Climate explained: how the climate impact of beef compares with plant-based alternatives



Shutterstock

Alexandra Macmillan, University of Otago and Jono Drew, University of Otago

Climate Explained is a collaboration between The Conversation, Stuff and the New Zealand Science Media Centre to answer your questions about climate change.

If you have a question you’d like an expert to answer, please send it to climate.change@stuff.co.nz

I am wondering about the climate impact of vegan meat versus beef. How does a highly processed patty compare to butchered beef? How does agriculture of soy (if this is the ingredient) compare to grazing of beef?

Both Impossible Foods and Beyond Meat, two of the biggest players in the rapidly expanding meat alternatives market, claim their vegan burger patties (made primarily from a variety of plant proteins and oils) are 90% less climate polluting than a typical beef patty produced in the United States.

The lifecycle assessments underpinning these findings were funded by the companies themselves, but the results make sense in the context of international research, which has repeatedly shown plant foods are significantly less environmentally damaging than animal foods.

It is worth asking what these findings would look like if the impacts of plant-based meats had been compared with a beef patty produced from a grass-fed
cattle farm, as is the case in New Zealand, instead of an industrialised feedlot operation that is commonplace in the United States.




Read more:
Climate explained: will we be less healthy because of climate change?


A New Zealand perspective

Building on international research mainly carried out in the Northern Hemisphere, we recently completed a full assessment of the greenhouse gas emissions associated with different foods and dietary patterns in New Zealand.

Despite dominant narratives about the efficiency of New Zealand’s livestock production systems, we found the stark contrast between climate impacts of plant and animal foods is as relevant in New Zealand as it is elsewhere.

For example, we found 1 kilogram of beef purchased at the supermarket produces 14 times the emissions of whole, protein-rich plant foods like lentils, beans and chickpeas. Even the most emissions-intensive plant foods, such as rice, are still more than four times more climate-friendly than beef.

The New Zealand food emissions database: comparing the climate impact of commonly consumed food items in New Zealand.
Drew et al., 2020

The climate impact of different foods is largely determined by the on-farm stage of production. Other lifecycle stages such as processing, packaging and transportation play a much smaller role.

Raising beef cattle, regardless of the production system, releases large quantities of methane as the animals belch the gas while they chew the cud. Nitrous oxide released from fertilisers and manure is another potent greenhouse gas that drives up beef’s overall climate footprint.

Climate impact of the New Zealand diet

Everyday food choices can make a difference to the overall climate impact of our diet. In our modelling of different eating patterns, we found every step New Zealand adults take towards eating a more plant-based diet results in lower emissions, better population health and reduced healthcare costs.

Climate impact of different dietary scenarios, as compared with the typical New Zealand diet.
Drew et al., 2020

The graph above shows a range of dietary changes, which gradually replace animal-based and highly processed foods with plant-based alternatives. If all New Zealand adults were to adopt a vegan diet with no food wastage, we estimated diet-related emissions could be reduced by 42% and healthcare costs could drop by NZ$20 billion over the lifetime of the current New Zealand population.




Read more:
A vegan meat revolution is coming to global fast food chains – and it could help save the planet


Redesigning the food system

The current global food system is wreaking havoc on both human and planetary health. Our work adds to an already strong body of international research that shows less harmful alternatives are possible.

As pressure mounts on governments around the world to help redesign our food systems, policymakers continue to show reluctance when it comes to supporting a transition toward plant-based diets.

Such inaction appears, in large part, to be driven by the propagation of deliberate misinformation by powerful food industry groups, which not only confuses consumers but undermines the development of healthy and sustainable public policy.

