New research reveals these 20 Australian reptiles are set to disappear by 2040



Cape Melville leaf-tailed gecko
Conrad Hoskin, Author provided

Hayley Geyle, Charles Darwin University and David Chapple, Monash University

Action came too late for the Christmas Island forest skink, despite early warnings of significant declines. It was lost from the wild before it was officially listed as “threatened”, and the few individuals brought into captivity died soon after.

Australia is home to about 10% of all known reptile species — the largest number of any country in the world. But many of our reptiles are at risk of the same fate as the Christmas Island forest skink: extinction.

In new research published today, we identified the 20 terrestrial snakes and lizards (collectively known as “squamates”) at greatest risk of extinction in the next two decades, assuming no changes to current conservation management.

Preventing extinctions of Australian lizards and snakes.

While all 20 species meet international criteria to be officially listed as “threatened”, only half are protected under Australian environmental legislation— the Environment Protection and Biodiversity Conservation (EPBC) Act. This needs urgent review.

Many of these reptiles receive little conservation action, but most of their threats can be ameliorated. By identifying the species at greatest risk of extinction, we can better prioritise our recovery efforts — we know now what will be lost if we don’t act.

Six species more likely than not to go extinct

Our research team — including 27 reptile experts from universities, zoos, museums and government organisations across the country — identified six species with greater than 50% likelihood of extinction by 2040.

This includes two dragons, one blind snake and three skinks. Experts rated many others as having a 30-50% likelihood of extinction over the next 20 years.

More than half (55%) of the 20 species at greatest risk occur in Queensland. Three live on islands: two on Christmas Island and one on Lancelin Island off the Western Australian coast.

Two more species are found in Western Australia, while the Northern Territory, the Australian Capital Territory, Victoria and New South Wales each have one species.




Read more:
Australia’s smallest fish among 22 at risk of extinction within two decades


Each of the 20 species at greatest risk occur in a relatively small area, which partly explains the Queensland cluster — many species in that state naturally have very small distributions.

Most of the top 20 occupy a total range of fewer than 20 square kilometres, so could be lost to a single catastrophic event, such as a large bushfire.

A map of Australia showing where the 20 snakes and lizards are located
The approximate locations of the 20 terrestrial snakes and lizards at greatest risk of extinction.
Author provided

So why are they dying out?

Reptile species are declining on a global scale, and this is likely exacerbated by climate change. In Australia, where more than 90% of our species occur nowhere else in the world, the most threatened reptiles are at risk for two main reasons: they have very small distributions, and ongoing, unmitigated threats.

The Cape Melville leaf-tailed gecko meets this brief perfectly. This large and spectacular species was only discovered in 2013, on a remote mountain range on Cape York. It’s threatened by virtue of its very small distribution and population size, and by climate change warming and drying its upland habitat.

Arnhem Land gorges skink
The Arnhem Land gorges skink is considered more likely than not to become extinct by 2040. Threats include changes to food resources and habitat quality, feral cats, and possibly poisoning by cane toads.
Chris Jolly

Habitat loss is also a major threat for the top 20 species. Australia’s most imperilled reptile, the Victoria grassland earless dragon, used to be relatively common in grasslands in and around Melbourne. But the grasslands this little dragon once called home have been extensively cleared for agriculture and urban development, and now cover less than 1% of their original extent.




Read more:
Click through the tragic stories of 119 species still struggling after Black Summer in this interactive (and how to help)


Little conservation attention

For most reptile species, there has been less conservation work to address the declines, partly because reptiles have historically received less scientific attention than birds or mammals.

We also still don’t fully understand just how many species there are in Australia. New reptile species are being scientifically described at an average rate of 15 per year (a higher rate than for other vertebrate groups) and many new reptiles are already vulnerable to extinction at the time of discovery.

The Mount Surprise slider, a light-brown snake
The Mount Surprise slider is threatened by invasive plant species and cattle compacting sandy soils.
Stephen Zozaya, Author provided

To make matters worse, few reptiles in Australia are well-monitored. Without adequate monitoring, we have a poor understanding of population trends and the impacts of threats. This means species could slip into extinction unnoticed.

Reptiles also lack the public and political profile that helps generate recovery support for other, (arguably) more charismatic Australian threatened animals — such as koalas and swift parrots — leading to little resourcing for conservation.

Lessons from the past

Only one Australian reptile, the Christmas Island forest skink, is officially listed as extinct, but we have most probably lost others before knowing they exist. Without increased resourcing and management intervention, many more Australian reptiles could follow the same trajectory.

The Roma earless dragon sitting up on hind legs.
Habitat loss and degradation due to agriculture is a major threat to the Roma earless dragon. It has not been listed under Australian legislation.
A. O’Grady Museums Victoria, Author provided

But it’s not all bad news. The pygmy bluetongue skink was once thought to be extinct until a chance discovery kick-started a long conservation and research program.

Animals are now being taken from the wild and relocated to new areas to establish more populations, signifying that positive outcomes are possible when informed by good science.

And the very restricted distributions of most of the species identified here should allow for targeted and effective recovery efforts.

By identifying the species at greatest risk, we hope to give governments, conservation groups and the community time to act to prevent further extinctions before it’s too late. Neglect should no longer be the default response for our fabulous reptile fauna.




