Research Check: do we need to worry about glyphosate in our beer and wine?



File 20190307 100787 1qzaux0.jpg?ixlib=rb 1.1
Research out of the US tested different varieties of beer and wine for the presence of glyphosate – but there’s lots to consider when interpreting the findings.
From shutterstock.com

Ian Musgrave, University of Adelaide

Glyphosate is back in the news again. The common weed killer, which has previously attracted controversy for its possible link to cancer, has been found in beer and wine.

Researchers in the US tested 15 different types of beer and five different types of wine, finding traces of the pesticide in 19 out of the 20 beverages.

So how much should we be worried? Hint: not at all. The amount detected was well below a level which could cause harm. And there are insufficient details in the methods section to feel confident about the results.




Read more:
Stop worrying and trust the evidence: it’s very unlikely Roundup causes cancer


How was this study conducted?

One of the first things I do when evaluating a piece of research is to check the methods – so how the researchers went about collecting the data. What I found didn’t fill me with confidence.

The authors say they set up their experiment based on a technique called a mass spectroscopy method. This methodology has been used to measure the quantities of glyphosate in milk (but not alcoholic drinks). Mass spectroscopy is a very sensitive and specific method, and the authors quote the concentrations that can be reliably detected in milk with this approach.

But the method they actually used is called enzyme linked immunosorbent assay (ELISA). Importantly, you can’t use the concentrations that can be reliably detected with the mass spectroscopy to describe ELISA sensitivity. They’re not compatible.

Glyphosate is the pesticide which makes up many weed killers.
From shutterstock.com

ELISA is sensitive, but typically not as sensitive as mass spectroscopy, which uses an entirely different physical method to measure glyphosate.

ELISA also has issues of cross contamination. Biological samples for glyphosate measurement, whether ELISA or mass spectroscopy, need careful sample preparation to avoid cross-reaction with any other materials in the sample such as the common amino acid glycine, which looks quite similar to glyphosate and is present in much higher quantities. But the authors didn’t give any detail about the sample preparation used.

These issues make it difficult to be confident in the results.

We’ve seen this before with claims of detection of glyphosate in breast milk, which could not be duplicated. So given the lack of detail around the methodologies used, we should be cautious about taking these figures at face value.

What did they find?

For the sake of argument, let’s accept the researchers’ values and take a look at what they mean.

The highest level of glyphosate they measured was 51.4 parts per billion in one wine (in most of the beverages they found much less). That’s equivalent to 0.0514 miligrams per litre (mg/L).

The authors cite California’s Office of Environmental Health Hazard’s proposed “No Significant Risk Level” for glyphosate consumption of 0.02 mg/kg body weight/day. The limits are based on body weight, so a heavier person can be exposed to more than a person who weighs less, taking into account body volume and metabolism.

This is much lower than the EU Food Safety Authorities’ and Australia’s regulatory allowable daily intake of 0.3 mg/kg body weight/day.

But again, for argument’s sake, let’s use the Californian proposed limits and look at the wine in which the researchers measured the highest amount of glyphosate. With those limits, an average Australian male weighing 86kg would need to drink 33 litres of this wine every day to reach the risk threshold. A 60kg person would need to drink 23 litres of this wine each day.




Read more:
Drink, drank, drunk: what happens when we drink alcohol in four short videos


If you’re drinking 33 litres of wine a day you have much, much bigger problems than glyphosate.

Alcohol is a class 1 carcinogen. Those levels of alcohol consumption would give you a five times greater risk of head, neck and oesophageal cancer (and an increased risk of other cancers). The risk of glyphosate causing cancer is nowhere near these levels. The irony is palpable.

This isn’t even taking into account the likelihood of dying of alcohol poisoning by drinking at this level – which will get you well before any cancer.

And that’s using the highly conservative Californian limits. Using the internationally accepted limits, an average adult male would have to drink over 1,000 litres of wine a day to reach any level of risk.

So how should we interpret the results?

The report does not contain a balanced representation of the risks of glyphosate.

They cite the International Agency for Research on Cancer’s finding of glyphosate as class 2 (probably) carcinogenic (alcohol is class 1, a known carcinogen).

