Government-owned firms like Snowy Hydro can do better than building $600 million gas plants


Arjuna Dibley, The University of MelbourneThe Morrison government today announced it’s building a new gas power plant in the Hunter Valley, committing up to A$600 million for the government-owned corporation Snowy Hydro to construct the project.

Critics argue the plant is inconsistent with the latest climate science. And a new report by the International Energy Agency has warned no new fossil fuel projects should be funded if we’re to avoid catastrophic climate change.

The move is also inconsistent with research showing government-owned companies can help drive clean energy innovation. Such companies are often branded as uncompetitive, stuck in the past and unable to innovate. But in fact, they’re sometimes better suited than private firms to take investment risks and test speculative technologies.

And if the investments are successful, taxpayers, the private sector and consumers share the benefits.

Wind farm
If government-owned firms led the way in clean energy technologies, society would benefit.
Shutterstock

Lead, not limit

Federal energy minister Angus Taylor announced the funding on Wednesday. He said the 660-megawatt open-cycle gas turbine at Kurri Kurri will “create jobs, keep energy prices low, keep the lights on and help reduce emissions”.

Experts insist the plan doesn’t stack up economically and may operate at less than 2% capacity.

But missing from the public debate is the question of how government-owned companies such as Snowy Hydro might be used to accelerate the clean energy transition.

Australian governments (of all persuasions) have not often used the companies they own to lead in clean energy innovation. Many, such as Hydro Tasmania, still rely on decades-old hydroelectric technologies. And others, such as Queensland’s Stanwell Corporation and Western Australia’s Synergy, rely heavily on older coal and gas assets.

Asking Snowy Hydro to build a gas-fired power plant is yet another example – but it needn’t be this way.




Read more:
A single mega-project exposes the Morrison government’s gas plan as staggering folly


gas plant
Snowy Hydro has been funded to build a $600 million gas plant, but it could do better.
Shutterstock

The burning question

Globally, more than 60% of electricity comes from wholly or partially state-owned companies. In Australia, despite the 20-year trend towards electricity privatisation, government-owned companies remain important power generators.

At the Commonwealth level, Snowy Hydro provides around 20% of capacity to New South Wales and Victoria. And most electricity in Queensland, Tasmania and Western Australia is generated by state government-owned businesses.

But political considerations mean government-owned electricity companies can struggle to navigate the clean energy path.

For example in April this year, the chief executive of Stanwell Corporation, Richard Van Breda, suggested the firm would mothball its coal-powered generators before the end of their technical life, because cheap renewables were driving down power prices.

Queensland’s Labor government was reportedly unhappy with the announcement, fearing voter backlash in coal regions. Breda has since stepped down and Stanwell is reportedly backtracking on its transition plans.

Such examples beg the question: can government-owned companies ever innovate on clean energy? A growing literature in economics, as well as several real-world examples, suggest that under the right conditions, the answer is yes.




Read more:
The 1.5℃ global warming limit is not impossible – but without political action it soon will be


desk showing Stanwell logo
State-owned Stanwell Corporation is reportedly back-tracking on plans to mothball its coal plants early.
Stanwell Corporation

Privatised is not always best

Economists have traditionally argued state-owned companies are not good innovators. As the argument goes, the absence of competitive market forces makes them less efficient than their private sector peers.

But recent research by academics and international policy institutions such as the OECD has shown government ownership in the electricity sector can be an asset, not a curse, for achieving technological change.

The reason runs contrary to orthodox economic thinking. While competition can lead to firm efficiency, some economists argue government-owned firms can take greater risks. Without the pressure for market-rate returns to shareholders, government enterprises may be freer to invest in more speculative technologies.

My ongoing research has shown the reality is even more complex. Whether state-owned electric companies can drive clean energy innovation depends a great deal on government interests and corporate governance rules.

For example, consider the New York Power Authority (NYPA) which, like Snowy Hydro, is wholly government owned.

New York Governor Andrew Cuomo has deliberately sought to use NYPA to decarbonise the state’s electricity grid. The government has managed the company in a way that enables it to take risks on new transmission and generation technologies that investor-owned peers cannot.

For instance, NYPA is investing in advanced sensors and computing systems so it can better manage distributed energy sources such as solar and wind. The technology will also simulate major catastrophic events, including those likely to ensue from climate change.

These investments are likely to contribute to greater grid stability and greater renewables use, benefiting not just NYPA but other electricity generators and ultimately, consumers.

Such innovation is nothing new. Also in the US, the state-owned Sacramento Municipal Utility District built one of the first utility-scale solar projects in the world in 1984.

Andrew Cuomo in front of flag
NY Governor Andrew Cuomo is using a state-owned company to aid the clean energy transition.
Mary Altaffer/AP

The way forward

More could be done to ensure Australian government-owned corporations are clean energy catalysts.

Clean energy technologies can struggle to bridge the gap from invention to widespread adoption. Public investment can bring down the price of such technologies or demonstrate their efficacy.

In this regard, government-owned companies could work with private technology firms to invest in technologies in the early stages of development, and which could have significant public benefits. For instance, in 2020, the Western Australian government-owned company Synergy sought to build a 100 megawatt battery with private sector partners.