Read more:
A hidden toll: Australia’s cats kill almost 650 million reptiles a year


The Conversation


Hayley Geyle, Research Assistant, Charles Darwin University and David Chapple, Associate Professor in Evolutionary and Conservation Ecology, Monash University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Tasmanian tiger was hunted to extinction as a ‘large predator’ – but it was only half as heavy as we thought



Smithsonian Institution/colourised by D.S. Rovinsky

Douglass Rovinsky, Monash University; Alistair Evans, Monash University, and Justin W. Adams, Monash University

Until it was hunted to extinction, the thylacine – also known as the Tasmanian tiger or Tasmanian wolf – was the world’s largest marsupial predator. However, our new research shows it was in fact only about half as large as previously thought. So perhaps it wasn’t such a big bad wolf after all.

Although the thylacine is widely known as an example of human-caused extinction, there is a lot we still don’t know about this fascinating animal. This even includes one of the most basic details: how much did the thylacine weigh?

An animal’s body mass is one of the most fundamental aspects of its biology. It affects nearly every facet of its biology, from biochemical and metabolic processes, reproduction, growth, and development, through to where the animal can live and how it moves.

For meat-eating predators, body mass also determines what the animal eats – or more specifically, how much it has to eat at each meal.

Catching and eating other animals is hard work, so a predator has to weigh the costs carefully against the benefits. Small predators have low hunting costs – moving around, hunting, and killing small prey doesn’t cost much energy, so they can afford to nibble on small animals here and there. But for bigger predators, the stakes are higher.

Almost all large predators – those weighing at least 21  kilograms – focus their efforts on prey at least half their own body size, getting more bang for the buck. In contrast, small predators below 14.5 kg almost always catch prey much smaller than half their own size. Those in between typically take prey less than half their size, but sometimes switch to a larger meal if some easy prey is there for the taking – or if the predator is getting desperate.

The mismeasure of the thylacine

Scan of article from Launceston Examiner
The March 14, 1868 edition of the Launceston Examiner featured tales of a ‘hyena’ that managed to kill 25 sheep.
trove.nla.gov.au

Few accurately recorded weights exist for thylacines – only four, in fact. This lack of information has made estimating their average size difficult. The most commonly used average body mass is 29.5kg, based on 19th-century newspaper accounts.

This suggests the thylacine would probably have taken relatively large prey such as wallabies, kangaroos and perhaps sheep. However, studies of thylacine skulls suggest they didn’t have strong enough skulls to capture and kill large prey, and that they would have hunted smaller animals instead.

This presented a problem: if the thylacine was as big as we thought, it shouldn’t be able to live solely on small prey. But what if we’ve had the weight wrong the whole time?




Read more:
Why did the Tasmanian tiger go extinct?


Weighing an extinct animal

Man taking a scan of a stuffed thylacine
Ben Myers of Thinglab scans a Museums Victoria thylacine.
CREDIT, Author provided

Our new research, published today in Proceedings of the Royal Society B, addresses this weighty issue. Our team travelled throughout the world to museums in Australia, the United States, the United Kingdom and Europe, and 3D-scanned 93 thylacines, including whole mounted skeletons, taxidermy mounts, and the only whole-body ethanol-preserved thylacine in the world, in Sweden.

Based on these scans, we created new equations to estimate a thylacine’s mass, based on how thick their limbs were – because their legs would have had to support their entire weight.

We also compared the results of these equations with a new method of digitally weighing 3D specimens. Based on a 3D scan of a mounted skeleton, we digitally “filled in the spaces” to estimate how much soft tissue would have been present, and then used our new formula to calculate how much this would weigh. Taxidermy mounts were easier as there was no need to infer the amount of soft tissue. The most artistic member of our team digitally sculpted lifelike thylacines around the scanned skeletons, and we weighed them, too.

Building and weighing a thylacine. Scanned skeletons (lop left) were surrounded by digital ‘convex hulls’ (top right), which then had their volume and mass calculated. The skeletons were then used in digitally sculpting lifelife models (bottom left), each with their own unique stripes (bottom right).
Rovinsky et al.

Our calculations unanimously told a very different story from the 19th-century periodicals, and from the commonly used estimate. The average thylacine weighed only about 16.7 kg – not 29.5 kg.




Read more:
Friday essay: on the trail of the London thylacines


Tall tales on the tiger trail

This means the previous estimate, based on taking 19th-century periodicals at face value, was nearly 80% too large. Looking back at those old newspaper reports, many of them in retrospect have the hallmarks of “tall tales”, told to make a captured thylacine seem bigger, more impressive and more dangerous.

It was based on this suspected danger that the thylacine was hunted and trapped to extinction, with private bounties already placed on them by 1840, and government-sponsored extermination by the 1880s.

Graphic showing the size of thylacines relative to a woman
Thylacines were much smaller in stature than humans or grey wolves.
Rovinsky et al., Author provided

The thylacine was much smaller than previously thought, and this aligns with the smaller prey size suggested by the earlier studies. Predators below 21 kg – in which we should now include the thylacine – all tend to hunt prey smaller than half their size. The “Tasmanian wolf” probably wasn’t such a danger to Tasmanian farmers’ sheep after all.

