‘This situation brings me to despair’: two reef scientists share their climate grief



A researcher completing bleaching surveys in the southern Great Barrier Reef after a major bleaching event.
ARC CENTRE OF EXCELLENCE FOR CORAL REEF STUDIES

Jon Brodie, James Cook University and Alana Grech, James Cook University

Few feel the pain of the Great Barrier Reef’s decline more acutely than the scientists trying to save it. Ahead of next week’s UN climate summit, two researchers write of their grief, and hope.

Jon Brodie

Professorial Fellow, ARC Centre of Excellence for Coral Reef Studies, James Cook University

As I write this, much of inland eastern Australia is enduring what is likely to be the worst drought ever recorded. Bushfires are devastating parts of New South Wales and southern Queensland, tearing through rainforest that should not be dry enough to burn. Major towns will probably soon run out of water. The condition of the vital Murray-Darling river system is dire.

Some federal government MPs have responded by questioning whether these events are linked to anthropogenic, or man-made, climate change. Others deny the science outright. Now we have a politically motivated Senate inquiry into water quality on the Great Barrier Reef.

This situation brings me to despair. For the past 45 years I have researched and managed coral reef water quality in Australia and overseas. Now 72, I see that much of my work, and that of my colleagues, has not led to a bright future for coral reefs. In decades to come they will probably still contain some corals, but ecologically speaking they will not be growing, or even functioning.

Coral bleaching at Lizard Island on the Great Barrier Reef in 2016.
XL CATLIN SEAVIEW SURVEY

Official assessments appear to confirm the reef’s inexorable demise. A five-yearly outlook report from the Great Barrier Reef Marine Park Authority this month declared the outlook was “very poor” – a decline from “poor” in 2014. A joint federal-Queensland government report released on the same day found “minimal progress” in addressing water quality – the second most serious threat to the reef.




Read more:
The gloves are off: ‘predatory’ climate deniers are a threat to our children


The United Nations Intergovernmental Panel on Climate Change warned in October last year that a global temperature rise of 2℃ above pre-industrial levels will decimate coral growth. It said we must stay below 1.5℃ of warming for coral reefs to have a reasonable chance for a future.

Flood plume extending 60km offshore after an extreme monsoon weather event, February 2019. Such events can seriously damage water quality.
Matt Curnock

About 1.2℃ of this warming has already occurred; on current policies, the world is on track for a 3℃ temperature rise.

I feel guilty when discussing this situation with young scientists. I worry that my legacy is such that they will spend their professional lives studying and documenting the terminal decline of coral reefs.

I feel the same sense of guilt towards my 19-year-old grandson, who is in his first year of university studying mathematics. The outlook is grim, not just for coral reefs but for society in general.

My life’s work, spent mostly outside, has taken a toll on my health. I’ve had several skin cancers excised over the past 25 years and in recent years have undergone major skin cancer surgery. I have recovered well and still come to James Cook University every day. But the combination of ill-health, coupled with political inaction over the dire state of the environment, only compounds a feeling that I can’t really make a difference anymore.




Read more:
The good, the bad and the ugly: the nations leading and failing on climate action


But on a more positive note, the Great Barrier Reef is more than just coral. It includes a wonderful array of seagrass, dugongs, turtles, fish, dolphins, birds, and whales – and this is not a complete list.

Many of these species are also in decline. But good water quality management will, for example, help encourage the growth of seagrass on which dugongs and green turtles rely for food. The overall picture may be grim, but there are small spots of hope.

A researcher surveys the aftermath of coral bleaching at Lizard Island on the Great Barrier Reef in 2016.
XL CATLIN SEAVIEW

Alana Grech

Assistant Director, ARC Centre of Excellence for Coral Reef Studies, James Cook University

I spent last weekend on Magnetic Island, just a short ferry ride from my Townsville home. With great joy I sat with our infant under a beach tent and watched my older son happily snorkel among the corals and fish.

The intergenerational inequalities posed by climate change have become all the more real since I became a mum. The reef my son swam over is fundamentally different from reefs that existed when my parents were children, and they are continuing to change.