To address the multiple urgent environmental health issues we face, a shift towards a plant-based diet is something many individuals can do for their and the planet’s health, while also pressing for the organisational and policy changes needed to make such a shift affordable and accessible for everyone.The Conversation

Alexandra Macmillan, Associate Professor Environment and Health, University of Otago and Jono Drew, Medical Student, University of Otago

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Climate change is hurting farmers – even seeds are under threat



kram9/Shutterstock

Richard Ellis, University of Reading

Climate change is already affecting the amount of food that farmers can produce. Several recent extreme weather events, which are only likely to become more frequent as the world continues heating up, provide stark illustrations of what this impact can look like. Climate change is already affecting the amount of food that farmers can produce. For example, crop sowing in the UK was delayed in autumn 2019 and some emerging crops were damaged because of wet weather. Meanwhile in Australia, considerable drought has been immensely damaging.

But climate change can also have a knock-on impact on farming by affecting the quality of seeds, making it harder to establish seedlings that then grow into mature, food-producing plants. My research group has recently published a study showing that even brief periods of high temperature or drought can reduce seed quality in rice, depending on exactly when they occur in the seed’s development.

Nonetheless, it is possible to breed improved varieties to help crops adapt to the changing climate. And the resources needed to do this are being collected and conserved in “genebanks”, libraries of seeds conserving crop plant diversity for future use.

In much of the developing world in particular, the supply of affordable, good-quality seed limits farmers’ ability to establish crops. Seeds need to be stored between harvest and later sowing and poor-quality seeds don’t survive very long in storage. Once planted, low-quality seeds are less likely to emerge as seedlings and more likely to fail later on, producing a lower plant density in the field and a lower crop yield as a result.

For this reason, investigating seed quality is an important way of assessing such effects of climate on cereal crop production. We already know that climate change can reduce the quality of cereal seeds used for food, food ingredients and for planting future crops.

The main factor that affects seed quality in this way tends to be temperature, but the amount and timing of rainfall is also important. This impact can come from changes in average weather patterns, but short periods of extreme temperature or rainfall are just as important when they coincide with sensitive stages in crop development. For example, research in the 1990s revealed that brief high temperature periods during and immediately before a crop flowers reduces the number of seeds produced and therefore the resulting grain yield in many cereal crops.

Hot spells can make rice seeds less likely to become seedlings.
FenlioQ/Shutterstock

Our research has now confirmed that seed quality in rice is damaged most when brief hot spells coincide with early seed development. It also revealed that drought during the early development of the seeds also reduces their quality at maturity. And, unsurprisingly, the damage is even greater when both these things happen together.

In contrast, warmer temperatures later in the maturation process can benefit rice seed quality as the seeds dry out. But flooding that submerges the seed can also cause damage, which gets worse the later it occurs during maturation. This shows why we have to include the effects of changing rainfall as well as temperature and the precise timing of extreme weather when looking at how seed quality is affected.

Future seeds

Our research has also shown that different seed varieties have different levels of resilience to these environmental stresses. This means that farming in the future will depend on selecting and breeding the right varieties to respond to the changing climate.




Read more:
How gardeners are reclaiming agriculture from industry, one seed at a time


The world now has a global network of genebanks storing seeds from a wide variety of plants, which helps safeguard their genetic diversity. For example, the International Rice Genebank maintains more than 130,000 samples of cultivated species of rice, its wild relatives and closely-related species, while the AfricaRice genebank maintains 20,000 samples.

Our finding mean that, when scientists breed new crop varieties using genebank samples as “parents”, they should include the ability to produce high-quality seed in stressful environments in the variety’s selected traits. In this way, we should be able to produce new varieties of seeds that can withstand the increasingly extreme pressures of climate change.

This article was amended to make clear that climate change increases the likely frequency of extreme weather events rather than being demonstrably responsible for individual examples.


Click here to subscribe to our climate action newsletter. Climate change is inevitable. Our response to it isn’t.The Conversation

Richard Ellis, Professor of Crop Production, University of Reading

This article is republished from The Conversation under a Creative Commons license. Read the original article.

New study: changes in climate since 2000 have cut Australian farm profits 22%



The Australian Bureau of Agricultural and Resource Economics and Sciences farmpredict model finds that changes in climate conditions since 2000 have cut farm profits by 22% overall, and by 35% for cropping farms..
ABARES/Shutterstock

Neal Hughes, Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) and Steve Hatfield-Dodds, Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES)

The current drought across much of eastern Australia has demonstrated the dramatic effects climate variability can have on farm businesses and households.