By rewriting this fundamental aspect of their biology, we are closer to understanding the role of the thylacine in the ecosystem – and to seeing exactly what was lost when we deliberately hunted it to extinction.The Conversation

Douglass Rovinsky, PhD Candidate, Monash University; Alistair Evans, Associate Professor, Monash University, and Justin W. Adams, Senior Lecturer, Department of Anatomy and Developmental Biology, Monash University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia’s smallest fish among 22 at risk of extinction within two decades



Red-finned blue-eye
Bush Heritage Australia / Adam Kerezsy

Mark Lintermans, University of Canberra; Hayley Geyle, Charles Darwin University; Jaana Dielenberg, The University of Queensland; John Woinarski, Charles Darwin University; Stephen Beatty, Murdoch University, and Stephen Garnett, Charles Darwin University

The tragic fish kills in the lower Darling River drew attention to the plight of Australia’s freshwater fish, but they’ve been in trouble for a long time.

Many species have declined sharply in recent decades, and as many as 90 of Australia’s 315 freshwater fish species may now meet international criteria as threatened.




Read more:
We wrote the report for the minister on fish deaths in the lower Darling – here’s why it could happen again


No Australian fish species is yet listed officially as extinct, but some have almost certainly been lost before scientists even knew they existed. With so many species at risk, understanding which are in greatest peril is a vital first step in preventing extinctions.

This is what our new research has done. We’ve identified 20 freshwater fish species with a 50% or greater probability of extinction within the next two decades, and a further two with a 40-50% chance – unless there’s new targeted conservation action.

The Australian freshwater fishes at greatest risk of extinction.

Slipping through the conservation cracks

Many small-bodied species, including Australia’s smallest fish the red-finned blue-eye, look likely to be lost within a single human generation. These fish have evolved over millions of years.

Twelve of the species identified have only been formally described in the past decade, and seven are still awaiting description.

This highlights the urgent need to act before species are listed under the national legislation that gives fishes their conservation status, and even before they’re formally described.

These processes can take many years, at which point it may be too late for some species.

More than half the species on our list are galaxiids – small, scaleless fish, that live in cooler, upland streams and lakes. Trout, an introduced, predatory species, also favour these habitats, and the trout have taken a heavy toll on galaxiids and many other small species in southern Australia.

Shaw galaxias, a long light-brown fish.
Victoria’s Shaw galaxias – one of 14 galaxias species identified at high risk of extinction.
Tarmo Raadik

For example, the Victorian Shaw galaxias has been eaten out of much of its former range. Now just 80 individuals survive, protected by a waterfall from the trout below. We estimate the Shaw galaxias has an 80% chance or more of extinction within the next 20 years.




Read more:
Double trouble: this plucky little fish survived Black Summer, but there’s worse to come


Many galaxiids do not thrive or readily breed in captivity, so suitable trout-free streams are essential for their survival.

Improving trout management requires an urgent, sustained conservation effort, including collaborations with recreational fishers, increased awareness and changing values among government and key sectors of society.

Without this, trout will almost certainly cause many native galaxiids to go extinct.

Two researchers face a waterfall surounded by bushland.
This waterfall in NSW is all that protects the last population of stocky galaxias from the predatory trout below.
Mark Lintermans

Native fish out of their natural place can also be a problem. For example, sooty and khaki grunters – native fishing species people in northern Australia have widely moved – threatening the ancient Bloomfield River cod.

One disaster can lead to extinction

All of the most imperilled species are now highly localised, which means they’re restricted to very small areas. Their distributions range from only four to 44 square kilometres.

A single catastrophic event could completely wipe out these species, such as a large bushfire that fills their streams with ash and robs them of oxygen.

The SW Victoria River blackfish persists as three very small, isolated populations. The main threat to this species is recreational angling.
Tarmo Raadik

For example, until 2019 the Yalmy galaxias had survived in the cool creeks of the Snowy River National Park. But after the devastating Black Summer fires, just two individuals survived, one male and one female, in separate areas.

Millions of years of evolution could be lost if a planned reunion is too late.

One of the key steps to reduce this risk is moving fish to new safe locations so there are more populations. Researchers choose these new locations carefully to make sure they’re suitable for different species.

Climate change is another threat to all identified species, as it’s likely to reduce flows and water quality, or increase fires, storms and flooding. Many species have been forced to the edge of their range and a prolonged drought could dry their remaining habitat.

The short-tail galaxias existed in two small separated populations in creeks of the upper Tuross River Catchment, in the south coast of NSW. One stream dried in the recent drought, and the other was burnt in the subsequent fires.

Luckily the species is still hanging on in the burnt catchment, but only a single individual has been found in the drought-affected creek.

Rainbowfish swim among reeds
The main threat to the Daintree rainbowfish is loss of stream flow due to drought, climate change and water extraction.
Michael Hammer / Museum and Art Gallery of the Northern Territory, Author provided

Unlisted, unprotected

Our study is part of a larger project to identify plants and animals at high risk of extinction.

We found the extinction risks of the 22 freshwater fish species are much higher than those of the top 20 birds or mammals, yet receive far less conservation effort.

Only three of the highly imperilled fish species are currently listed as threatened under national environmental legislation: the red-finned blue-eye, Swan galaxias and little pygmy perch.

Listing species is vital to provide protection to survivors and can prompt recovery action. Given our research, 19 fish species should urgently be added to the national threatened species list, but conservation action should start now.