But they don’t mention the European Food Safety authority finding that glyphosate posed no risk of cancer, or the WHO Joint Meeting on Pesticide Residues report showing no significant cancer risk to consumers under normal exposure.

They cite a paper on glyphosate supposedly increasing the rate of breast cancer cell growth, but not the papers that find no such thing.

They don’t cite the most important study of human exposure, the Agricultural Health Study which is the largest and longest study of the effect of glyphosate use. This study found no significant increase in cancer in highly exposed users.




Read more:
Research Check: can even moderate drinking cause brain damage?


The “report” claiming that there is glyphosate in wine and beer provides inadequate information to judge the accuracy of the claimed detection, and does not put the findings in context of exposure and risk.

Even taking their reported levels at face value, the risk from alcohol consumption vastly outweighs any theoretical risk from glyphosate. Their discussion does not fairly consider the evidence and is weighted towards casting doubt over the safety of glyphosate.

So you may enjoy your beer and wine (in moderation), without fear of glyphosate.

Blind peer review

This is a fair and accurate assessment of the study and its findings. That said, it is prudent for the scientific community to remain attentive to changes within the food supply and issues of potential risk to public health. Considering the increasing use of glyphosate by the food industry, we need continued diligence in this area. – Ben Desbrow


Research Checks interrogate newly published studies and how they’re reported in the media. The analysis is undertaken by one or more academics not involved with the study, and reviewed by another, to make sure it’s accurate.The Conversation

Ian Musgrave, Senior lecturer in Pharmacology, University of Adelaide

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

How to feed a growing population healthy food without ruining the planet



File 20190112 43529 sfajtu.jpg?ixlib=rb 1.1
For many of us, a better diet means eating more fruit and vegetables.
iStock, CC BY-NC

Alessandro R Demaio, University of Copenhagen; Jessica Fanzo, Johns Hopkins University, and Mario Herrero, CSIRO

If we’re serious about feeding the world’s growing population healthy food, and not ruining the planet, we need to get used to a new style of eating. This includes cutting our Western meat and sugar intakes by around 50%, and doubling the amount of nuts, fruits, vegetables and legumes we consume.

These are the findings our the EAT-Lancet Commission, released today. The Commission brought together 37 leading experts in nutrition, agriculture, ecology, political sciences and environmental sustainability, from 16 countries.

Over two years, we mapped the links between food, health and the environment and formulated global targets for healthy diets and sustainable food production. This includes five specific strategies to achieve them through global cooperation.




Read more:
How to conserve half the planet without going hungry


Right now, we produce, ship, eat and waste food in a way that is a lose-lose for both people and planet – but we can flip this trend.

What’s going wrong with our food supply?

Almost one billion people lack sufficient food, yet more than two billion suffer from obesity and food-related diseases such as diabetes and heart disease.

The foods causing these health epidemics – combined with the way we produce our food – are pushing our planet to the brink.

One-third of the greenhouse gas emissions that drive climate change come from food production. Our global food system leads to extensive deforestation and species extinction, while depleting our oceans, and fresh water resources.

To make matters worse, we lose or throw away around one-third of all food produced. That’s enough to feed the world’s hungry four times over, every year.

At the same time, our food systems are at risk due to environmental degradation and climate change. These food systems are essential to providing the diverse, high-quality foods we all consume every day.

A radical new approach

To improve the health of people and the planet, we’ve developed a “planetary health diet” which is globally applicable – irrespective of your geographic, economic or cultural background – and locally adaptable.

The diet is a “flexitarian” approach to eating. It’s largely composed of vegetables and fruits, wholegrains, legumes, nuts and unsaturated oils. It includes high-quality meat, dairy and sugar, but in quantities far lower than are consumed in many wealthier societies.

Many of us need to eat more veggies and less red meat.
Joshua Resnick/Shutterstock

The planetary health diet consists of:

  • vegetables and fruit (550g per day per day)
  • wholegrains (230 grams per day)
  • dairy products such as milk and cheese (250g per day)
  • protein sourced from plants, such as lentils, peas, nuts and soy foods (100 grams per day)
  • small quantities of fish (28 grams per day), chicken (25 grams per day) and red meat (14 grams per day)
  • eggs (1.5 per week)
  • small quantities of fats (50g per day) and sugar (30g per day).