But many problems facing state-owned companies are the result of ever-changing government policy priorities. The firms should be reformed so they are owned by government, but operated at arm’s length and with other partners. This might better enable clean energy investment without the politics.




Read more:
Australia’s states are forging ahead with ambitious emissions reductions. Imagine if they worked together


The Conversation


Arjuna Dibley, Visiting Researcher, Climate and Energy College, The University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The budget should have been a road to Australia’s low-emissions future. Instead, it’s a flight of fancy


Shutterstock

John Quiggin, The University of QueenslandLooking at other nations around the world, the path to cutting greenhouse gas emissions seems clear.

First, develop wind and solar energy and battery storage to replace coal- and gas-fired electricity. Then, replace petrol and diesel cars with electric vehicles running off carbon-free sources. Finally, replace traditionally made steel, cement and other industries with low-carbon alternatives.

In this global context, the climate policies announced in Tuesday’s federal budget are a long-odds bet on a radically different approach. In place of the approaches adopted elsewhere, the Morrison government is betting heavily on alternatives that have failed previous tests, such as carbon capture and storage. And it’s blatantly ignoring internationally proven technology, such as electric vehicles.

The government could have followed the lead of our international peers and backed Australia’s clean energy sector to create jobs and stimulate the post-pandemic economy. Instead, it’s sending the nation on a fool’s errand.

Prime Minister Scott Morrison, left, and Treasurer Josh Frydenberg shake hands
Prime Minister Scott Morrison, left, and Treasurer Josh Frydenberg should have used the budget to create jobs in the clean economy.
Mick Tsikas/AAP

Carbon-capture folly

The Morrison government is taking a “technology, not taxes” approach to emissions reduction. Rather than adopt a policy such as a carbon price – broadly considered the most effective and efficient way to cut emissions – the government has instead pinned its hopes on a low-emissions technology plan.

That means increased public spending on research and development, to accelerate the commercialisation of low emissions technologies. The problems with this approach are most obvious in relation to carbon capture and storage (CCS).

The budget contains A$263.7 million to fund new carbon capture and storage projects. This technology promises to capture some – but to date, not all – carbon dioxide at the point of emission, and then inject it underground. It would allow continued fossil fuel use with fewer emissions, but the process is complex and expensive.

In fact, recent research found of 39 carbon-capture projects examined in the United States, more than 80% ended in failure.




Read more:
The 1.5℃ global warming limit is not impossible – but without political action it soon will be


The government’s CCS funding is focused on capturing CO₂ from gas projects. This is despite the disappointing experience of Australia’s only CCS project so far, Chevron’s Gorgon gas field off Western Australia.

Some 80% of emissions from the operation were meant to be captured from 2016. But the process was delayed for three years, allowing millions of tonnes of CO₂ to enter the atmosphere. As of January this year, the project was still facing technical issues.

CCS from gas will be expensive even if it can be made to work. Santos, which has proposed a CCS project at its Moomba gas plant in South Australia, suggests a cost of $A30 per tonne of CO₂ captured.

This money would need to come from the government’s Climate Solutions Fund, currently allocated about A$2 billion over four years. If Moomba’s projected emissions reduction of 20 million tonnes a year were realised, this project alone would exhaust the fund.

two men stand over equipment
Plans to capture carbon from Chevron’s Gorgon gas project have not gone to plan.
Chevron Australia

What about electric vehicles?

There is a striking contrast between the Morrison government’s enthusiasm for carbon capture, and its neglect of electric vehicles.

It ought to be obvious that if Australia is to achieve a target of net-zero emissions by 2050 – which Treasurer Josh Frydenberg this week reiterated was his government’s preference – the road transport sector must be decarbonised by then.

The average age of Australian cars is about 10 years. This implies, given fairly steady sales, an average lifespan of 20 years. This in turn implies most petrol or diesel vehicles sold after 2030 will have to be taken off the road before the end of their useful life.

In any case, such vehicles will probably be very difficult to buy within 15 years. Manufacturers including General Motors and Volvo have announced plans to stop selling petrol and diesel vehicles by 2035 or earlier.

But the Morrison government has ruled out consumer incentives to encourage electric vehicle uptake – a policy at odds with many other nations, including the US.




Read more:
The US jumps on board the electric vehicle revolution, leaving Australia in the dust


Despite the “technology, not taxes” mantra, this week’s federal budget ignored electric vehicles. This includes a A$10 billion infrastructure spend which did not include charging stations as part of highway upgrades.

Unless the government takes action soon, Australian motorists will be faced with the choice between a limited range of second-rate petrol and diesel vehicles, or electric vehicles for which key infrastructure is missing.

It’s hard to work out why the government is so resistant to doing anything to help electric vehicles. Public support appears strong. There are no domestic carmakers left to protect.

The car retail industry is generally unenthusiastic about electric vehicles. Its business model is built on combining competitive sticker prices with a high-margin service and repair business, and electric vehicles don’t fit this model.

At the moment (although not for much longer), electric vehicles are more expensive than traditional cars to buy upfront. But they are cheaper to run and service.