As the wet season approaches, my anxiety, and that of my colleagues, increases at the prospect of another extreme marine heatwave. Two consecutive summers of coral bleaching in 2016 and 2017 severely damaged two-thirds of the Great Barrier Reef. Some researchers who bore witness to these events experienced “ecological grief”: a profound sense of loss at the environmental harm that global warming brings.

Damage to the Great Barrier Reef threatens the region’s economy, including the fishing and tourism industries.
AAP

In much the same way, a large proportion of north Queensland residents and tourists experience significant grief associated with coral bleaching and mortality. Biodiversity loss also affects Traditional Owners, impacting their connection to Sea Country.

Extreme weather events associated with climate change jeopardise the tourism and fishing industries, and coastal infrastructure that underpin the region’s economy. Insurance premiums are already higher in northern Australia than in the rest of the country, and some places may one day become uninsurable.

However, my children were born in a wealthy country that is likely to withstand and recover from climate impacts that affect their basic needs. This privilege is not shared by the majority of reef-dependent coastal communities in the world’s tropics.

Fijian Prime Minister Frank Bainimarama warns: “Our region remains on the front line of humanity’s greatest challenges”

I come from a family of healthcare professionals, but felt a career in environmental science offered the potential to make a broader impact. The state of the planet and human health and well-being are inextricably linked.

I continue to be motivated by my research on the Great Barrier Reef. But I am deeply concerned about rising mistrust in the scientific process, despite unequivocal evidence of the reef’s decline and the impacts of climate change. It is particularly distressing when members of the federal government undermine the science that informs their own policies – including North Queensland politicians advocating for a national watchdog to verify scientific papers.

Clownfish in the Great Barrier Reef. Sediment is damaging fish gills and causing disease.
AAP/James Cook University

If our political leaders want to support community adaptation and resilience to climate change, they should build, rather than erode, public trust in the evidence that underpins reef management and policy.


This piece is part of Covering Climate Now, a global collaboration of more than 250 news outlets to strengthen coverage of the climate story.The Conversation

Jon Brodie, Professorial Fellow, ARC Centre of Excellence for Coral Reef Studies, James Cook University and Alana Grech, Assistant Director, ARC Centre of Excellence for Coral Reef Studies, James Cook University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Great Barrier Reef is in trouble. There are a whopping 45 reasons why



A helicopter view of Bait Reef in the Great Barrier Reef Marine Park.
Justin Blank/AAP

Jon C. Day, James Cook University and Scott Heron, James Cook University

When the managers of the Great Barrier Reef recently rated its outlook as very poor, a few well-known threats dominated the headlines. But delve deeper into the report and you’ll find that this global icon is threatened by a whopping 45 risks.

The most publicised main threats relate to climate change and poor water quality, and are unquestionably the most damaging.

However, many of the 45 threats are not well known or understood. All but two are happening now – and most are steadily getting worse. Collectively, it means the Great Barrier Reef is heading for a “death by a thousand cuts”.

Flood plume extending 60 kilometres offshore from the Burdekin River to Old Reef after an extreme monsoon weather event, February 2019.
Matt Curnock

The last prognosis was bad. Now it’s worse

The Great Barrier Reef Marine Park Authority produced the 2019 Outlook Report, required by law every five years. It shows the total number of threats has increased from 41 in 2014 to 45 now.

Click here for the authority’s list of all 45 threats.

All of these threaten the Great Barrier Reef’s World Heritage values – the factors that make it globally outstanding. Of the 45 threats, 42 threaten its remarkable ecosystem.

The new threats include the loss of cultural knowledge, especially by the Indigenous traditional owners, and the potential negative impacts of genetic modification which are not well understood but could occur when modified organisms are released into the wild.

The table below shows the most alarming 21 risks to the Great Barrier Reef ecosystem. It is becoming clear that many of the risks are serious, and the situation is getting worse.


Author provided/The Conversation, CC BY-ND

Click here for a version of the above table including additional data.

The threats you may not have heard of

The likelihood and consequences of many lesser known threats are increasing.