Of course, some populations don’t get nearly enough animal-source foods necessary for growth, cognitive development and optimal nutrition. Food systems in these regions need to improve access to healthy, high-quality diets for all.

The shift is radical but achievable – and is possible without any expansion in land use for agriculture. Such a shift will also see us reduce the amount of water used during production, while reducing nitrogen and phosphorous usage and runoff. This is critical to safeguarding land and ocean resources.

By 2040, our food systems should begin soaking up greenhouse emissions – rather than being a net emitter. Carbon dioxide emissions must be down to zero, while methane and nitrous oxide emissions be kept in close check.

How to get there

The commission outlines five implementable strategies for a food transformation:

1. Make healthy diets the new normal – leaving no-one behind

Shift the world to healthy, tasty and sustainable diets by investing in better public health information and implementing supportive policies. Start with kids – much can happen by changing school meals to form healthy and sustainable habits, early on.

Unhealthy food outlets and their marketing must be restricted. Informal markets and street vendors should also be encouraged to sell healthier and more sustainable food.




Read more:
Let’s untangle the murky politics around kids and food (and ditch the guilt)


2. Grow what’s best for both people and planet

Realign food system priorities for people and planet so agriculture becomes a leading contributor to sustainable development rather than the largest driver of environmental change. Examples include:

  • incorporating organic farm waste into soils
  • drastically reducing tillage where soil is turned and churned to prepare for growing crops
  • investing more in agroforestry, where trees or shrubs are grown around or among crops or pastureland to increase biodiversity and reduce erosion
  • producing a more diverse range of foods in circular farming systems that protect and enhance biodiversity, rather than farming single crops or livestock.

The measure of success in this area is that agriculture one day becomes a carbon sink, absorbing carbon dioxide from the atmosphere.

Technology can help us make better use of our farmlands.
Shutterstock

3. Produce more of the right food, from less

Move away from producing “more” food towards producing “better food”.

This means using sustainable “agroecological” practices and emerging technologies, such as applying micro doses of fertiliser via GPS-guided tractors, or improving drip irrigation and using drought-resistant food sources to get more “crop per drop” of water.

In animal production, reformulating feed to make it more nutritious would allow us to reduce the amount of grain and therefore land needed for food. Feed additives such as algae are also being developed. Tests show these can reduce methane emissions by up to 30%.

We also need to redirect subsidies and other incentives to currently under-produced crops that underpin healthy diets – notably, fruits, vegetables and nuts – rather than crops whose overconsumption drives poor health.

4. Safeguard our land and oceans

There is essentially no additional land to spare for further agricultural expansion. Degraded land must be restored or reforested. Specific strategies for curbing biodiversity loss include keeping half of the current global land area for nature, while sharing space on cultivated lands.

The same applies for our oceans. We need to protect the marine ecosystems fisheries depend on. Fish stocks must be kept at sustainable levels, while aquaculture – which currently provides more than 40% of all fish consumed – must incorporate “circular production”. This includes strategies such as sourcing protein-rich feeds from insects grown on food waste.

5. Radically reduce food losses and waste

We need to more than halve our food losses and waste.

Poor harvest scheduling, careless handling of produce and inadequate cooling and storage are some of the reasons why food is lost. Similarly, consumers must start throwing less food away. This means being more conscious about portions, better consumer understanding of “best before” and “use by” labels, and embracing the opportunities that lie in leftovers.

Circular food systems that innovate new ways to reduce or eliminate waste through reuse will also play a significant role and will additionally open new business opportunities.




Read more:
Australian communities are fighting food waste with circular economies


For significant transformation to happen, all levels of society must be engaged, from individual consumers to policymakers and everybody along the food supply chain. These changes will not happen overnight, and they are not the responsibility of a handful of stakeholders. When it comes to food and sustainability, we are all at the decision dining table.