The drought has also renewed longstanding discussions around the emerging effects of climate change on agriculture, and how governments can best help farmers to manage drought risk.

A new study released this morning by the Australian Bureau of Agricultural and Resource Economics and Sciences offers fresh insight on these issues by quantifying the impacts of recent climate variability on the profits of Australian broadacre farms.




Read more:
Droughts, extreme weather and empowered consumers mean tough choices for farmers


The results show that changes in temperature and rainfall over the past 20 years have had a negative effect on average farm profits while also increasing risk.

The findings demonstrate the importance of adaptation, innovation and adjustment to the agriculture sector, and the need for policy responses which promote – and don’t unnecessarily inhibit – such progress.

Measuring the effects of climate on farms

Measuring the effects of climate on farms is difficult given the many other factors that also influence farm performance, including commodity prices.

Further, the effects of rainfall and temperature on farm production and profit can be complex and highly location and farm specific.

To address this complexity, ABARES has developed a model based on more than 30 years of historical farm and climate data—farmpredict — which can identify effects of climate variability, input and output prices, and other factors on different types of farms.

Cropping farms most exposed

The model finds that cropping farms generally face greater climate risk than beef farms, but also generate higher average returns.

Cropping farm revenue and profits are lower in dry years, with large reductions in crop yields and only small savings in input costs.


Effect of climate variability on rate of return


Based on historical climate conditions (1950 to 2019), holding non-climate factors constant. See report for more detail. ABARES FarmPredict

In contrast, drought has a smaller immediate effect on beef farm revenue, because in dry years farmers can increase the quantity of livestock sold.

However, drought also lowers herd numbers, which lowers farm profit when herd value is accounted for.

Higher temperatures, lower winter rainfall

Australian average temperatures have increased by about 1°C since 1950.

Recent decades have also seen a trend towards lower average winter rainfall in the southwest and southeast.

This drying trend has been linked to atmospheric changes associated with global warming.

However, while global climate models generally predict a decline in winter season rainfall across southern Australia and more time spent in drought, there is still much uncertainty about what will happen in the long term, particularly to rainfall.

Climate shifts have cut farm profits

ABARES has assessed the effect of climate variability on farm profits over the period 1950 to 2019, holding all other factors constant including commodity prices and farm management practices.

We find that the shift in climate conditions since 2000 (from conditions in the period 1950-1999 to conditions in the period 2000-2019) has had a negative effect on the profits of both cropping and livestock farms.


Effect of 2000 – 2019 climate conditions on average farm profit


“Farm profit percentiles for the period 2000-2019 relative to 1950-1999, holding non-climate factors constant. See report for more detail. ABARES

We estimate that the shift in climate has cut average annual broadacre farm profits by around 22%, which is an average of $18,600 per farm per year, controlling for all other factors.

The effects have been most pronounced in the cropping sector, reducing average profits by 35%, or $70,900 a year for a typical cropping farm.

At a national level this amounts to an average loss in production of broadacre crops of around $1.1 billion a year.

Although beef farms have been less affected than cropping farms overall, some beef farming regions have been affected more than others, especially south-western Queensland.




Read more:
Drought is inevitable, Mr Joyce


Like previous ABARES research this study finds evidence of adaptation, with farmers reducing their sensitivity to dry conditions over time.

Our results suggest that without this adaptation the effects of the post-2000 climate shift would have been considerably larger, particularly for cropping farms.


Effect of post-2000 climate on average annual farm profits


Per cent change relative to 1950-1999 climate, holding non-climate factors constant. See report for more detail. ABARES FarmPredict

Risk and income volatility have also increased

The changed climate conditions since 2000 have also increased risk and income volatility.

This is particularly so for cropping farms, where we find the chance of low-profit years has more than doubled as a result of the change in climate conditions.