The ten threats leading to “very high” risks are of greatest concern, especially as all are considered “almost certain” to occur. They include:

• The modification of coastal habitats from continued urban and industrial development. Vegetation clearing damages important ecosystem services for many marine species.

Illegal fishing and poaching elsewhere are impacting global fish stocks. This will increase the incentive for such activity on the Great Barrier Reef, with major consequences for some species and habitats.

Altered weather patterns are predicted as climate change accelerates, including more frequent and/or intense cyclones, floods and heatwaves. These weather events are natural processes in tropical regions, but when severe can prolong recovery times of coral ecosystems by up to 20 years.

At least 6 of the 11 “high” risks are worsening, including:

Disease outbreaks in corals, turtles and coral trout were of “minor” consequence in 2009 but “major” consequence in 2019.

• The likelihood of altered ocean currents and their flow-on effects has been revised from “unlikely” in 2014 to “almost certain” in 2019. An increase in speed and the southern extent of the East Australian Current has already been observed. Such changes could irreversibly affect how eggs, larvae and juvenile organisms are naturally distributed.

Cyclone Yasi wrought havoc along the Queensland coast, including Port Hinchinbrook (pictured) in 2011. Severe events are expected to become more frequent, potentially damaging the Great Barrier Reef and communities.
AAP



Read more:
The Barrier Reef is not listed as in danger, but the threats remain


• The likelihood of problems from artificial light emitted from shipping and coastal development has increased from “likely” in 2014 to “almost certain” in 2019. This is known to affect turtle hatchlings and may be detrimental to seabirds and fish behaviour.

Many of the threats to the reef ecosystem occur simultaneously, and can act together to exacerbate the impacts. These cumulative effects are not all well understood and have not been adequately addressed in the Outlook Report, so this is further cause for concern.

Don’t forget the main threats – with catastrophic consequences

We cannot forget the problems that loom largest for the Great Barrier Reef: climate change and poor water quality.

The report rates the potential consequences of climate change-related sea temperature increase and ocean acidification as catastrophic.

A photo depicting two threats to the Great Barrier Reef: coal ships anchored near Abbot Point and a flood plume from the Burdekin River (February 2019); such plumes can carry pollutants and debris to the Great Barrier Reef.
Matt Curnock

Sea temperature increase is certain to continue, leading to further bleaching and possible death of corals and other organisms that will damage the entire reef ecosystem.

Ocean acidification (decreasing ocean pH levels) is reducing the capacity of corals and other calcifying organisms to build skeletons and shells, which reduces their capacity to create habitat.

The federal government is failing to meaningfully address Australia’s contribution to climate change, especially as the scale of the problem is much greater than the scale of interventions to date.




Read more:
The Great Barrier Reef outlook is ‘very poor’. We have one last chance to save it


Runoff containing sediment, nutrients and pesticides, mainly from agriculture, is causing poor water quality which can stifle the growth of coral and seagrass, and encourage outbreaks of the damaging crown-of-thorns starfish.

Despite substantial investment of human and financial resources to address the problem, the Queensland Government’s latest water quality report card this month gave the reef a rating of “D” overall and warned that high sediment loads “will continue to be transported to, and remain in, the region”.

So where to now?

It is clear that despite management efforts at local, regional and national levels, a significant number of threats to the reef are getting worse. The evidence leading to the ‘derived trend’ arrows on the right-hand side of the above table indicates ongoing concerns.

Adani’s Abbot Point coal terminal, and the Caley Valley wetlands. Critics say the coastal development is damaging the surrounding environment.
Gary Farr

Much more effort is required to effectively address complex threats such as climate change. But to ensure that the Great Barrier Reef survives as a healthy, resilient ecosystem, we must also ensure the lesser known risks are addressed.

This requires greater efforts by the community, industries, traditional owners and non-government organisations together with strong leadership from governments and their agencies. Unless this happens, the prognosis for the Great Barrier Reef is worse than “very poor” – and the ecological, social, economic and cultural impacts of that will be devastating.