There are fears of job losses in car maintenance as electric vehicle uptake increases. However, car dealers have adjusted to change in the past, and can do so in future.

electric vehicle on charge
The budget ignored electric vehicles.
Shutterstock

Wishful thinking

The Morrison government is still edging towards announcing a 2050 net-zero target in time for the United Nations Climate Change Conference in Glasgow this November. But as Prime Minister Scott Morrison himself has emphasised, there’s no point having a target without a strategy to get there.

Yet at this stage, the government’ emissions reduction strategy looks more like wishful thinking than a road map.




Read more:
Australia’s states are forging ahead with ambitious emissions reductions. Imagine if they worked together


The Conversation


John Quiggin, Professor, School of Economics, The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The outlook for coral reefs remains grim unless we cut emissions fast — new research


Morgan Pratchett, ARC Centre of Excellence for Coral Reef Studies, CC BY-ND

Christopher Cornwall, Te Herenga Waka — Victoria University of Wellington and Verena Schoepf, University of AmsterdamThe twin stress factors of ocean warming and acidification increasingly threaten coral reefs worldwide, but relatively little is known about how various climate scenarios will affect coral reef growth rates.

Our research, published today, paints a grim picture. We estimate that even under the most optimistic emissions scenarios, we’ll see dramatic reductions in coral reef growth globally.
The good news is that 63% of all reefs in this emissions scenario will still be able to grow by 2100.

But if emissions continue to rise unabated, we predict 94% of coral reefs globally will be eroding by 2050. Even under an intermediate emissions scenario, we project a worst-case outcome in which coral reefs on average will no longer be able to grow vertically by 2100.

The latter scenarios would have dramatic consequences for marine biodiversity and the millions of people who depend on healthy, actively growing coral reefs for livelihoods and shoreline protection. This highlights the urgency and importance of acting now to drastically reduce carbon dioxide emissions.

Coral reefs are home to more than 830,000 species and provide coastal communities with food and income through fisheries and tourism.

The Great Barrier Reef alone contributes A$6.4 billion to the Australian economy. Critically, coral reefs also protect coastlines from storm surges and create land for many low-lying Indo-Pacific island nations.

Marine heatwaves, caused by ongoing ocean warming, have already had a severe impact on coral reef ecosystems by triggering mass bleaching events. These events are becoming more frequent and intense, and cause mass die-offs across large areas.

Bleaching at the Great Barrier Reef
Marine heatwaves trigger mass bleaching and coral die-offs.
Morgan Pratchett, ARC Centre of Excellence for Coral Reef Studies, CC BY-ND

Ocean acidification also reduces the growth of corals by limiting their ability to build their skeletons from calcium carbonate. Together, these stressors threaten the ability of coral reefs to grow and keep up with sea level rise.

Complex impacts from ocean warming and acidification

Our understanding of how ocean warming and acidification threaten reef-forming species has improved considerably over the past decade. However, understanding how coral reef growth will be altered by climate change is more complex than simply measuring rates of change from individual taxonomic groups of corals.

Our study of 183 reefs worldwide provides the first quantitative estimate of how most of the processes that control reef growth respond to climate change and affect carbonate accumulation and growth rates.

Coral reef
Coral on the Great Barrier Reef during the 2020 bleaching event.
Morgan Pratchett, ARC Centre of Excellence for Coral Reef Studies, CC BY-ND

Reefs grow by layering calcium carbonate, produced either by corals and coralline algae. The amount of calcium carbonate built by these reefs depends on many factors.

Cyclones, waves and currents can flush parts of the reef away. Acidifying ocean water means more dissolves chemically. And there is a biological carbonate exchange, known as bio-erosion. Sponges, parrotfish, sea urchins and algae can all eat it, but then return some as defecated sand.

Depending on which of these processes dominates, coral reefs either grow and accrete vertically, or they start to erode. Most of these processes vary for each reef, and almost all are affected by climate change.




Read more:
The Great Barrier Reef outlook is ‘very poor’. We have one last chance to save it


To complicate matters, the frequency and intensity of marine heatwaves will vary geographically, making it difficult to estimate to what degree coral mass bleaching events will reduce coral cover.

In our research, we applied these local and global processes to 233 locations on 183 distinct coral reefs that vary in their species compositions and physical complexity. We found significant variability in responses to ocean acidification and warming.

Geographical and species variability

We predict coral mass bleaching events will have the largest impact on carbonate production across all sites. The world’s coral reefs have already been transformed dramatically by these events over the past few decades.

Coral bleaching at the Maledives
Coral reef in the Maldives, before coral mass bleachign event.
Chris Perry, CC BY-ND



Read more:
We just spent two weeks surveying the Great Barrier Reef. What we saw was an utter tragedy


Diver and equipment at a coral reef
Experimental setup used to measure calcification coralline algae on the Great Barrier Reef.
Guillermo Diaz-Pulido, CC BY-ND

We used the documented impacts of the 2016 mass bleaching on the Great Barrier Reef, which affected a large range of reefs with different species compositions, depths and latitudes. During this event, each reef experienced varying heat stress, which manifested in different levels of coral cover loss.

