dB compared to when the noise was between 40–46 dB.

So in summary, those who found the turbines annoying, tended to be those who lived nearer to them.

What factors predict who gets annoyed?

Even for the most annoying features, more than 86% of residents were not very or extremely annoyed by them.

There is much variation among our families, friends working environments in the way people react to noise. A 2014 review of symptoms related to modern technology (including wind turbines) found those who were more anxious, worried, concerned, or annoyed by a source that they believed to be a health risk more commonly reported symptoms than those without such beliefs.

In this Health Canada study, while proximity to the turbines was statistically significantly associated with annoyance, the relationship was weak. It was better explained by factors such as holding negative views about the visual impact of the turbines (not liking the look of them), being able to the see aircraft warning blinking lights, the perception of vibrations when the turbines were turning and high concern about physical safety. These are all perceptual variables that bothered some but not most.

Less than 10% of the participants derived personal benefit from the turbines (such as income from hosting the turbines). Deriving personal benefit had a statistically significant, although modest relationship to not being annoyed. The authors concluded:

these findings would support initiatives that facilitate direct or indirect personal benefit among participants living within a community in close proximity to wind power projects.

This suggests that strategies such as community sharing of rental incomes, offers of free electricity or home improvement and amenity payments may reduce annoyance.

If a Labor government is elected in July, the future of the ill-conceived Office of the National Wind Farm Commissioner is likely to be vulnerable, as it may well be with the expected departure of several wind farm-obsessed cross bench senators in the double dissolution, should the Coalition be returned.

State governments are increasingly removing wind farm planning barriers and the availability now of the Health Canada health report should drive another large stake through the forces determined to slow the growth of wind energy in Australia.

The Conversation

Simon Chapman, Emeritus Professor in Public Health, University of Sydney

This article was originally published on The Conversation. Read the original article.