Support for the aerial images by Matt Curnock was provided by TropWATER JCU, the Marine Monitoring Program – Inshore Water Quality through the Great Barrier Reef Marine Park Authority, the Queensland Government, the Landholders Driving Change project led by NQ Dry Tropics, CSIRO and the National Environmental Science Program Tropical Water Quality Hub.The Conversation

Jon C. Day, PSM, Post-career PhD candidate, ARC Centre of Excellence for Coral Reef Studies, James Cook University and Scott Heron, Senior Lecturer, James Cook University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Great Barrier Reef outlook is ‘very poor’. We have one last chance to save it



Tourists snorkelling on the Great Barrier Reef, the outlook for which has been officially rated “very poor”.
AAP

Terry Hughes, James Cook University

It’s official. The outlook for the Great Barrier Reef has been downgraded from “poor” to “very poor” by the Australian government’s own experts.

That’s the conclusion of the latest five-yearly report from the Great Barrier Reef Marine Park Authority, released on Friday. The report assessed literally hundreds of scientific studies published on the reef’s declining condition since the last report was published in 2014.

The past five years were a game-changer. Unprecedented back-to-back coral bleaching episodes in 2016 and 2017, triggered by record-breaking warm sea temperatures, severely damaged two-thirds of the reef. Recovery since then has been slow and patchy.

Fish swimming among coral on the Great Barrier Reef.
AAP

Looking to the future, the report said “the current rate of global warming will not allow the maintenance of a healthy reef for future generations […] the window of opportunity to improve the reef’s long-term future is now”.

But that window of opportunity is being squandered so long as Australia’s and the world’s greenhouse gas emissions continue to rise.

The evidence on the reef’s condition is unequivocal

A logical national response to the outlook report would be a pledge to curb activity that contributes to global warming and damages the reef. Such action would include a ban on the new extraction of fossil fuels, phasing out coal-fired electricity generation, transitioning to electrified transport, controlling land clearing and reducing local stressors on the reef such as land-based runoff from agriculture.




Read more:
Meet the super corals that can handle acid, heat and suffocation


But federal Environment Minister Sussan Ley’s response to the outlook report suggested she saw no need to take dramatic action on emissions, when she declared: “it’s the best managed reef in the world”.

Major coral bleaching events in 2016 and 2017 have devastated the reef.

The federal government’s lack of climate action was underscored by another dire report card on Friday. Official quarterly greenhouse gas figures showed Australia’s greenhouse gas emissions have risen to the highest annual levels since the 2012-13 financial year.

But rather than meaningfully tackle Australia’s contribution to climate change, the federal government has focused its efforts on fixing the damage wrought on the reef. For example as part of a A$444 million grant to the Great Barrier Reef Foundation, the government has allocated $100 million for reef restoration and adaptation projects over the next five years or so.

Solutions being supported by the foundation include a sunscreen-like film to float on the water to prevent light penetration, and gathering and reseeding coral spawn Separately, Commonwealth funds are also being spent on projects such as giant underwater fans to bring cooler water to the surface.

But the scale of the problem is much, much larger than these tiny interventions.




Read more:
Extreme weather caused by climate change has damaged 45% of Australia’s coastal habitat


Climate change is not the only threat to the reef

The second biggest impact on the Great Barrier Reef’s health is poor water quality, due to nutrient and sediment runoff into coastal habitats. Efforts to address that problem are also going badly.

This was confirmed in a confronting annual report card on the reef’s water quality, also released by the Commonwealth and Queensland governments on Friday.

The Great Barrier Reef attained world heritage status in the 1980s.
AAP

It showed authorities have failed to reach water quality targets set under the Reef 2050 Plan – Australia’s long-term plan for improving the condition of the reef.

For example the plan sets a target that by 2025, 90% of sugarcane land in reef catchments should have adopted improved farming practices. However the report showed the adoption had occurred on just 9.8% of land, earning the sugarcane sector a grade of “E”.

So yes, the reef is definitely in danger

The 2019 outlook report and other submissions from Australia will be assessed next year when the UNESCO World Heritage Committee meets to determine if the Great Barrier Reef should be listed as “in danger” – an outcome the federal government will fight hard to avoid.

An in-danger listing would signal to the world that the reef was in peril, and put the federal government under greater pressure to urgently prevent further damage. Such a listing would be embarrassing for Australia, which presents itself as a world’s-best manager of its natural assets.