This information helped us to calibrate models to predict heat-stress events globally between now and 2100 and to gauge the future magnitudes of heat stress and their impact on our study sites.

We found currently degraded reefs fared poorly in our model, even under lower emissions scenarios. Reefs whose carbonate production was more robust against the effects of climate change tended to be those with high present-day carbonate production rates, higher contributions from coralline algae (which are also vulnerbable, but comparatively more resistant to warming than corals) and low rates of bio-erosion.

Hope for coral reefs

In higher emissions scenarios, even reefs dominated by coralline algae began to suffer as ocean acidification and warming intensified. It is also important to note that such reefs will provide different, and perhaps reduced, services compared to coral-dominated reefs because they are structurally less complex.

People standing on a coal reef
Team members assess coral health during the 2016 bleaching event in the Kimberley, Western Australia.
Christopher Cornwall, CC BY-ND

We did not explore in depth whether remaining coral reef communities could gain tolerance to rising temperatures over time. This could manifest as an increase in the proportional abundance of heat-tolerant species as more heat-sensitive corals die during mass bleaching events.

Surviving corals could acclimatise or even adapt. But whether these mechanisms could provide hope for the continued growth of coral reefs in the future — and if so, to what extent — is largely unknown. Nor can we say if more heat-tolerant corals could sustain similar rates of reef growth and structural complexity.

Coral reef in Chagos
A coral reef in Chagos before a bleaching event in April 2016.
Chris Perry, CC BY-ND

The best hope to save coral reefs and their ecological, societal and economic benefits is to reduce our carbon emissions dramatically, and quickly. Even under our projected intermediate scenarios we expect mean global erosion of coral reefs.

Under the lowest emissions scenario we examined, we expect profound changes in coral reef growth rates and their ability to provide ecosystem services. In this scenario, only some reefs will be able to keep pace with rising sea levels.

We owe it to our children and grandchildren to reduce emissions now, if we have any hope of them witnessing the majestic nature of coral reef ecosystems.The Conversation

Christopher Cornwall, Rutherford Discovery Fellow, Te Herenga Waka — Victoria University of Wellington and Verena Schoepf, Assistant Professor, University of Amsterdam

This article is republished from The Conversation under a Creative Commons license. Read the original article.

A great start, but still not enough: why Victoria’s new climate target isn’t as ambitious as it sounds


Anita Foerster, Monash University; Alice Bleby, UNSW, and Anne Kallies, RMIT UniversityIn a great start towards net zero emissions by 2050, the Victorian Government recently released their Climate Change Strategy, committing to halving greenhouse emissions by 2030.

Victoria’s leadership, alongside commitments from other Australian states and territories, stands in stark contrast to the poor climate performance of our federal government.

But is it enough? Climate scientists are urging Australia to do more to reduce emissions and to do it quicker if we’re going to avert dangerous global warming. In fact, a recent Climate Council report claims achieving net zero emissions by 2050 is at least a decade too late.

We think the Victorian government has the legal mandate to do more. But we also recognise that ambitious climate action at the state level is hindered by a lack of commitment at the federal level.

Using law to drive emissions reductions

Victoria’s new strategy was developed under the Climate Change Act 2017, state legislation requiring the government to set interim emissions reduction targets on the way to net zero by 2050.

It spreads the job of achieving these targets across the economy, with different ministers responsible for pledging emissions reductions actions and reporting on progress over time.

Laws like this are emerging around the world to set targets and hold governments accountable for delivering on them. They’re a key tool to deliver on international commitments under the Paris Agreement to limit global warming to well below 2℃.

Although Australia has set a national target for emissions reduction under the Paris Agreement, it’s widely considered to be inadequate, and there’s currently no framework climate law at the national level. Independent Zali Steggall introduced such a bill in 2020, but the Morrison government hasn’t supported it.

Victoria’s new strategy lacks detail

Victoria’s Climate Change Strategy contains many exciting climate policy announcements, including:

  • renewable energy zones and big batteries in the regions
  • all government operations including schools and hospitals powered by 100% renewables by 2025
  • targets and subsidies for electric vehicle uptake
  • commitments to support innovation in hard-to-abate sectors such as agriculture.

It also recognises the need to phase out natural gas and accelerate Victoria’s renewable hydrogen industry.

These policies are designed to reduce emissions while supporting economic growth and job creation. Yet they are scant on detail.

There’s heavy reliance on achieving emissions reductions in the energy sector — arguably, this is the low-hanging fruit. Policies in transport and agriculture are far less developed, with no quantification of targeted emissions reductions to 2030.

Cows in a paddock
Victoria has committed to support innovation in hard-to-abate sectors such as agriculture.
Shutterstock

This makes it difficult to assess whether the sector pledges will drive enough change to achieve the government’s interim targets (ambitious or otherwise) and support a trajectory to net zero.

It has taken several years to develop the Climate Change Strategy. This makes the lack of detail and the undeveloped nature of some pledges a big concern.

There are also few safeguards in the Climate Change Act to ensure pledges add up to achieving targets, or that ministers across sectors deliver on them. Much depends on the political will of the government of the day.