The EAT-Lancet Commission’s Australian launch is in Melbourne on February 1. Limited free tickets are available.The Conversation

Alessandro R Demaio, Australian Medical Doctor; Fellow in Global Health & NCDs, University of Copenhagen; Jessica Fanzo, Bloomberg Distinguished Associate Professor of Global Food and Agriculture Policy and Ethics, Johns Hopkins University, and Mario Herrero, Chief Research Scientist, Food Systems and the Environment, CSIRO

This article is republished from The Conversation under a Creative Commons license. Read the original article.

What’s your beef? How ‘carbon labels’ can steer us towards environmentally friendly food choices



File 20181217 185255 cd0ise.jpg?ixlib=rb 1.1
Delicious, nutritious… and emissions-intensive.
Shutterstock.com

Adrian R. Camilleri, University of Technology Sydney; Dalia Patino-Echeverri, Duke University, and Rick Larrick, Duke University

What did you have for dinner last night? Might you have made a different choice if you had a simple way to compare the environmental impacts of different foods?

Most people do not recognise the environmental impact of their food choices. Our research, published in Nature Climate Change, shows that even when consumers do stop to think about the greenhouse gas emissions associated with their food, they tend to underestimate it.

Fortunately, our study also points to a potential solution. We found that a simple “carbon label” can nudge consumers in the right direction, just as nutrition information helps to highlight healthier options.




Read more:
How to reduce your kitchen’s impact on global warming


Most food production is highly industrialised, and has environmental impacts that most people do not consider. In many parts of the world, conversion of land for beef and agricultural production is a major cause of deforestation. Natural gas is a key input in the manufacture of fertiliser. Refrigeration and transportation also depend heavily on fossil fuels.

Overall, food production contributes 19-29% of global greenhouse emissions. The biggest contributor is meat, particularly red meat. Cattle raised for beef and dairy products are major sources of methane, a potent greenhouse gas.

Meat production is inherently inefficient: fertiliser is used to grow feedstock, but only a small portion of this feed becomes animal protein. It takes about 38 kilograms of plant-based protein to produce 1kg of beef – an efficiency of just 3%. For comparison, pork has 9% efficiency and poultry has 13%.

We could therefore cut greenhouse emissions from food significantly by opting for more vegetarian or vegan meals.

Food for thought

To find out whether consumers appreciate the environmental impact of their food choices, we asked 512 US volunteers to estimate the greenhouse emissions of 19 common foods and 18 typical household appliances.

We told the respondents that a 100-watt incandescent light bulb turned on for 1 hour produces 100 “greenhouse gas emission units”, and asked them to make estimates about the other items using this reference unit. In these terms, a serving of beef produces 2,481 emission units.

As shown below, participants underestimated the true greenhouse gas emissions of foods and appliances in almost every case. For example, the average estimate for a serving of beef was around 130 emission units – more than an order of magnitude less than the true amount. Crucially, foods were much more underestimated than appliances.

Consumers consistently underestimate the greenhouse emissions of food.
Camilleri et al. Nature Climate Change 2018

Improving consumers’ knowledge

People often overestimate their understanding of common everyday objects and processes. You might think you have a pretty solid idea of how a toilet works, until you are asked to describe it in exact detail.

Food is a similarly familiar but complex phenomenon. We eat it every day, but its production and distribution processes are largely hidden. Unlike appliances, which have energy labels, are plugged into an electrical outlet, emit heat, and generally have clear indications of when they are using electricity, the release of greenhouse gases in the production and transportation of food is invisible.

One way to influence food choice is through labelling. We designed a new carbon label to communicate information about the total amount of greenhouse emissions involved in the production and transport of food.

Drawing on knowledge from the design of existing labels for nutrition, fuel economy and energy efficiency, we came up with the label shown below. It has two key features.

First, it translates greenhouse emissions into a concrete, familiar unit: equivalent number of light bulb minutes. A serving of beef and vegetable soup, for example, is roughly equivalent to a light bulb turned on for 2,127 minutes – or almost 36 hours.

Second, it displays the food’s relative environmental impact compared with other food, on an 11-point scale from green (low impact) to red (high impact). Our serving of beef and vegetable soup rates at 10 on the scale – deep into the red zone – because beef production is so emissions-intensive.

In the can – a carbon label for beef and vegetable soup reveals its high environmental impact.