Environment activists engaged in a protest action to bring attention to the dangers facing the Great Barrier Reef.
AAP

The outlook report maintains that the attributes of the Great Barrier Reef
that led to its inscription as a world heritage area in 1981 are still intact, despite the loss of close to half of the corals in 2016 and 2017.

But by any rational assessment, the Great Barrier Reef is in danger. Most of the pressures on the reef are ongoing, and some are escalating – notably anthropogenic heating, also known as human-induced climate change.




Read more:
Great Barrier Reef Foundation chief scientist: science will lie at the heart of our decisions


And current efforts to protect the reef are demonstrably failing. For example despite an ongoing “control” program, outbreaks of the damaging crown-of-thorns starfish – triggered by poor water quality – have spread throughout the reef.

The federal government has recently argued that climate change should not form the basis for an in-danger listing, because rising emissions are not the responsibility of individual countries. The argument comes despite Australia having one of the highest per capita emissions rates in the world.

But as Australia’s greenhouse gas emissions continue to rise – an outcome supported by government policy – the continued downward trajectory of the Great Barrier Reef is inevitable.The Conversation

Terry Hughes, Distinguished Professor, James Cook University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Extreme weather caused by climate change has damaged 45% of Australia’s coastal habitat



Bleached staghorn coral on the Great Barrier Reef. Many species are dependent on corals for food and shelter.
Damian Thomson, Author provided

Russ Babcock, CSIRO; Anthony Richardson, The University of Queensland; Beth Fulton, CSIRO; Eva Plaganyi, CSIRO, and Rodrigo Bustamante, CSIRO

If you think climate change is only gradually affecting our natural systems, think again.

Our research, published yesterday in Frontiers in Marine Science, looked at the large-scale impacts of a series of extreme climate events on coastal marine habitats around Australia.

We found more than 45% of the coastline was already affected by extreme weather events caused by climate change. What’s more, these ecosystems are struggling to recover as extreme events are expected to get worse.




Read more:
40 years ago, scientists predicted climate change. And hey, they were right


There is growing scientific evidence that heatwaves, floods, droughts and cyclones are increasing in frequency and intensity, and that this is caused by climate change.

Life on the coastline

Corals, seagrass, mangroves and kelp are some of the key habitat-forming species of our coastline, as they all support a host of marine invertebrates, fish, sea turtles and marine mammals.

Our team decided to look at the cumulative impacts of recently reported extreme climate events on marine habitats around Australia. We reviewed the period between 2011 and 2017 and found these events have had devastating impacts on key marine habitats.

Healthy kelp (left) in Western Australia is an important part of the food chain but it is vulnerable to even small changes in temperature and particularly slow to recover from disturbances such as the marine heatwave of 2011. Even small patches or gaps (right) where kelp has died can take many years to recover.
Russ Babcock, Author provided

These include kelp and mangrove forests, seagrass meadows, and coral reefs, some of which have not yet recovered, and may never do so. These findings paint a bleak picture, underscoring the need for urgent action.

During this period, which spanned both El Niño and La Niña conditions, scientists around Australia reported the following events:

2011: The most extreme marine heatwave ever occurred off the west coast of Australia. Temperatures were as much as 2-4℃ above average for extended periods and there was coral bleaching along more than 1,000km of coast and loss of kelp forest along hundreds of kilometres.

Seagrasses in Shark Bay and along the entire east coast of Queensland were also severely affected by extreme flooding and cyclones. The loss of seagrasses in Queensland may have led to a spike in deaths of turtles and dugongs.

2013: Extensive coral bleaching took place along more than 300km of the Pilbara coast of northwestern Australia.

2016: The most extreme coral bleaching ever recorded on the Great Barrier Reef affected more than 1,000km of the northern Great Barrier Reef. Mangrove forests across northern Australia were killed by a combination of drought, heat and abnormally low sea levels along the coast of the Gulf of Carpentaria across the Northern Territory and into Western Australia.