Effect of climate variability on typical cropping farm


Distribution of farm profits for 1950-1999 climate and 2000-2019 climate. See report for more detail. ABARES FarmPredict

Handle with care – the drought policy dilemma

Drought policy faces an almost unavoidable dilemma, that providing relief to farm businesses and households in times of drought risks slowing industry structural adjustment and innovation.

Adjustment, change and innovation are fundamental to improving agricultural productivity; maintaining Australia’s competitiveness in world markets; and providing attractive and financially sustainable opportunities for farm households.




Read more:
Helping farmers in distress doesn’t help them be the best: the drought relief dilemma


For these reasons, the strategic intent of drought policy has shifted away from seeking to protect and insulate farmers towards the promotion of drought preparedness and self‑reliance.

The best options for reconciling the drought policy dilemma focus on boosting the resilience of farm businesses and households to future droughts and climate variability, including through action and investment when farmers are not in drought.

The government’s Future Drought Fund, which will support research and innovation, is a good example of this approach.

Developing new insurance options is one worthwhile avenue of research which could provide farmers a way to self-manage risk. It would require investments in data and knowledge to support viable weather insurance markets: where farmers pay premiums sufficient to cover costs over time.




Read more:
Better data would help crack the drought insurance problem


Supporting farm households experiencing hardship is legitimate and important, but for the long term health of the farm sector this needs to be done in ways that promote resilience and improved productivity and allow for long term adjustment to change.The Conversation

Neal Hughes, Senior Economist, Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) and Steve Hatfield-Dodds, Executive Director, Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES)

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Climate explained: regenerative farming can help grow food with less impact



Returning nutrients, including animal feces, to the land is important to maintain the soil’s capacity to sequester carbon.
from http://www.shutterstock.com, CC BY-ND

Troy Baisden, University of Waikato


CC BY-ND

Climate Explained is a collaboration between The Conversation, Stuff and the New Zealand Science Media Centre to answer your questions about climate change.

If you have a question you’d like an expert to answer, please send it to climate.change@stuff.co.nz

I would like to know to what extent regenerative agriculture practices could play a role in reducing carbon emissions and producing food, including meat, in the future. From what I have read it seems to offer much, but I am curious about how much difference it would make if all of our farmers moved to this kind of land management practice. Or even most of them. – a question from Virginia

To identify and quantify the potential of regenerative agriculture to reduce greenhouse gas emissions, we first have to define what it means. If regenerative practices maintain or improve production, and reduce wasteful losses on the farm, then the answer tends to be yes. But to what degree is it better, and can we verify this yet?

Let’s first define how regenerative farming differs from other ways of farming. For example, North Americans listening to environmentally conscious media would be likely to define most of New Zealand pastoral agriculture systems as regenerative, when compared to the tilled fields of crops they see across most of their continent.

If milk and meat-producing animals are not farmed on pasture, farmers have to grow grains to feed them and transport the fodder to the animals, often over long distances. It’s hard to miss that the transport is inefficient, but easier to miss that nutrients excreted by the animals as manure or urine can’t go back to the land that fed them.

Healthy soils

Returning nutrients to the land really matters because these build up soil, and grow more plants. We can’t sequester carbon in soil without returning nutrients to the soil.

New Zealand’s style of pastoral agricultural does this well, and we’re still improving as we focus on reducing nutrient losses to water.




Read more:
New Zealand launches plan to revive the health of lakes and rivers


Our pastoral soils tend to have as much carbon as they once did under forest, but concerns have been raised about carbon losses in some regions. Yet, we do still have two big problems.

First, the animals that efficiently digest tough plants – including cows, sheep, and goats – all belch the greenhouse gas methane. This is a direct result of their special stomachs, and chewing their cud. Therefore, farms will continue to have high greenhouse gas emissions per unit of meat and milk they produce. The recent Intergovernmental Panel on Climate Change (IPCC) report emphasised this, noting that changing diets can reduce emissions.

The second problem is worst in dairying. When a cow lifts its tail to urinate, litres of urine saturate a small area. The nitrogen content in this patch exceeds what plants and soil can retain, and the excess is lost to water as nitrate and to the air, partly as the powerful, long-lived greenhouse gas nitrous oxide.