To test the label, we asked 120 US volunteers to buy cans of soup from a selection of six. Half of the soups contained beef and the other half were vegetarian. Everyone was presented with price and standard nutritional information. Half of the group was also presented with our new carbon labels.

Volunteers who were shown the carbon labels chose significantly fewer beef soup options. Importantly, they also had more accurate perceptions of the relative carbon footprints of the different soups on offer.




Read more:
You’ve heard of a carbon footprint – now it’s time to take steps to cut your nitrogen footprint


Figuring out the carbon footprint of every food item is difficult, expensive, and fraught with uncertainty. But we believe a simplified carbon label – perhaps using a traffic light system or showing relative scores for different foods – can help inform and empower consumers to reduce the environmental impact of their food choices.The Conversation

Adrian R. Camilleri, Senior Lecturer in Marketing, University of Technology Sydney; Dalia Patino-Echeverri, Associate professor, Duke University, and Rick Larrick, Professor of Management and Organizations, Duke University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Reducing food waste can protect our health, as well as our planet’s



File 20180830 195298 whfufy.jpg?ixlib=rb 1.1
Smaller portions reduce food waste and waistlines.
from http://www.shutterstock.com

Liza Barbour, Monash University and Julia McCartan, Monash University

Globally, one-third of food produced for human consumption is wasted. Food waste costs Australia A$20 billion each year and is damaging our planet’s resources by contributing to climate change and inefficient land, fertiliser and freshwater use.

And it’s estimated if no further action is taken to slow rising obesity rates, it will cost Australia A$87.7 billion over the next ten years. Preventable chronic diseases are Australia’s leading cause of ill health, and conditions such as coronary heart disease, stroke, high blood pressure, some forms of cancer and type 2 diabetes are linked to obesity and unhealthy diets.

But we can tackle these two major issues of obesity and food waste together.




Read more:
Melbourne wastes 200 kg of food per person a year: it’s time to get serious


Avoid over-consumption of food

Described as metabolic food waste, the consumption of food in excess of nutritional requirements uses valuable food system resources and manifests as overweight and obesity.

The first of the Australian dietary guidelines is:

To achieve and maintain a healthy weight, be physically active and choose amounts of nutritious food and drinks to meet your energy needs.

In 2013, researchers defined three principles for a healthy and sustainable diet. The first was:

Any food that is consumed above a person’s energy requirement represents an avoidable environmental burden in the form of greenhouse gas emissions, use of natural resources and pressure on biodiversity.




Read more:
Portion size affects how much you eat despite your appetite


Reduce consumption of processed, packaged foods

Ultra-processed foods are not only promoting obesity, they pose a great threat to our environment. The damage to our planet not only lies in the manufacture and distribution of these foods but also in their disposal. Food packaging (bottles, containers, wrappers) accounts for almost two-thirds of total packaging waste by volume.

Ultra-processed foods are high in calories, refined sugar, saturated fat and salt, and they’re dominating Australia’s food supply. These products are formulated and marketed to promote over-consumption, contributing to our obesity epidemic.

Processed foods promote over-consumption and leave packaging behind.
from http://www.shutterstock.com

Healthy and sustainable dietary recommendations promote the consumption of fewer processed foods, which are energy-dense, highly processed and packaged. This ultimately reduces both the risk of dietary imbalances and the unnecessary use of environmental resources.

Author Michael Pollan put it best when he said, “Don’t eat anything your great-grandmother wouldn’t recognise as food.”




Read more:
Food addiction: how processed food makes you eat more


So what do we need to do?

In response to the financial and environmental burden of food waste, the federal government’s National Food Waste Strategy aims to halve food waste in Australia by 2030. A$133 million has been allocated over the next decade to a research centre which can assist the environment, public health and economic sectors to work together to address both food waste and obesity.

Other countries, including Brazil and the United Kingdom acknowledge the link between health and environmental sustainability prominently in their dietary guidelines.

One of Brazil’s five guiding principles states that dietary recommendations must take into account the impact of the means of production and distribution on social justice and the environment. The Qatar national dietary guidelines explicitly state “reduce leftovers and waste”.

Many would be surprised to learn Australia’s dietary guidelines include tips to minimise food waste:

store food appropriately, dispose of food waste appropriately (e.g. compost, worm farms), keep food safely and select foods with appropriate packaging and recycle.