2017: An unprecedented second consecutive summer of coral bleaching on the Great Barrier Reef affects northern Great Barrier Reef again, as well as parts of the reef further to the south.

Heritage areas affected

Many of the impacted areas are globally significant for their size and biodiversity, and because until now they have been relatively undisturbed by climate change. Some of the areas affected are also World Heritage Areas (Great Barrier Reef, Shark Bay, Ningaloo Coast).

Seagrass meadows in Shark Bay are among the world’s most lush and extensive and help lock large amounts of carbon into sediments. The left image shows healthy seagrass but the right image shows damage from extreme climate events in 2011.
Mat Vanderklift, Author provided

The habitats affected are “foundational”: they provide food and shelter to a huge range of species. Many of the animals affected – such as large fish and turtles – support commercial industries such as tourism and fishing, as well as being culturally important to Australians.

Recovery across these impacted habitats has begun, but it’s likely some areas will never return to their previous condition.

We have used ecosystem models to evaluate the likely long-term outcomes from extreme climate events predicted to become more frequent and more intense.

This work suggests that even in places where recovery starts, the average time for full recovery may be around 15 years. Large slow-growing species such as sharks and dugongs could take even longer, up to 60 years.

But extreme climate events are predicted to occur less than 15 years apart. This will result in a step-by-step decline in the condition of these ecosystems, as it leaves too little time between events for full recovery.

This already appears to be happening with the corals of the Great Barrier Reef.

Gradual decline as things get warmer

Damage from extreme climate events occurs on top of more gradual changes driven by increases in average temperature, such as loss of kelp forests on the southeast coasts of Australia due to the spread of sea urchins and tropical grazing fish species.

Ultimately, we need to slow down and stop the heating of our planet due to the release of greenhouse gases. But even with immediate and effective emissions reduction, the planet will remain warmer, and extreme climatic events more prevalent, for decades to come.

Recovery might still be possible, but we need to know more about recovery rates and what factors promote recovery. This information will allow us to give the ecosystems a helping hand through active restoration and rehabilitation efforts.




Read more:
More than 28,000 species are officially threatened, with more likely to come


We will need new ways to help ecosystems function and to deliver the services that we all depend on. This will likely include decreasing (or ideally, stopping) direct human impacts, and actively assisting recovery and restoring damaged ecosystems.

Several such programs are active around Australia and internationally, attempting to boost the ability of corals, seagrass, mangroves and kelp to recover.

But they will need to be massively scaled up to be effective in the context of the large scale disturbances seen in this decade.The Conversation

Mangroves at the Flinders River near Karumba in the Gulf of Carpentaria. The healthy mangrove forest (left) is near the river while the dead mangroves (right) are at higher levels where they were much more stressed by conditions in 2016. Some small surviving mangroves are seen beginning to recover by 2017.
Robert Kenyon, Author provided

Russ Babcock, Senior Principal Research Scientist, CSIRO; Anthony Richardson, Professor, The University of Queensland; Beth Fulton, CSIRO Research Group Leader Ecosystem Modelling and Risk Assessment, CSIRO; Eva Plaganyi, Senior Principal Research Scientist, CSIRO, and Rodrigo Bustamante, Research Group Leader , CSIRO

This article is republished from The Conversation under a Creative Commons license. Read the original article.

‘Sadness, disgust, anger’: fear for the Great Barrier Reef made climate change feel urgent



Tourists are experiencing ‘Reef grief’.
Matt Curnock, Author provided

Matt Curnock, CSIRO and Scott Heron, James Cook University

Media coverage of mass coral bleaching on the Great Barrier Reef may have been a major tipping point for public concerns around climate change, according to research published today.

Severe and extensive bleaching during the summers of 2016 and 2017 has been directly attributed to human-caused climate change. Much of the ensuing media coverage used emotional language, with many reports of the Reef dying.




Read more:
Back-to-back bleaching has now hit two-thirds of the Great Barrier Reef


While the physical effects of the bleaching have been well documented, we wanted to understand the social and cultural impact.

Our research, including a study published today in Nature Climate Change, has compared survey responses from thousands of Australians and international visitors, before and after the bleaching event.