The little pygmy perch in the far south-west corner of WA is one of only three of the 22 imperilled species identified that’s formally protected under Australian laws.
Stephen Beatty/Harry Butler Institute, Murdoch University

Small native freshwater fishes are worth saving. They play a vital role in our aquatic ecosystems, such as predating on pest insect larvae, and are part of our natural heritage.

By identifying and drawing attention to their plight, we are aiming to change their fates. We cannot continue with business as usual if we want to prevent their extinctions.The Conversation

Mark Lintermans, Associate professor, University of Canberra; Hayley Geyle, Research Assistant, Charles Darwin University; Jaana Dielenberg, Science Communication Manager, The University of Queensland; John Woinarski, Professor (conservation biology), Charles Darwin University; Stephen Beatty, Research Leader (Catchments to Coast), Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, and Stephen Garnett, Professor of Conservation and Sustainable Livelihoods, Charles Darwin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

We know how to save NSW’s koalas from extinction – but the government must commit



Shutterstock

Dr Christine Hosking, The University of Queensland

On Tuesday, a year-long New South Wales parliamentary inquiry revealed the state’s koalas are on track for extinction in the wild by 2050, without urgent government intervention.

Habitat destruction and fragmentation for agriculture, urban development, mining and forestry has been the number one koala killer since European occupation of Australia. This is compounded by the unabated impacts of climate change, which leads to more extreme droughts, heatwaves and bushfires.




Read more:
Scientists find burnt, starving koalas weeks after the bushfires


Koala populations in NSW were already declining before the 2019-2020 bushfires. The report doesn’t mince words, saying “huge swathes of koala habitat burned and at least 5,000 koalas perished”.

The report, ambitiously, makes 42 recommendations, and all have merit. The fate of NSW koalas now relies on a huge commitment from the Berejiklian government to act on them. But past failures by a federal government inquiry into koalas suggest there’s little cause for optimism.

First, let’s look at the report’s key recommendations and how they might ensure the species’ survival in NSW.

Leadership needed at the local level

Real, on-ground koala conservation actions take place at the local level. “Local” is where councils give development approvals, sometimes to clear koala habitat. And it’s where communities and volunteers work on the front line to save and protect the species.

Recommendation 10 in the report addresses this, suggesting the NSW government provide additional funding and support to community groups so they can plant trees and regenerate bushland along koala and wildlife corridors.




Read more:
A report claims koalas are ‘functionally extinct’ – but what does that mean?


Another two recommendations build on this: encouraging increased funding from the NSW government to local councils to support local conservation initiatives, and suggesting increased resources to support councils to conduct mapping.

Mapping, such as where koalas have been recorded and their habitat, is a critical component for local councils to develop comprehensive koala management plans.

Stop offsetting koala habitat

One recommendation suggests a review of the “biodiversity offsets scheme”, where generally developers must compensate for habitat loss by improving or establishing it elsewhere. It is embedded in the NSW Biodiversity Conservation Act 2016, and other state and territory governments commonly use offsets in various conservation policies.




Read more:
The Blinky Bill effect: when gum trees are cut down, where do the koalas go?


But the report recommends prohibiting offsets for high quality koala habitat. Prohibiting offsets is important because when a vital part of koala habitat is cleared, it can no longer support the local koalas. Replacing this habitat somewhere else won’t save that particular population.

Build the Great Koala National Park

It’s of paramount importance to increase the connected, healthy koala habitat in NSW, particularly after the bushfires.

One tool to achieve this is laid out in recommendation 41: to investigate establishing the Great Koala National Park. Spearheaded by the National Parks Association of NSW, this national park would see 175,000 hectares of publicly owned state forests added to existing protected areas.

It total, it would form a 315,000 hectare reserve in the Coffs Harbour hinterland dedicated to protecting koalas – an Australian first.




Read more:
What does a koala’s nose know? A bit about food, and a lot about making friends


It would be a great day if such a park was established and replicated throughout the NSW and Queensland hinterlands. Research shows that in those regions, the future climate will remain suitable for koalas, and urbanisation, agriculture and mining are not currently present in these parks.

The Great Koala National Park.

But it’s worth noting Australia’s national parks are under increasing pressure from “adventure tourism”. Human recreation activities can fragment habitat and disturb wildlife, for example by constructing tracks and access roads through natural areas.

Humans must not be allowed to compromise dedicated koala conservation areas. Intrusive recreational activity is detrimental to the species, and can also reduce the chance quiet park visitors might spy a koala sitting high in a tree, sleepily munching on gum leaves.

This rule should apply both to existing national parks, and a new Great Koala National Park.

Failures of past inquiries

The tragic fate predicted for koalas in NSW depends on the state government’s willingness to act on the recommendations. Developing wordy, well-intentioned documents is simply not enough.

We need look no further than Australia’s key environmental legislation, the Environment Protection and Biodiversity Conservation (EPBC) Act, to realise this.

Habitat destruction is an existential threat to koalas.
Shutterstock

After a 2012 Senate inquiry into the health and status of koalas, the species was officially listed as “vulnerable” under the EPBC Act. But since then, tree clearing and declines in koala numbers have continued at a furious pace across Queensland and NSW.

One of the shortcomings of the federal listing for the koala is in its Referral Guidelines, which recommends “proponents consider these guidelines when proposing actions within the modelled distribution of the koala”. In other words, informing the government about clearing koala habitat is only voluntary. And that’s not good enough.