Why Victoria’s targets aren’t enough

The Victorian Government proposes targets to reduce emissions by 28–33% on 2005 levels by 2025, and by 45–50% on 2005 levels by 2030.

The government claims these targets are ambitious. Compared to current federal government targets, this is true.




Read more:
Australia’s states are forging ahead with ambitious emissions reductions. Imagine if they worked together


However, the target ranges are lower than those recommended in 2019 by the Independent Expert Panel, established under the Climate Change Act to advise the government on target setting.

The panel recommended targets of 32–39% by 2025 and 45–60% by 2030 as Victoria’s “fair share” contribution to limiting warming to well below 2℃ in accordance with Paris Agreement goals. And it acknowledged these recommended ranges still wouldn’t be enough to keep warming to 1.5℃, in the context of global efforts.

Solar panels on a roof
Reducing emissions in the energy sector is low-hanging fruit.
Shutterstock

Ultimately, Victoria’s targets don’t match what scientists are now telling us about the importance of cutting emissions early to avoid the worst impacts of climate change.

A pragmatic approach or a missed opportunity?

In setting the targets, the state government has clearly taken a politically pragmatic approach.

The government claims the targets are achievable and suggests they would’ve set more ambitious targets if the federal government made a stronger commitment to climate action.

Yes, the current lack of climate ambition at the federal level in Australia is a very real constraint on progress in some areas such as energy, where a coordinated approach is crucial. But this shouldn’t outweigh aligning to best available science.

State governments have many regulatory, policy and economic levers at their disposal, with opportunities to drive significant change and innovation. And Victoria has already demonstrated strong progress in emissions reduction and renewables in the energy sector, easily meeting and exceeding previous targets.

Under the Climate Change Act, the Victorian Government will need to set new, more ambitious targets in five years.

But waiting five years goes against Victoria’s aim to lead the nation on climate action and contribute fairly to global efforts to mitigate global warming. More ambitious, science-aligned targets now would’ve been a valuable signal for industry and a sign of real climate leadership.

We need stronger laws

Without doubt, the new Climate Change Strategy is a significant step forward on an issue that’s plagued Australian politics for years. Victoria has showed framework climate laws can drive government action on climate change.




Read more:
Conservative but green independent MP Zali Steggall could break the government’s climate policy deadlock


But there are also opportunities to bolster the Climate Change Act by aligning targets to science, strengthening legal obligations to drive timely progress, and including an ongoing role for independent experts to advise on target setting and oversee progress.

Finally, it’s important to get on with the job at a federal level.

Zali Steggall’s Climate Change Bill 2020 picks up on best practice climate laws from around the world. It’s also supported by industry groups and investors.

Victoria’s experience suggests it’s surely time for Australia to take this important step.The Conversation

Anita Foerster, Senior Lecturer, Monash University; Alice Bleby, PhD Candidate, UNSW, and Anne Kallies, Senior Lecturer, RMIT University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

This $1 billion energy deal promises to cut emissions and secure jobs. So why on earth is gas included?


Shutterstock

Samantha Hepburn, Deakin UniversityIn case you missed it, a major A$1 billion energy deal between the Morrison and the South Australian government was revealed recently.

The bilateral deal represents a key driver for the national economic recovery from COVID. It promises to provide jobs in the energy sector and contribute to South Australia achieving net 100% renewables by 2030.

But there’s a big caveat: the agreement involves a joint commitment to accelerate new gas supplies into the east coast market.

With so much money on the table and other nations recently doubling down on climate commitments, let’s look at the good and bad bits of this landmark deal in more detail.

A gas-led economic recovery

The agreement was announced ahead of US President Joe Biden’s climate summit last week, which saw Australia spruik technology growth to cut emissions instead of committing to new climate targets.

In total, the federal government will contribute A$660 million and the South Australian government A$422 million towards the new deal.

Both governments have also agreed to a gas target of an additional 50 petajoules of energy per year by the end of 2023, and 80 petajoules by 2030. Their rationale is the need to improve energy security and reliability.

This focus on gas in the agreement stems from the federal government’s much-criticised, gas-led economic recovery plan, which argues new gas supplies are vital for future energy security.




Read more:
Australia is at a crossroads in the global hydrogen race – and one path looks risky


In February, the Australian Competition and Consumer Commission outlined a potential shortfall of 30 petajoules of gas for the east-coast market leading up to 2024. This shortfall could impact energy supply, and the federal government has used this to help justify opening new gas reserves.

However, nothing is certain — COVID has reduced global demand for gas so any shortfall will likely be deferred. Meanwhile, renewable technology and hydrogen production and use are rapidly advancing.

Bad: investing in gas

With the seismic shift in the economics of renewables over the past decade, investing in new gas supply is unnecessary and retrograde. In fact, it’s now more expensive to transition from coal to gas than from coal to renewables.




Read more:
4 reasons why a gas-led economic recovery is a terrible, naïve idea


For example, the cost of lithium ion batteries used for battery storage has fallen over the past decade by nearly 90%. But the cost of gas — both economically and environmentally — has steadily risen. This inevitably means means its role in the energy market will diminish.