Defining regenerative

Regenerative agriculture lacks a clear definition, but there is an opportunity for innovation around its core concept, which is a more circular economy. This means taking steps to reduce or recover losses, including those of nutrients and greenhouse gases.




Read more:
Regenerative agriculture can make farmers stewards of the land again


Organic agriculture, which prohibits the use of antibiotics and synthetic pesticides and fertilisers, could potentially include regenerative agriculture. Organics once had the same innovative status, but now has a clear business model and supply chain linked to a price premium achieved through certification.

The price premium and regulation linked to certification can limit the redesign of the organic agricultural systems to incremental improvements, limiting the inclusion of regenerative concepts. It also means that emission studies of organic agriculture may not reveal the potential benefits of regenerative agriculture.

Instead, the potential for a redesign of New Zealand’s style of pastoral dairy farming around regenerative principles provides a useful example of how progress might work. Pastures could shift from ryegrass and clover to a more diverse, more deeply rooted mix of alternate species such as chicory, plantains, lupins and other grasses. This system change would have three main benefits.

Win-win-win

The first big win in farming is always enhanced production, and this is possible by better matching the ideal diet for cows. High performance ryegrass-clover pastures contain too little energy and too much protein. Diverse pastures fix this, allowing potential increases in production.

A second benefit will result when protein content of pasture doesn’t exceed what cows need to produce milk, reducing or diluting the nitrogen concentrated in the urine patches that are a main source of nitrous oxide emissions and impacts on water.

A third set of gains can result if the new, more diverse pastures are better at capturing and storing nutrients in soil, usually through deeper and more vigorous root growth. These three gains interrelate and create options for redesign of the farm system. This is best done by farmers, although models may help put the three pieces together into a win-win-win.

Whether you’re interested in local beef in Virginia, or the future of New Zealand’s dairy industry, the principles that define regenerative agriculture look promising for redesigning farming to reduce emissions. They may prove simpler than agriculture’s wider search for new ways of reducing greenhouse gas emissions, including genetically engineering ryegrass.The Conversation

Troy Baisden, Professor and Chair in Lake and Freshwater Sciences, University of Waikato

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australia urgently needs real sustainable agriculture policy



Australia must invest in sustainable agriculture.
Author provided

Jacqueline Williams, University of New England

Australia has made a global commitment to “sustainable agriculture”, an endeavour seen as increasingly crucial to ending world poverty, halting biodiversity loss, and combating climate change. A recent report from the UN found land use – including food production – is responsible for around one-third of the world’s greenhouse gas emissions.

Unfortunately, Australia has something of a sustainable agriculture policy vacuum, after years of a fragmented, stop-start approach.




Read more:
UN climate change report: land clearing and farming contribute a third of the world’s greenhouse gases


To honour our international obligations and respond to growing sustainability markets, Australia urgently needs a contemporary definition of sustainable agriculture, including agreed on-farm metrics.

Good policy abandoned

Australia spent more than a decade developing promising policies that defined sustainable agriculture with broad indicators for measuring progress.

In 1997 Australia passed federal legislation defining “sustainable agriculture” as:

agricultural practices and systems that maintain or improve […] the economic viability of agricultural production; the social viability and well-being of rural communities; […] biodiversity; the natural resource base [and] ecosystems that are influenced by agricultural activities.

The following year, the Standing Committee on Agriculture and Resource Management published a broad set indicators.

During the early 2000s a national framework of Environmental Management Systems was developed, and national pilots were conducted across Australia up until 2006.

Between 2004 and 2006 the Australian Bureau of Statistics recorded farmers’ investment in natural resource management. However these surveys have not been replicated in more than a decade.

In 2005, the states and territories formed a joint working group to create a national approach to property management systems. This group met with industry representatives and regional land managers throughout 2006, and in 2007 the Department of Agriculture, Fisheries and Forestry planned a pathway for a national policy. There was much hope and enthusiasm it would soon become a reality.