Read more:
Environment laws have failed to tackle the extinction emergency. Here’s the proof


The failure of the 2012 inquiry and the EPBC Act to protect koalas should serve as a wake-up call to the NSW government. It must start implementing the recommendations of the current inquiry without delay to ensure Australia’s internationally celebrated species doesn’t die out.

Koala conservation must take priority over land clearing, regardless of the demand for that land. That principle might seem simple, but so far it’s proved agonisingly difficult.The Conversation

Dr Christine Hosking, Conservation Planner/Researcher, The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Back from extinction: a world first effort to return threatened pangolins to the wild



Alex Braczkowski, Author provided

Alexander Richard Braczkowski, Griffith University; Christopher O’Bryan, The University of Queensland; Duan Biggs, Griffith University, and Raymond Jansen, Tshwane University of Technology

Pangolins are one of the most illegally trafficked animals on the planet and are suspected to be linked to the current coronavirus pandemic.

Pangolins are also one of the world’s most threatened species but new efforts are underway to reintroduce pangolins to parts of Africa where the animal has been extinct for decades.




Read more:
What Australian birds can teach us about choosing a partner and making it last


The reintroduction of pangolins has not been easy. But it’s vital to prevent this shy, mysterious creature from being lost forever.

A cute but threatened species

Pangolins are the only mammals wholly-covered in scales, which they use to protect themselves from predators. They can also curl up into a tight ball.

They eat mainly ants, termites and larvae which they pick up with their sticky tongue. They can grow up to 1m in length from nose to tail and are sometimes referred to as scaly anteaters.

But all eight pangolin species are classified as “threatened” under International Union for Conservation of Nature criteria.

There is an unprecedented demand for their scales, primarily from countries in Asia and Africa where they are used in food, cultural remedies and medicine.

Between 2017 and 2019, seizures of pangolin scales tripled in volume. In 2019 alone, 97 tons of pangolin scales, equivalent to about 150,000 animals, were reportedly intercepted leaving Africa.

There is further evidence of the illegal trade in pangolin species openly on social media platforms such as Facebook.

The intense global trafficking of the species means the entire order (Pholidota) is threatened with extinction. For example, the Temminck’s pangolins (Smutsia temminckii) went extinct in South Africa’s KwaZulu Natal Province three decades ago.

Reintroduction of an extinct species

Each year in South Africa the African Pangolin Working Group (APWG) retrieves between 20 and 40 pangolins through intelligence operations with security forces.

These pangolins are often-traumatised and injured and are admitted to the Johannesburg Wildlife Veterinary Hospital for extensive medical treatment and rehabilitation before they can be considered for release.

In 2019, seven rescued Temminck’s pangolins were reintroduced into South Africa’s Phinda Private Game Reservein the KwaZulu Natal Province.

Nine months on, five have survived. This reintroduction is a world first for a region that last saw a viable population of this species in the 1980s.

During the release, every individual pangolin followed a strict regime. They needed to become familiar with their new surroundings and be able to forage efficiently.

Pangolins curl up into a tight ball of scales.
Alex Braczkowski

Previous releases, including early on in South Africa and in other countries such as the Philippines, the Democratic Republic of the Congo and Thailand had minimal post-release monitoring.

Pangolins released immediately following medical treatment had a low level of survival for various reasons, including inability to adapt to their release sites.

A ‘soft release’ in to the wild

The process on Phinda game reserve involved a more gentle ease into re-wilding a population in a region that had not seen pangolins for many decades.

The soft release had two phases:

  1. a pre-release observational period
  2. an intensive monitoring period post release employing GPS satellite as well as VHF tracking tags.
A satellite tag is fitted to each pangolin before release and transmits its location on an hourly basis.
Alex Braczkowski

The pre-release period lasted between two to three weeks and were characterised by daily walks (three to five hours) of individuals on the reserves. These walks were critical for acclimatising individuals to the local habitat, its sounds, smells and possible threats. It also helped them source suitable and sufficient ant and termite species for food.

Following that, the post release period of two to three months involved locating released pangolins daily at first, and then twice per week where they were weighed, a rapid health assessment was made and habitat features such as burrows and refuges monitored.

Phinda reserve manager Simon Naylor said:

A key component of the post release period was whether individuals gained or maintained their weight.

The way the animals move after release also reveals important clues to whether they will stay in an area; if they feed, roll in dung, enter burrows. Much of this behaviour indicates site fidelity and habitat acceptance.




Read more:
No, Aussie bats won’t give you COVID-19. We rely on them more than you think


Following nine months of monitoring and tracking, five of the seven survived in the region. One died of illness while the other was killed by a Nile crocodile.

Released pangolins are located at burrows like this one.
Alex Braczkowski

Why pangolin reintroduction is important

We know so little about this group of mammals that are vastly understudied and hold many secrets yet to be discovered by science but are on the verge of collapse.

The South African and Phinda story is one of hope for the Temminck’s pangolin where they once again roam the savanna hills and plains of Zululand.