Eventually, gas generators will be retired without replacement. Victoria’s March quarter data, for example, shows black coal generation volumes dropped by 9.5% and gas generation dropped by 43%. Meanwhile, rooftop solar went up 25%, utility solar up by 40% and wind power by 24%.

Solar farm in the desert at sunset
Up to $110 million will be spent on solar thermal and other storage projects in South Australia.
Shutterstock

And at the end of the day, gas is still a fossil fuel. There are approximately 22 major gas production and export projects proposed for Australia. A report from The Australia Institute in September 2020 suggested that, if produced, these projects could lead to about half a billion tonnes of emissions.

If all potential gas resources in Australia were tapped, the report indicates it could result in emissions equivalent to three times the current annual global emissions.

Good: investing in critical infrastructure

The energy deal sets aside $50 million towards the new $1.5 billion electricity interconnector between South Australia and NSW. This is critical infrastructure that will allow South Australia, Victoria and NSW to share energy reserves.

Indeed, the Australian Energy Market Operator has reported in excess of 5,000 megawatts of renewable energy projects near the proposed interconnector. This means South Australian wind and solar could contribute more significantly to electricity generation in both Victoria and NSW.

In turn, this will have a positive effect on pricing. Forecasts suggest the proposed new interconnector could reduce power bills by up to $66 a year in South Australia and $30 in NSW.

The energy deal also reserves funding for “investment priority areas”, which include carbon capture storage, electric vehicles and hydrogen. For example, $110 million is allocated for energy storage projects. This level of funding will help develop a world-class hydrogen export industry in South Australia.

The verdict

The energy deal is a funding win for renewable energy and technology, with energy technology advancing much faster than anticipated. However, its focus on gas is environmentally and economically regressive.

It’s completely inconsistent with the powerful climate plan announced by the Joe Biden administration at the Climate Summit last week, which includes a pause and review of oil and gas drilling on US federal land and doubling energy production from offshore windfarms by 2030.




Read more:
More reasons for optimism on climate change than we’ve seen for decades: 2 climate experts explain


In March, the European Union’s parliament voted in favour of a Carbon Border Adjustment Mechanism. This will impose a tariff on products being sold into the EU according to the amount of carbon involved in making them. The Biden administration in the US has announced a similar plan.

What’s more, the European Union and the US, as outlined at the recent Climate Summit, are planning to impose fees or quotas on goods from countries failing to meet their climate and environmental obligations. This may mean Australian manufacturers will end up paying for the governments failure to take rapid action to drive down emissions.

Bilateral agreements provide critical planning and funding for Australia’s energy progression. However, they should not prolong the use of fossil fuels under the guise of energy security. To do so undermines global climate change imperatives and hinders Australia’s progress in a new energy era.The Conversation

Samantha Hepburn, Director of the Centre for Energy and Natural Resources Law, Deakin Law School, Deakin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Net zero won’t be achieved in inner city wine bars: Morrison


Michelle Grattan, University of CanberraAs Scott Morrison gradually pivots his climate policy towards embracing a target of net zero emissions by 2050, he is seeking to distinguish the government from “inner city” types and political opponents who’ve been marching down that road for a long time.

The Prime Minister told a Business Council of Australia dinner on Monday the government was charting its own course “to ensure Australia is well placed to prosper through the great energy transition of our time, consistent with strong action on climate change”.

“The key to meeting our climate change ambitions is commercialisation of low emissions technology,” he said.

“We are going to meet our ambitions with the smartest minds, the best technology and the animal spirits of capitalism.”

Morrison was speaking ahead of this week’s two-day virtual summit on climate called by President Biden.

The Biden administration has made the issue a major policy priority, which has increased the pressure on Australia to sign up to the 2050 target before the Glasgow meeting on climate late in the year.

Morrison acknowledged that “we need to change our energy mix over the next 30 years on the road to net zero emissions”.

But he said “we will not achieve net zero in the cafes, dinner parties and wine bars of our inner cities.

“It will not be achieved by taxing our industries that provide livelihoods for millions of Australians off the planet, as our political opponents sought to do, when they were given the chance.

“It will be achieved by the pioneering entrepreneurialism and innovation of Australia’s industrial workhorses, farmers and scientists.

“It will be won in places like the Pilbara, the Hunter, Gladstone, Portland, Whyalla, Bell Bay, and the Riverina.

“In the factories of our regional towns and outer suburbs. In the labs of our best research institutes and scientists.

“It will be won in our energy sector. In our industrial sector. In our agricultural sector. In our manufacturing sector.

“This is where the road to net zero is being paved in Australia. And those industries and all who work in them, will reap the benefits of the changes they are making and pioneering.”

Morrison said Australia’s natural resources and its industries’ strength presented “a huge opportunity to capitalise on the new energy economy”.

“And let’s not forget that Australia already produces many of the products that will be in growing demand as part of a low carbon future – from copper to lithium.

“It is this practical approach of making new technologies commercial that will see us achieve our goals.”

He said Australia was making real progress.

Its total emissions were 19% lower at the end of 2020 than in 2005.