These recommendations are hidden in Appendix G of our guidelines, despite efforts from leading advocates to give them a more prominent position. To follow international precedence, these recommendations should be moved to a prominent location in our guidelines.




Read more:
Update Australia’s dietary guidelines to consider sustainability


At a local government level, councils can encourage responsible practices to minimise food waste by subsidising worm farms and compost bins, arranging kerbside collection of food scraps and enabling better access to soft plastic recycling programs such as Red Cycle.




Read more:
Campaigns urging us to ‘care more’ about food waste miss the point


Portion and serving sizes should be considered by commercial food settings. Every year Australians eat 2.5 billion meals out and waste 2.2 million tonnes of food via the commercial and industrial sectors. Evidence shows reducing portion sizes in food service settings leads to a reduction in both plate waste and over-consumption.

Given the cost of food waste and obesity to the economy, and the impact on the health of our people and our planet, reducing food waste can address two major problems facing humanity today.The Conversation

Liza Barbour, Lecturer, Monash University and Julia McCartan, Research Officer, Monash University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Climate change will make rice less nutritious, putting millions of the world’s poor at risk



File 20180611 191940 siw4qq.jpg?ixlib=rb 1.1
Rice farmer in Longsheng, China.
kevincure, CC BY

Kristie Ebi, University of Washington

Rice is the primary food source for more than 3 billion people around the world. Many are unable to afford a diverse and nutritious diet that includes complete protein, grains, fruits and vegetables. They rely heavily on more affordable cereal crops, including rice, for most of their calories.

My research focuses on health risks associated with climate variability and change. In a recently published study, I worked with scientists from China, Japan, Australia and the United States to assess how the rising carbon dioxide concentrations that are fueling climate change could alter the nutritional value of rice. We conducted field studies in Asia for multiple genetically diverse rice lines, analyzing how rising concentrations of carbon dioxide in the atmosphere altered levels of protein, micronutrients and B vitamins.

Our data showed for the first time that rice grown at the concentrations of atmospheric carbon dioxide scientists expect the world to reach by 2100 has lower levels of four key B vitamins. These findings also support research from other field studies showing rice grown under such conditions contains less protein, iron and zinc, which are important in fetal and early child development. These changes could have a disproportionate impact on maternal and child health in the poorest rice-dependent countries, including Bangladesh and Cambodia.

Many of poorest regions in Asia rely on rice as a staple food.
IRRI, CC BY-NC-SA

Carbon dioxide and plant growth

Plants obtain the carbon they need to grow primarily from carbon dioxide in the atmosphere, and draw other required nutrients from the soil. Human activities – mainly fossil fuel combustion and deforestation – raised atmospheric CO2 concentrations from about 280 parts per million during pre-industrial times to 410 parts per million today. If global emission rates continue on their current path, atmospheric CO2 concentrations could reach over 1,200 parts per million by 2100 (including methane and other greenhouse gas emissions).

Higher concentrations of CO2 are generally acknowledged to stimulate plant photosynthesis and growth. This effect could make the cereal crops that remain the world’s most important sources of food, such as rice, wheat and corn, more productive, although recent research suggests that predicting impacts on plant growth is complex.

Concentrations of minerals critical for human health, particularly iron and zinc, do not change in unison with CO2 concentrations. Current understanding of plant physiology suggests that major cereal crops – particularly rice and wheat – respond to higher CO2 concentrations by synthesizing more carbohydrates (starches and sugars) and less protein, and by reducing the quantity of minerals in their grains.

After steadily declining for over a decade, global hunger appears to be on the rise, affecting 11 percent of the global population.
FAO, CC BY-ND

The importance of micronutrients

Worldwide, approximately 815 million people worldwide are food-insecure, meaning that they do not have reliable access to sufficient quantities of safe, nutritious and affordable food. Even more people – approximately 2 billion – have deficiencies of important micronutrients such as iron, iodine and zinc.

Insufficient dietary iron can lead to iron deficiency anemia, a condition in which there are too few red blood cells in the body to carry oxygen. This is the most common type of anemia. It can cause fatigue, shortness of breath or chest pain, and can lead to serious complications, such as heart failure and developmental delays in children.