However, since 2008 there has been no progress and little, if any, explanation for why this important sustainable agriculture policy initiative was shelved.

Current policy vacuum

It is concerning that Australia’s first progress report on implementing the sustainable development goals contains the words “sustainable agriculture” only once in 130 pages, as part of the heading for the goal of ending hunger.

The definition arrived at in 1997 is far too broad and simplistic, and can’t be used at the farm level.

When contacted for comment, a spokesperson for the Department of Agriculture reiterated their commitment to improving sustainable food production, and said:

Australia is involved in global discussions about how best to measure sustainable agriculture performance […] However a globally agreed methodology has not been set for [agricultural sustainability].

Australia’s only substantial sustainable agriculture policy mechanism at the moment appears to be grants available through the National Landcare Program. This is reiterated by searching through key Coalition policy documents and the recent budget.

The budget allocation to the overall National Landcare Program is around A$1 billion from 2017 to 2023. New programs announced in the 2019 budget that build on this commitment include:

  • A$100 million over four years for the environment restoration fund,
  • A$34 million over four years for a new biodiversity stewardship program,
  • A$28.3 million for a new communities environment program for 2019-20, and
  • A$2 billion over 15 years for the climate solutions fund.

These programs combined equate to some A$354 million per year. But a coherent sustainable agriculture policy cannot be delivered through grants alone.

And even though these grants are substantial, past ABS surveys found that farmers invest at least A$3 billion a year in natural resource management. The Indigenous on-country contribution is currently unknown, but likely to be substantial.

Caring for country fund

Around 10% of Australia’s population lives in rural or remote areas. These comparatively small communities – largely farmers and Indigenous land managers – currently steward most of the country.

A review released in late July on how conservation laws affect the agriculture sector has recommended the federal government create a A$1 billion fund for farmers who deliver environment benefits from their land.

This mirrors calls from farmers for an ecosystem services fund.

If our 13.9 million taxpayers contributed some A$60 each per year in a “caring for country” levy, urban and rural Australians could more fairly share the costs – as well as the advantages – of sustainable land management.

We could start with revisiting the good work undertaken more than a decade ago in developing a national framework for property management systems.

Underpinning such a system, we need an independent and trusted source of metrics for farmers, land managers and agricultural industries. To this end, the University of New England is establishing a research hub to help develop just such a harmonised approach.




Read more:
Vegan food’s sustainability claims need to give the full picture


There are many good news stories of sustainable agriculture around Australia, however our ongoing biodiversity crisis requires transformative policy change and federal leadership.

One bold first step would be addressing the current paradox of sustainable agriculture in Australia.The Conversation

Jacqueline Williams, Senior Research Fellow & Lecturer, School of Environmental and Rural Science, University of New England

This article is republished from The Conversation under a Creative Commons license. Read the original article.

UN climate change report: land clearing and farming contribute a third of the world’s greenhouse gases



Farming emits greenhouse gases, but the land can also store them.
Johny Goerend/Unsplash, CC BY-SA

Mark Howden, Australian National University

We can’t achieve the goals of the Paris Climate Agreement without managing emissions from land use, according to a special report released today by the Intergovernmental Panel on Climate Change (IPCC).

Emissions from land use, largely agriculture, forestry and land clearing, make up some 22% of the world’s greenhouse gas emissions. Counting the entire food chain (including fertiliser, transport, processing, and sale) takes this contribution up to 29%.




Read more:
Want to beat climate change? Protect our natural forests


The report, which synthesises information from some 7,000 scientific papers, found there is no way to keep global warming under 2℃ without significant reductions in land sector emissions.

Land puts out emissions – and absorbs them

The land plays a vital role in the carbon cycle, both by absorbing greenhouse gases and by releasing them into the atmosphere. This means our land resources are both part of the climate change problem and potentially part of the solution.

Improving how we manage the land could reduce climate change at the same time as it improves agricultural sustainability, supports biodiversity, and increases food security.