The process of relocating these trade animals back into the wild has taken many turns, failures and tribulations but, the recipe of the “soft release” is working.The Conversation

Alexander Richard Braczkowski, Research Associate, Griffith University; Christopher O’Bryan, Postdoctoral Research Fellow, School of Earth and Environmental Sciences, The University of Queensland; Duan Biggs, Senior Research Fellow Social-Ecological Systems & Resilience, Griffith University, and Raymond Jansen, Professor: Zoology & Ecology, Tshwane University of Technology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

NSW has approved Snowy 2.0. Here are six reasons why that’s a bad move



Lucas Coch/AAP

Bruce Mountain, Victoria University and Mark Lintermans, University of Canberra

The controversial Snowy 2.0 project has mounted a major hurdle after the New South Wales government today announced approval for its main works.

The pumped hydro venture in southern NSW will pump water uphill into dams and release it when electricity demand is high. The federal government says it will act as a giant battery, backing up intermittent energy from by wind and solar.

We and others have criticised the project on several grounds. Here are six reasons we think Snowy 2.0 should be shelved.

1. It’s really expensive

The federal government announced the Snowy 2.0 project without a market assessment, cost-benefit analysis or indeed even a feasibility study.

When former Prime Minister Malcolm Turnbull unveiled the Snowy expansion in March 2017, he said it would cost A$2 billion and be commissioned by 2021. This was revised upwards several times and in April last year, Snowy Hydro awarded a A$5.1 billion contract for partial construction.

Snowy Hydro has not costed the transmission upgrades on which the project depends. TransGrid, owner of the grid in NSW, has identified options including extensions to Sydney with indicative costs up to A$1.9 billion. Massive extensions south, to Melbourne, will also be required but this has not been costed.

The Tumut 3 scheme, with which Snowy 2.0 will share a dam.
Snowy Hydro Ltd

2. It will increase greenhouse gas emissions

Both Snowy Hydro Ltd and its owner, the federal government, say the project will help expand renewable electricity generation. But it won’t work that way. For at least the next couple of decades, analysis suggests Snowy 2.0 will store coal-fired electricity, not renewable electricity.

Snowy Hydro says it will pump the water when a lot of wind and solar energy is being produced (and therefore when wholesale electricity prices are low).




Read more:
Snowy 2.0 is a wolf in sheep’s clothing – it will push carbon emissions up, not down


But wind and solar farms produce electricity whenever the resource is available. This will happen irrespective of whether Snowy 2.0 is producing or consuming energy.

When Snowy 2.0 pumps water uphill to its upper reservoir, it adds to demand on the electricity system. For the next couple of decades at least, coal-fired electricity generators – the next cheapest form of electricity after renewables – will provide Snowy 2.0’s power. Snowy Hydro has denied these claims.

Khancoban Dam, part of the soon-to-be expanded Snowy Hydro scheme.
Snowy Hydro Ltd

3. It will deliver a fraction of the energy benefits promised

Snowy 2.0 is supposed to store renewable energy for when it is needed. Snowy Hydro says the project could generate electricity at its full 2,000 megawatt capacity for 175 hours – or about a week.

But the maximum additional pumped hydro capacity Snowy 2.0 can create, in theory, is less than half this. The reasons are technical, and you can read more here.

It comes down to a) the amount of time and electricity required to replenish the dam at the top of the system, and b) the fact that for Snowy 2.0 to operate at full capacity, dams used by the existing hydro project will have to be emptied. This will result in “lost” water and by extension, lost electricity production.



The Conversation, CC BY-ND

4. Native fish may be pushed to extinction

Snowy 2.0 involves building a giant tunnel to connect two water storages – the Tantangara and Talbingo reservoirs. By extension, the project will also connect the rivers and creeks connected to these reservoirs.

A small, critically endangered native fish, the stocky galaxias, lives in a creek upstream of Tantangara. This is the last known population of the species.

The stocky galaxias.
Hugh Allan

An invasive native fish, the climbing galaxias, lives in the Talbingo reservoir. Water pumped from Talbingo will likely transfer this fish to Tantangara.

From here, the climbing galaxias’ capacity to climb wet vertical surfaces would enable it to reach upstream creeks and compete for food with, and prey on, stocky galaxias – probably pushing it into extinction.

Snowy 2.0 is also likely to spread two other problematic species – redfin perch and eastern gambusia – through the headwaters of the Murrumbidgee, Snowy and Murray rivers.




Read more:
Snowy 2.0 threatens to pollute our rivers and wipe out native fish


5. It’s a pollution risk

Snowy Hydro says its environmental impact statement addresses fish transfer impacts, and potentially serious water quality issues.

Four million tonnes of rock excavated to build Snowy 2.0 would be dumped into the two reservoirs. The rock will contain potential acid-forming minerals and other harmful substances, which threaten to pollute water storages and rivers downstream.

When the first stage of the Snowy Hydro project was built, comparable rocks were dumped in the Tooma River catchment. Research in 2006 suggested the dump was associated with eradication of almost all fish from the Tooma River downstream after rainfall.

Snowy 2.0 threatens to pollute pristine Snowy Mountains rivers.
Schopier/Wikimedia

6. Other options were not explored

Many competing alternatives can provide storage far more flexibly for a fraction of Snowy 2.0’s price tag. These alternatives would also have far fewer environmental impacts or development risks, in most cases none of the transmission costs and all could be built much more quickly.

Expert analysis in 2017 identified 22,000 potential pumped hydro energy storage sites across Australia.

Other alternatives include chemical batteries, encouraging demand to follow supply, gas or diesel generators, and re-orienting more solar capacity to capture the sun from the east or west, not just mainly the north.