“Our domestic emissions have already fallen by 36% from 2005 levels.

“Australia has deployed renewable energy ten times faster than the global average and four times faster than in Europe and the United States.

“One in four rooftops has solar, more than anywhere else in the world.

“Australia takes our emission reductions targets very seriously. We don’t make them lightly. We prepare our plan to achieve them and we follow through.”The Conversation

Michelle Grattan, Professorial Fellow, University of Canberra

This article is republished from The Conversation under a Creative Commons license. Read the original article.

We found methane-eating bacteria living in a common Australian tree. It could be a game changer for curbing greenhouse gases


Shutterstock

Luke Jeffrey, Southern Cross UniversityTrees are the Earth’s lungs – it’s well understood they drawdown and lock up vast amounts of carbon dioxide from the atmosphere. But emerging research is showing trees can also emit methane, and it’s currently unknown just how much.

This could be a major problem, given methane is a greenhouse gas about 45 times more potent than carbon dioxide at warming our planet.

However, in a world-first discovery published in Nature Communications, we found unique methane-eating communities of bacteria living within the bark of a common Australian tree species: paperbark (Melaleuca quinquenervia). These microbial communities were abundant, thriving, and mitigated about one third of the substantial methane emissions from paperbark that would have otherwise ended up in the atmosphere.

Because research on tree methane (“treethane”) is still in its relative infancy, there are many questions that need to be resolved. Our discovery helps fill these critical gaps, and will change the way we view the role of trees within the global methane cycle.

Wait, trees emit methane?

Yes, you read that right! Methane gas within cottonwood trees was first reported in 1907, but has been largely overlooked for almost a century.

Only in 2018 was a tree methane review published and then a research blueprint put forward, labelling this as “a new frontier of the global carbon cycle”. It has since been gaining rapid momentum, with studies now spanning the forests of Japan, UK, Germany, Panama, Finland, China, Australia, US, Canada, France and Borneo just to name a few.

Research on tree methane is still in its relative infancy.

In some cases, treethane emissions are significant. For example, the tropical Amazon basin is the world largest natural source of methane. Trees account for around 50% of its methane emissions.

Likewise, research from 2020 found low-lying subtropical Melaleuca forests in Australia emit methane at similar rates to trees in the Amazon.

Dead trees can emit methane, too. At the site of a catastrophic climate-related mangrove forest dieback in the Gulf of Carpentaria, dead mangrove trees were discovered to emit eight times more methane than living ones. This poses new questions for how climate change may induce positive feedbacks, triggering potent greenhouse gas release from dead and dying trees.

Aerial shot of river through trees in the Amazon
Trees account for around 50% of the total Amazon basin methane emissions.
Shutterstock

Treethane emissions most likely account for some of the large uncertainties within the most recent global methane budget, which tries to determine where all the methane in the atmosphere comes from. But we’re still a long way from refining an answer to this question. Currently, trees are not yet included as a distinct emissions category.

So where exactly is the treethane coming from?

Within wetland forests, scientists assumed most treethane emissions originate from the underlying soils. The methane is transported upwards via the tree roots and stems, then through to the atmosphere via their bark.

We confirmed, in other recent research, that wetland soils were indeed the source of methane emissions in lowland forest trees. But this wasn’t always the case.

Some lowland forest trees such as cottonwood can emit flammable methane directly from their stems, which is likely produced by microbes living within the moist trees themselves. Dry upland forest trees are also emerging as methane emitters too — albeit at much lower rates.

Paperbark trees surround a body of water
Paperbark forest in a wetland, where bark-dwelling methane-eating microbes were discovered.
Luke Jeffrey, Author provided

Discovering methane-eating bacteria

For our latest research, we used microbiological extraction techniques to sample the diverse microbial communities that live within trees.

We discovered the bark of paperbark trees provide a unique home for methane-oxidizing bacteria — bacteria that “consumes” methane and turns it into carbon dioxide, a far less potent greenhouse gas.

Remarkably, these bacteria made up to 25% of total microbial communities living in the bark, and were consuming around 36% of the tree’s methane. It appears these microbes make an easy living in the dark, moist and methane-rich environments.




Read more:
Emissions of methane – a greenhouse gas far more potent than carbon dioxide – are rising dangerously


This discovery will revolutionise the way in which we view methane emitting trees and the novel microbes living within them.

Only through understanding why, how, which, when and where trees emit the most methane, may we more effectively plant forests that effectively draw down carbon dioxide while avoiding unwanted methane emissions.

Author sampling microbes from paperbark tree
Microbe sampling techniques have advanced within the last few decades, allowing us to understand the diverse microbial communities living within trees.
Luke Jeffrey, Author provided

Our discovery that bark-dwelling microbes can mitigate substantial treethane emissions complicates this equation, but provides some reassurance that microbiomes have evolved within trees to consume methane as well.

Future work will undoubtedly look further afield, exploring the microbial communities of other methane-emitting forests.

A trillion trees to combat climate change

We must be clear: trees are in no way shape or form bad for our climate and provide a swath of other priceless ecosystem benefits. And the amount of methane emitted from trees is generally dwarfed by the amount of carbon dioxide they will take in over their lifetime.