While the food system emits nearly a third of the world’s greenhouse gases – a situation also reflected in Australia – land-based ecosystems absorb the equivalent of about 22% of global greenhouse gas emissions. This happens through natural processes that store carbon in soil and plants, in both farmed lands and managed forests as well as in natural “carbon sinks” such as forests, seagrass and wetlands.




Read more:
Australia is a global top-ten deforester – and Queensland is leading the way


There are opportunities to reduce the emissions related to land use, especially food production, while at the same time protecting and expanding these greenhouse gas sinks.

But it is also immediately obvious that the land sector cannot achieve these goals by itself. It will require substantial reductions in fossil fuel emissions from our energy, transport, industrial, and infrastructure sectors.

Overburdened land

So, what is the current state of our land resources? Not that great.

The report shows there are unprecedented rates of global land and freshwater used to provide food and other products for the record global population levels and consumption rates.

For example, consumption of food calories per person worldwide has increased by about one-third since 1961, and the average person’s consumption of meat and vegetable oils has more than doubled.

The pressure to increase agricultural production has helped push about a quarter of the Earth’s ice-free land area into various states of degradation via loss of soil, nutrients and vegetation.

Simultaneously, biodiversity has declined globally, largely because of deforestation, cropland expansion and unsustainable land-use intensification. Australia has experienced much the same trends.




Read more:
To reduce fire risk and meet climate targets, over 300 scientists call for stronger land clearing laws


Climate change exacerbates land degradation

Climate change is already having a major impact on the land. Temperatures over land are rising at almost twice the rate of global average temperatures.

Linked to this, the frequency and intensity of extreme events such as heatwaves and flooding rainfall has increased. The global area of drylands in drought has increased by over 40% since 1961.

These and other changes have reduced agricultural productivity in many regions – including Australia. Further climate changes will likely spur soil degradation, loss of vegetation, biodiversity and permafrost, and increases in fire damage and coastal degradation.




Read more:
We desperately need to store more carbon – seagrass could be the answer


Water will become more scarce, and our food supply will become less stable. Exactly how these risks will evolve will depend on population growth, consumption patterns and also how the global community responds.

Overall, proactive and informed management of our land (for food, water and biodiversity) will become increasingly important.

Stopping land degradation helps everyone

Tackling the interlinked problems of land degradation, climate change adaptation and mitigation, and food security can deliver win-wins for farmers, communities, governments, and ecosystems.

The report provides many examples of on-ground and policy options that could improve the management of agriculture and forests, to enhance production, reduce greenhouse gas emissions, and make these areas more robust to climate change. Leading Australian farmers are already heading down these paths, and we have a lot to teach the world about how to do this.

We may also need to reassess what we demand from the land. Farmed animals are a major contributor to these emissions, so plant-based diets are increasingly being adopted.

Similarly, the report found about 25-30% of food globally is lost or wasted. Reducing this can significantly lower emissions, and ease pressure on agricultural systems.

How do we make this happen?

Many people around the world are doing impressive work in addressing some of these problems. But the solutions they generate are not necessarily widely used or applied comprehensively.

To be successful, coordinated policy packages and land management approaches are pivotal. Inevitably, all solutions are highly location-specific and contextual, and it is vital to bring together local communities and industry, as well as governments at all levels.




Read more:
Climate Q&A: will we be less healthy because of climate change?


Given the mounting impacts of climate change on food security and land condition, there is no time to lose.


The author acknowledges the contributions to authorship of this article by Clare de Castella, Communications Manager, ANU Climate Change Institute.The Conversation

Mark Howden, Director, Climate Change Institute, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

A warning for wine-lovers: climate change is messing with your favourite tipple’s timing



File 20190313 86707 1fmr5a6.jpg?ixlib=rb 1.1
Record-breaking maximum temperatures are changing ripening times in Australia’s wine regions.
Shutterstock

Christopher Davies, CSIRO and Christine Bottcher, CSIRO

While the much-derided “latte set” are stereotyped as the biggest worriers about climate change, it’s the chardonnay crowd who are acutely feeling its effects.