Where to now?

The federal government, which owns Snowy Hydro, is yet to approve the main works.

Given the many objections to the project and how much has changed since it was proposed, we strongly believe it should be put on hold, and scrutinised by independent experts. There’s too much at stake to get this wrong.




Read more:
Five gifs that explain how pumped hydro actually works


The Conversation


Bruce Mountain, Director, Victoria Energy Policy Centre, Victoria University and Mark Lintermans, Associate professor, University of Canberra

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Why passenger pigeons went extinct a century ago



A passenger pigeon flock being hunted in Louisiana. From the ‘Illustrated Shooting and Dramatic News’, 1875.
(Wikimedia/Smith Bennett), CC BY-NC-ND

Eric Guiry, Trent University

On Sept. 1, 1914, a Cincinnati Zoological Gardens employee found the lifeless body of Martha, the world’s last living passenger pigeon, resting beneath her perch.

Forty years earlier, Martha’s ancestors numbered in the billions. Their flocks formed avian clouds across eastern North America, obstructing sunlight for days. The sight was so overwhelming that the American conservationist Aldo Leopold called them a “biological storm.”

By the early 1900s, only a handful of birds remained, and these were in captivity. How, in a few short decades, could one of the world’s most prodigious bird vanish from the sky?

As an archaeological scientist with a background in ecology and chemical analyses, I have always been fascinated by great extinction events and the disappearance of the passenger pigeon is one of the most notable in North America’s history. It’s exciting to look at the events that led to their demise.

Forests of food?

For decades, two theories have been used to explain the extinction of passenger pigeons. While it has long been understood that human activity caused their extinction, the exact mechanism wasn’t known.

A male passenger pigeon on display at the Cleveland Museum of Natural History in Ohio. The last wild bird was shot in 1901, and Martha, the last captive bird, died on Sept. 1, 1914, at the Cincinnati Zoo.
(Tim Evanson/flickr), CC BY-SA

One theory was that because the birds mostly ate a highly specialized diet of tree nuts (known as “mast”), such as acorns and beechnuts, they died off when they could no longer find enough food after the forested habitats they devoured were cut down by humans.

The other theory was that their obliteration was due mainly to humans killing staggering numbers of birds for sport and to feed growing urban populations.

The conflict between these two ideas was already evident in the early 19th century, when the almost ceaseless slaughter of passenger pigeons was well underway. After the Civil War, technological advancements, such as the telegraph and expanding rail networks, helped professional hunters, called pigeoners, to locate migrating flocks at their nesting sites and collect birds, young and old, on an industrial scale.

The great American ornithologist John James Audubon may have captured popular sentiment when he said, “… nothing but the gradual diminution of our forests can accomplish their decrease as they not infrequently quadruple their numbers yearly, and always at least double it.”

So, which was more likely: hunting or habitat destruction?

Diet clues

My colleagues and I used stable isotope analysis to study chemical markers in the bones of passenger pigeons found in archaeological deposits dating from 900-1900, in the heart of the birds’ former nesting habitat in Ontario and Québec.

An animal’s bones can tell us a lot about what ate before it died. Because bones grow and remodel slowly over the course of an animal’s lifetime, their stable isotope composition gives us information about average diet over a period of months or even years. This longer-term record of diet lets us see what a bird ate over its entire life, rather than at a single meal or in a single season.




Read more:
Why giant human-sized beavers died out 10,000 years ago


Our study found that passenger pigeons could live off other foods, including farmers’ crops. This suggests that an unchecked commercial pigeon industry was likely the more important driver behind the birds’ extinction.

A passenger pigeon skull collected during archaeological excavations.
(Eric Guiry)

Prior to our research, little was known about the diversity (or lack thereof) of their diet. At the time of their decline and disappearance, no one had the technology to be able to follow and document the birds throughout their full life cycle, including cross-continental migration.

Past historical research indicated that mast was the birds’ food of choice, as they roamed up and down the great forests of eastern North America searching out patches at the peak in their masting cycle. Yet there was also scattered anecdotal evidence that the birds would at times descend on farmers’ fields of corn and wheat.

Most of the birds we sampled did eat mostly mast, but a subset had chemical compositions that suggest their diet was made up largely of crops like corn that would have been available even as their traditional sources of food grew scarcer. We also tested the subset of birds to see if they belonged to a specific age category or genetic group but found that corn-based diets occurred in both young and old birds, as well as in all genetic groups, suggesting that this dietary flexibility may have been widespread.

A new mystery?

Our analysis answered our original question, but also opened up another mystery for future study.

The passenger pigeon was found across most of North America east of the Rocky Mountains, north of the Mississippi and south of Canada. But sometimes they were seen in Bermuda, Cuba or Mexico.
(Shutterstock)

We performed DNA analyses to confirm the birds we were testing were, in fact, passenger pigeons. These results suggested that there may have been more genetic diversity in these birds than previous studies revealed.

Much of the previous DNA work was concentrated on birds that died not long before the species disappeared entirely, which may have meant the genetic diversity in the birds was already waning. A sample from the earlier birds in our study suggests there may have been more internal diversity during the thousands of years these flocks dominated the skies and forests of eastern North America.