Zinc deficiencies are characterized by loss of appetite and diminished sense of smell, impaired wound healing, and weakened immune function. Zinc also supports growth and development, so sufficient dietary intake is important for pregnant women and growing children.

Higher carbon concentrations in plants reduce nitrogen amounts in plant tissue, which is critical for the formation of B vitamins. Different B vitamins are required for key functions in the body, such as regulating the nervous system, turning food into energy and fighting infections. Folate, a B vitamin, reduces the risk of birth defects when consumed by pregnant women.

Anemia affects one-third of women of reproductive age globally – or about 613 million women.
FAO, CC BY-ND

Significant nutrition losses

We carried out our field studies in China and Japan, where we grew different strains of rice outdoors. To simulate higher atmospheric CO2 concentrations, we used Free-Air CO2 Enrichment, which blows CO2 over fields to maintain concentrations that are expected later in the century. Control fields experience similar conditions except for the higher CO2 concentrations.

On average, the rice that we grew in air with elevated CO2 concentrations contained 17 percent less vitamin B1 (thiamine) than rice grown under current CO2 concentrations; 17 percent less vitamin B2 (riboflavin); 13 percent less vitamin B5 (pantothenic acid); and 30 percent less vitamin B9 (folate). Our study is the first to identify that concentrations of B vitamins in rice are reduced with higher CO2.

We also found average reductions of 10 percent in protein, 8 percent in iron and 5 percent in zinc. We found no change in levels of vitamin B6 or calcium. The only increase we found was in vitamin E levels for most strains.

Rice within the octagon in this field is part of an experiment designed to grow rice under different atmospheric conditions. Rice grown under carbon dioxide concentrations of 568 to 590 parts per million is less nutritious, with lower amounts of protein, vitamins and minerals.
Dr. Toshihiro HASEGAWA, National Agriculture and Food Research Organization of Japan, CC BY-ND

Worsening micronutrient deficiencies

At present, about 600 million people — mostly in Southeast Asia — get more than half of their daily calories and protein directly from rice. If nothing is done, the declines we found would likely worsen the overall burden of undernutrition. They also could affect early childhood development through impacts that include worsened effects from diarrheal disease and malaria.

The potential health risks associated with CO2-induced nutritional deficits are directly correlated to the lowest overall gross domestic product per capita. This suggests that such changes would have serious potential consequences for countries already struggling with poverty and undernutrition. Few people would associate fossil fuel combustion and deforestation with the nutritional content of rice, but our research clearly shows one way in which emitting fossil fuels could worsen world hunger challenges.

How could climate change affect other key plants?

Unfortunately, today there is no entity at the federal, state or business level that provides long-term funding to evaluate how rising CO2 levels could affect plant chemistry and nutritional quality. But CO2-induced changes have significant implications, ranging from medicinal plants to nutrition, food safety and food allergies. Given the potential impacts, which may already be occurring, there is a clear and urgent need to invest in this research.

The ConversationIt is also critical to identify options for avoiding or lessening these risks, from traditional plant breeding to genetic modification to supplements. Rising CO2 concentrations are driving climate change. What role these emissions will play in altering all aspects of plant biology, including the nutritional quality of the crops that we use for food, feed, fiber and fuel, remains to be determined.

Kristie Ebi, Professor of Global Health and Environmental and Occupational Health Sciences, University of Washington

This article was originally published on The Conversation. Read the original article.

Sustainable shopping: want to eat healthy? Try an eco-friendly diet



File 20180118 122935 6pu4zh.jpg?ixlib=rb 1.1
Healthy eating should include thinking about the environmental cost of your food.
Al Case/Flickr, CC BY-NC-SA

Michalis Hadjikakou, Deakin University

Following our annual Christmas overindulgence, many of us have set ambitious goals for the year ahead. But eating healthy shouldn’t just mean cutting down on snacks; given the environmental impact of food production, a more sustainable diet should feature high on everyone’s list of New Year’s resolutions.

Australians have one of the largest per capita dietary environmental footprints in the world, so there’s definitely room for improvement. But, as with all diets, radical and sudden changes like going vegan or vegetarian are notoriously difficult.