Australia’s wine industry is both world-renowned and economically significant, with around A$5.6 billion in sales in 2016–17, and winemaking and associated tourism responsible for more than 170,000 full and part-time jobs. Statistics also show that wine consumption is now accepted as being just as dinky-di as beer drinking for the average Australian.




Read more:
A taste for terroir: the evolution of the Australian wine label


However, record-breaking daily maximum temperatures, warmer than average overnight temperatures, and increasingly erratic weather patterns are playing havoc with the way wine grapes grow and ripen. This has knock-on effects for Australian grape growers, wine producers and consumers.

Climate in the vineyard hits the cellar and the store shelf

Most of Australia’s wine regions have experienced rising average daily temperatures. One effect is changes to ripening times, which has compressed the harvesting season and given wine-makers a crucial logistical headache.

Traditionally, white grape varieties would generally reach optimum ripeness before red ones. While all grapes tend to ripen faster as temperatures rise, this effect is more pronounced for later-ripening varieties (for example Shiraz and Cabernet Sauvignon) than earlier ripening varieties (for example Chardonnay and Riesling).

Australian winegrape varieties are becoming ready for harvest simultaneously.
Shutterstock

The old process of staggered harvesting times for red and white grape varieties was efficient, allowing the winery’s capacity to be used in sequence for different varieties. Now that different varieties are ripening at the same time, vineyards and wineries will have to make tough choices about which grapes to prioritise, and which ones to leave until later, resulting in inferior wine. Alternatively, they could take the expensive decision to increase production capacity by investing in more infrastructure such as fermenters and stainless steel tanks.




Read more:
Message in a bottle: the wine industry gives farmers a taste of what to expect from climate change


Perhaps you’re thinking that you, the savvy wine drinker, are unaffected by the difficulties faced by winemakers in the vineyards and wineries far away. Unfortunately this isn’t so. Harvesting grapes when they are not at optimal ripeness to solve the logistical problems of processing can lead to lower-value wine.

The fact is that this new reality is costing everyone – grape-growers, winemakers and consumers alike.

And just in case you think that the simple answer is changing Australia’s cultured palates back to beer, think again. Hop production is being hit just as hard by climate change.

Help is at hand

Fortunately, these are problems we hope to tackle. CSIRO recently announced a five-year research partnership with Wine Australia, and one of the projects aims to adjust wine grape ripening to suit a changing climate.

We hope to do it by studying plant growth regulators (PGRs) – molecules that are used by the plant to control and coordinate development. We are using a class of PGRs called auxins, first studied in grass seedlings by Charles Darwin in the 1880s, that have important roles in vine growth, and the timing of grape growth and ripening.

Plant growth regulators can help control ripening times.
Shutterstock

By spraying these compounds onto vines and grapes shortly before ripening, auxins can potentially be used to influence the timing of this process and therefore harvest date. They are already used in other horticultural crops, such as to control fruit drop in apples and pears.

Applying very small amounts of auxin can delay grape ripening, and therefore harvest timing, by up to four weeks (Davies et al., 2015, J Ag Food Chem 63: 2137-2144). This treatment works for red and white varieties in hot or cool climates, and is safe, cheap and easy to apply.

The flavour and aroma of wines made from ripening-delayed grapes is largely indistinguishable from wines made from untreated fruit harvested at the same sugar level, up to a month earlier. An exciting exception is that, in Shiraz, auxin-induced ripening delay can be used to increase the concentration of rotundone, the compound responsible for this variety’s popular peppery notes.




Read more:
State of the Climate 2018: Bureau of Meteorology and CSIRO


Work is currently under way to fine-tune spray formulations and application times. The aim is to release a commercially available product within the next five years.

This kind of solution will be vital for the sustainable, economical production of high-quality wines from existing grape varieties in established wine growing regions. We hope it will ensure you can enjoy your favourite drop for many years to come.The Conversation

Christopher Davies, Team Leader, CSIRO and Christine Bottcher, Research scientist, CSIRO

This article is republished from The Conversation under a Creative Commons license. Read the original article.