Reef grief

Our research team conducted face-to-face interviews with 4,681 visitors to the Great Barrier Reef region, in 14 coastal towns from Cooktown to Bundaberg, over June to August in both 2013 and 2017. We asked more than 50 questions about their perceptions and values of the Reef, as well as their attitudes towards climate change.

We found a large proportion of respondents, including Australians and overseas visitors, expressed forms of grief in response to loss and damage to the iconic ecosystem. Negative emotions associated with words given in short statements about “what the Great Barrier Reef means to you”, included sadness, disgust, anger and fear.




Read more:
Hope and mourning in the Anthropocene: Understanding ecological grief


Emotional appeals are widely used in media stories and in social media campaigns, and appealing to fear in particular can heighten a story’s impact and spread online.

However, a side-effect of this approach is the erosion of people’s perceived ability to take effective action. This is called a person’s “self-efficacy”.
This effect is now well documented in reactions to representations of climate change, and is actually a barrier to positive community engagement and action on the issue.

In short, the more afraid someone is for the Great Barrier Reef, the less they may feel their individual efforts will help to protect it.

While our results show a decline in respondents’ self-efficacy, there was a corresponding increase in how highly they valued the Reef’s biodiversity, its scientific heritage and its status as an international icon. They were also more willing to support action to protect the Reef. This shows widespread empathy for the imperilled icon, and suggests greater support for collective actions to mitigate threats to the Reef.

Researchers surveyed thousands of visitors to the Great Barrier Reef in 2013 and 2017.
Matt Curnock, Author provided

Changing attitudes

We observed a significant increase in the proportion of people who believe that climate change is “an immediate threat requiring action”. In 2013 some 50% of Australian visitors to the Great Barrier Reef region agreed climate change is an immediate threat; in 2017 that rose to 67%. Among international visitors, this proportion was even higher (64% in 2013, rising to 78% in 2017).

This represents a remarkable change in public attitudes towards climate change over a relatively short period. Previous surveys of Australian climate change attitudes over 2010 to 2014 showed that aggregate levels of opinion remained stable over that time.

Comparing our findings with other recent research describing the extent of coverage and style of reporting associated with the 2016-2017 mass coral bleaching event, we infer that this event, and the associated media representations, contributed significantly to the shift in public attitudes towards climate change.

Moving beyond fear

As a source of national pride and with World Heritage status, the Great Barrier Reef will continue to be a high profile icon representing the broader climate change threat.

Media reports and advocacy campaigns that emphasise fear, loss and destruction can get attention from large audiences who may take the message of climate change on board.

But this does not necessarily translate into positive action. A more purposeful approach to public communication and engagement is needed to encourage collective activity that will help to mitigate climate change and reduce other serious threats facing the Reef.

Examples of efforts that are underway to reduce pressures on the Reef include improvements to water quality, control of crown-of-thorns starfish outbreaks, and reducing poaching in protected zones. Tourism operators on the Reef are also playing an important role in restoring affected areas, and are educating visitors about threats, to improve Reef stewardship.

Clearly there remains an immediate need to reduce greenhouse gas emissions to ensure the Reef’s World Heritage qualities are maintained for future generations.

However, maintaining hope, and offering accessible actions towards attainable goals is critical to engaging people in collective efforts, to help build a more sustainable future in which coral reefs can survive.


The authors would like to acknowledge Nadine Marshall, who co-wrote this article while employed by CSIRO. We thank our other co-authors of the Nature Climate Change paper, including Lauric Thiault (National Center for Scientific Research, PSL Université Paris), Jessica Hoey and Genevieve Williams (Great Barrier Reef Marine Park Authority), Bruce Taylor and Petina Pert (CSIRO Land and Water) and Jeremy Goldberg (CSIRO & James Cook University). The scientific results and conclusions, as well as any views or opinions expressed herein, are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment, or the Queensland Government, or indicate commitment to any particular course of action.The Conversation

Matt Curnock, Social Scientist, CSIRO and Scott Heron, Senior Lecturer, James Cook University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Coral reproduction on the Great Barrier Reef falls 89% after repeated bleaching


Morgan Pratchett, James Cook University

The severe and repeated bleaching of the Great Barrier Reef has not only damaged corals, it has reduced the reef’s ability to recover.