Read more:
Love meat too much to be vegetarian? Go ‘flexitarian’


Smaller, more achievable behavioural shifts are more realistic. This also makes sense from an environmental perspective – large-scale drastic changes might end up shifting one type of environmental impact to another.

This guide is about making informed, feasible changes towards a more environmentally sustainable diet. It starts with the food items you put in your shopping basket.

Meat, junk and waste

Sustainability researchers, like myself, track the life cycle of food from farm to fork, measuring the energy used and emissions generated by the entire process.

Australia’s food consumption contributes significantly to greenhouse gas emissions, water scarcity, land clearing and biodiversity loss, and ocean pollution.




Read more:
Kitchen Science: from sizzling brisket to fresh baked bread, the chemical reaction that makes our favourite foods taste so good


There are many reasons our diets have such a large environmental impact, but one of the biggest is that we’re a nation of meat eaters. On average, an Aussie eats 95kg of meat a year, significantly more than the OECD average of 69kg.

Generally, animal-derived foods require more energy and resources and release significantly more emissions than most plant foods. This is particularly true for red meat: the current average consumption is 24% higher than the maximum recommended intake.

Another reason is our overconsumption of total calories, often driven by junk foods. Eating more food than we need means the environmental resources used in producing that extra food are wasted. It also leads to a range of health problems such as obesity.

Finally, the extraordinary amount of household food waste in Australia – around 3.1 million tonnes of edible food a year – also has a major impact.

What is realistic dietary change?

Sustainable dietary choices aren’t just about environmental impact – it also means being realistic and consistent. Only 11% of Australians are vegetarian, so expecting a majority to drastically reduce meat consumption is impractical, and probably alienating.

Alternatives like flexitarianism (eating meat more rarely) are more achievable for most.

An added complication is that most Australian cows are raised on pasture, which has a high carbon footprint but requires less water than growing many plant foods. So, the complete substitution of red meat or dairy with plant-based products could simply change one environmental impact for another.

Putting it all together – simple shopping advice

Moderation: Cutting out staples of the Australian diet, like meat, is not a realistic goal for many people. But try moderating your cmeat that has the highest environmental impact (beef and lamb) and instead go for chicken or pork.

Reducing junk food is good for your wallet, waist and the environment. Processed meats or dairy-based desserts have the highest footprints amongst junk foods, so when the urge to indulge hits, go for fruit-only desserts such as sorbets. Or just buy more fruit to freeze and turn into delicious and healthy smoothies that you can enjoy even more regularly. (Grapes are very high in sugar, and when frozen are great summer treats.)




Read more:
A healthy diet is cheaper than junk food but a good diet is still too expensive for some


Meal planning can also help cut down food waste, so it might be worth trying a pantry planning app.

Substitution: Think about your favourite recipes, and how you can swap out the most resource-greedy ingredients. Some meats can be replaced with alternative sources of protein such as legumes and nuts.

Sustainably-farmed or sourced seafood is another protein alternative with a lower environmental footprint compared to meat, as long as you choose your seafood wisely – for canned tuna make sure to check the label! Seasonal produce usually requires fewer resources and needs to travel less to the store, so it’s worth checking a guide to what’s in season in your region.




Read more:
Sustainable shopping: how to buy tuna without biting a chunk out of the oceans


Complex packaging of many food products, which is often unnecessary, also contributes to their environmental impact. Opt for loose fruit and vegetables and take your own shopping bags.

Experimentation: When you do buy meat, opt for novel protein sources such as game meat – we are lucky to have an abundance of kangaroo as a more sustainable protein alternative in Australia. If you’re feeling even more adventurous, you could also try some insects.

This guide is a starting point for thinking about a more sustainable diet, but food systems are incredibly complex. Animal welfare and the viability of farming communities are just part of the social and economic issues we much deal with.

The ConversationUltimately, while consumers can drive change, this will be incremental: transformative change can only be achieved by food producers and retailers also coming on board to drive a more sustainable food system.

Michalis Hadjikakou, Research fellow, School of Life and Environmental Sciences, Faculty of Science, Engineering & Built Environment, Deakin University

This article was originally published on The Conversation. Read the original article.