Read more:
Bird species are facing extinction hundreds of times faster than previously thought


This research reveals the amazing potential that archaeology and scientific techniques have for helping us understand major events of the past and how the actions of humans have shaped the world as we know it today.The Conversation

Eric Guiry, Post-Doctoral Fellow, Trent Environmental Archaeology Laboratory, Trent University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia’s bushfires could drive more than 700 animal species to extinction. Check the numbers for yourself



Invertebrates out greatly outnumber mammals everywhere, including in bushfire zones.
Michael Lee, CC BY-NC-ND

Mike Lee, Flinders University

The scale and speed of the current bushfire crisis has caught many people off-guard, including biodiversity scientists. People are scrambling to estimate the long-term effects. It is certain that many animal species will be pushed to the brink of extinction, but how many?

One recent article suggested 20 to 100, but this estimate mostly considers large, well-known species (especially mammals and birds).

A far greater number of smaller creatures such as insects, snails and worms will also be imperilled. They make up the bulk of biodiversity and are the little rivets holding ecosystems together.




Read more:
A season in hell: bushfires push at least 20 threatened species closer to extinction


But we have scant data on how many species of small creatures have been wiped out in the fires, and detailed surveys comparing populations before and after the fires will not be forthcoming. So how can we come to grips with this silent catastrophe?

This native bee (Amphylaeus morosus) has been devastated by the bushfires across much of its range. It plays important roles in pollinating plants and as part of the food web, but has no common name, and its plight is so far unheralded.
Reiner Richter https://www.ala.org.au/

Using the information that is available, I calculate that at least 700 animal species have had their populations decimated – and that’s only counting the insects.

This may sound like an implausibly large figure, but the calculation is a simple one. I’ll explain it below, and show you how to make your own extinction estimate with only a few clicks of a calculator.

Using insects to estimate true extinction numbers

More than three-quarters of the known animal species on Earth are insects. To get a handle on the true extent of animal extinctions, insects are a good place to start.

My estimate that 700 insect species are at critical risk involves extrapolating from the information we have about the catastrophic effect of the fires on mammals.

We can work this out using only two numbers: A, how many mammal species are being pushed towards extinction, and B, how many insect species there are for each mammal species.

To get a “best case” estimate, I use the most conservative estimates for A and B below, but jot down your own numbers.

How many mammals are critically affected?

A recent Time article lists four mammal species that will be severely impacted: the long-footed potoroo, the greater glider, the Kangaroo Island dunnart, and the black-tailed dusky antechinus. The eventual number could be much greater (e.g the Hastings River mouse, the silver-headed antechinus), but let’s use this most optimistic (lowest) figure (A = 4).

Make your own estimate of this number A. How many mammal species do you think would be pushed close to extinction by these bushfires?

We can expect that for every mammal species that is severely affected there will be a huge number of insect species that suffer a similar fate. To estimate exactly how many, we need an idea of insect biodiversity, relative to mammals.

How many insect species are out there, for each mammal species?

The world has around 1 million named insect species, and around 5,400 species of land mammals.

So there are at least 185 insect species for every single land mammal species (B = 185). If the current bushfires have burnt enough habitat to devastate 4 mammal species, they have probably taken out around 185 × 4 = 740 insect species in total. Along with many species of other invertebrates such as spiders, snails, and worms.

There are hundreds of insect species for every mammal species.
https://imgbin.com/

For your own value for B, use your preferred estimate for the number of insect species on earth and divide it by 5,400 (the number of land mammal species).

One recent study suggests there are at least 5.5 million species of insects, giving a value of B of around 1,000. But there is reason to suspect the real number could be much greater.




Read more:
The Earth’s biodiversity could be much greater than we thought


How do our estimates compare?

My “best case” values of A = 4 and B = 185 indicate at least 740 insect species alone are being imperilled by the bushfires. The total number of animal species impacted is obviously much bigger than insects alone.

Feel free to perform your own calculations. Derive your values for A and B as above. Your estimate for the number of insect species at grave risk of extinction is simply A × B.

Post your estimate and your values for A and B please (and how you got those numbers if you wish) in the Comments section and compare with others. We can then see what the wisdom of the crowd tells us about the likely number of affected species.




Read more:
How to unleash the wisdom of crowds


Why simplistic models can still be very useful

The above calculations are a hasty estimate of the magnitude of the current biodiversity crisis, done on the fly (figuratively and literally). Technically speaking, we are using mammals as surrogates or proxies for insects.

To improve these estimates in the near future, we can try to get more exact and realistic estimates of A and B.

Additionally, the model itself is very simplistic and can be refined. For example, if the average insect is more susceptible to fire than the average mammal, our extinction estimates need to be revised upwards.

Also, there might be an unusually high (or low) ratio of insect species compared to mammal species in fire-affected regions. Our model assumes these areas have the global average – whatever that value is!

And most obviously, we need to consider terrestrial life apart from insects – land snails, spiders, worms, and plants too – and add their numbers in our extinction tally.

Nevertheless, even though we know this model gives a huge underestimate, we can still use it to get an absolute lower limit on the magnitude of the unfolding biodiversity crisis.

This “best case” is still very sad. There is a strong argument that these unprecedented bushfires could cause one of biggest extinction events in the modern era. And these infernos will burn for a while longer yet.The Conversation

Mike Lee, Professor in Evolutionary Biology (jointly appointed with South Australian Museum), Flinders University

This article is republished from The Conversation under a Creative Commons license. Read the original article.