Our research, published today in Nature, found far fewer baby corals are being produced than are needed to replace the large number of adult corals that have died. The rate at which baby corals are settling on the Great Barrier Reef has fallen by nearly 90% since 2016.

While coral does not always die after bleaching, repeated bleaching has killed large numbers of coral. This new research has negative implications for the Reef’s capacity to recover from high ocean temperatures.

How coral recovers

Most corals reproduce by “spawning”: releasing thousands of tight, buoyant bundles with remarkable synchronisation. The bundles burst when they hit the ocean surface, releasing eggs and/or sperm. Fertilised eggs develop into larvae as they are moved about by ocean currents. The larvae settle in new places, forming entirely new coral colonies. This coral “recruitment” is essential to reef recovery.




Read more:
Explainer: mass coral spawning, a wonder of the natural world


The research team, led by my colleague Terry Hughes from the ARC Centre of Excellence for Coral Reef Studies, measured rates of coral recruitment by attaching small clay tiles to the reef just before the predicted mass spawning each year. These settlement panels represent a standardised habitat that allows for improved detection of the coral recruits, which are just 1-2mm in size.

Almost 1,000 tiles were deployed across 17 widely separated reefs after the recent mass bleaching, in late 2016 and 2017. After eight weeks they were collected and carefully inspected under a microscope to count the number of newly settled coral recruits. Resulting estimates of coral recruitment were compared to recruitment rates recorded over two decades prior to the recent bleaching.

Australian Academy of Science.

Rates of coral recruitment recorded in the aftermath of the recent coral bleaching were just 11% of levels recorded during the preceding decades. Whereas there were more than 40 coral recruits per tile before the bleaching, there was an average of just five coral recruits per tile in the past couple of years.




Read more:
Tropical marine conservation needs to change as coral reefs decline


Reef resilience

The Great Barrier Reef (GBR) is the world’s largest reef system. The large overall size and high number of distinct reefs provides a buffer against most major disturbances. Even if large tracts of the GBR are disturbed, there is a good chance at least some areas will have healthy stocks of adult corals, representing a source of new larvae to enable replenishment and recovery.

Larvae produced by spawning corals on one reef may settle on other nearby reefs to effectively replace corals lost to localised disturbances.

It is reassuring there is at least some new coral recruitment in the aftermath of severe bleaching and mass mortality of adult corals on the GBR. However, the substantial and widespread reduction of regrowth indicates the magnitude of the disturbance caused by recent heatwaves.

Declines in rates of coral recruitment were greatest in the northern parts of the GBR. This is where bleaching was most pronounced in 2016 and 2017, and there was the greatest loss of adult corals. There were much more moderate declines in coral recruitment in the southern GBR, reflecting generally higher abundance of adults corals in these areas. However, prevailing southerly currents (and the large distances involved) make it very unlikely coral larvae from southern parts of the Reef will drift naturally to the hardest-hit northern areas.

It is hard to say how long it will take for coral assemblages to recover from the recent mass bleaching. What is certain is low levels of coral recruitment will constrain coral recovery and greatly increase the recovery time. Any further large-scale developments with also greatly reduce coral cover and impede recovery.




Read more:
The 2016 Great Barrier Reef heatwave caused widespread changes to fish populations


Reducing carbon emissions

This study further highlights the vulnerability of coral reefs to sustained and ongoing global warming. Not only do adult corals bleach and die when exposed to elevated temperatures, this prevents new coral recruitment and undermines ecosystem resilience.

The only way to effectively redress global warming is to immediately and substantially reduce global carbon emissions. This requires that all countries, including Australia, renew and strengthen their commitments to the Paris Agreement on climate change.

While further management is required to minimise more direct human pressure on coral reefs – such as sediment run-off and pollution – all these efforts will be futile if we do not address global climate change.The Conversation

Morgan Pratchett, Professor, ARC Centre of Excellence for Coral Reef Studies, James Cook University

This article is republished from The Conversation under a Creative Commons license. Read the original article.