However, there are currently 3.04 trillion trees on Earth. With both upland and lowland forests capable of emitting methane, mere trace amounts of methane on a global scale may amount to a substantial methane source.

As we now have a global movement aiming to reforest large swaths of the Earth with 1 trillion trees, knowledge surrounding methane emitting trees is critical.




Read more:
Half of global methane emissions come from aquatic ecosystems – much of this is human-made


The Conversation


Luke Jeffrey, Postdoctoral Research Fellow, Southern Cross University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Half of global methane emissions come from aquatic ecosystems – much of this is human-made


Shutterstock

Judith Rosentreter, Yale University; Alberto Borges, Université de Liège; Ben Poulter, NASA, and Bradley Eyre, Southern Cross UniversityMethane — a greenhouse gas far more potent than carbon dioxide — plays a major role in controlling the Earth’s climate. But methane concentrations in the atmosphere today are 150% higher than before the industrial revolution.

In our paper published today in Nature Geoscience, we show as much as half of global methane emissions come from aquatic ecosystems. This includes natural, human-created and human-impacted aquatic ecosystems — from flooded rice paddies and aquaculture ponds to wetlands, lakes and salt marshes.

Our findings are significant. Scientists had previously underestimated this global methane contribution due to underaccounting human-created and human-impacted aquatic ecosystems.

It’s critical we use this new information to stop rising methane concentrations derailing our attempts to stabilise the Earth’s temperature.

From underwater sediment to the atmosphere

Most of the methane emitted from aquatic ecosystems is produced by micro-organisms living in deep, oxygen-free sediments. These tiny organisms break down organic matter such as dead algae in a process called “methanogenesis”.

Flooded rice paddies
Rice farming releases more methane per year than the entire open ocean.
Shutterstock

This releases methane to the water, where some is consumed by other types of micro-organisms. Some of it also reaches the atmosphere.

Natural systems have always released methane (known as “background” methane). And freshwater ecosystems, such as lakes and wetlands, naturally release more methane than coastal and ocean environments.

Human-made or human-impacted aquatic ecosystems, on the other hand, increase the amount of organic matter available to produce methane, which causes emissions to rise.




Read more:
Emissions of methane – a greenhouse gas far more potent than carbon dioxide – are rising dangerously


Significant global contribution

Between 2000 and 2006, global methane emissions stabilised, and scientists are still unsure why. Emissions began steadily rising again in 2007.

There’s active debate in the scientific community about how much of the renewed increase is caused by emissions or by a decline of “methane sinks” (when methane is eliminated, such as from bacteria in soil, or from chemical reactions in the atmosphere).

We looked at inland, coastal and oceanic ecosystems around the world. While we cannot resolve the debate about what causes the renewed increase of atmospheric methane, we found the combined emissions of natural, impacted and human-made aquatic ecosystems are highly variable, but may contribute 41% to 53% of total methane emissions globally.




Read more:
Feeding cows a few ounces of seaweed daily could sharply reduce their contribution to climate change


In fact, these combined emissions are a larger source of methane than direct anthropogenic methane sources, such as cows, landfill and waste, and coal mining. This knowledge is important because it can help inform new monitoring and measurements to distinguish where and how methane emissions are produced.

Water is a big part of much of our landscape, from mountain rivers to the coastal ocean. This aerial image shows Himalaya rivers, wetlands, lakes and ponds, and the world’s largest mangrove forest (the Sundarbans) at the coast of the tropical Bay of Bengal.
George Allen, Author provided

The alarming human impact

There is an increasing pressure from humans on aquatic ecosystems. This includes increased nutrients (like fertilisers) getting dumped into rivers and lakes, and farm dam building as the climate dries in many places.

In general, we found methane emissions from impacted, polluted and human-made aquatic ecosystems are higher than from more natural sites.

For example, fertiliser runoff from agriculture creates nutrient-rich lakes and reservoirs, which releases more methane than nutrient-poor (oligotrophic) lakes and reservoirs. Similarly, rivers polluted with nutrients also have increased methane emissions.

An aquaculture farm
Coastal aquaculture farms emit up to 430 times more methane per area than coastal habitats.
Shutterstock

What’s particularly alarming is the strong methane release from rice cultivation, reservoirs and aquaculture farms.

Globally, rice cultivation releases more methane per year than all coastal wetlands, the continental shelf and open ocean together.

The fluxes in methane emissions per area of coastal aquaculture farms are 7-430 times higher than from coastal habitats such as mangrove forests, salt marshes or seagrasses. And highly disturbed mangroves and salt marsh sites have significantly higher methane fluxes than more natural sites.

So how do we reduce methane emissions?

For aquatic ecosystems, we can effectively reduce methane emissions and help mitigate climate change with the right land use and management choices.

For example, managing aquaculture farms and rice paddies so they alternate between wet and dry conditions can reduce methane emissions.




Read more:
Climate explained: methane is short-lived in the atmosphere but leaves long-term damage


Restoring salt marsh and mangrove habitats and the flow of seawater from tides is another promising strategy to further reduce methane emissions from degraded coastal wetlands.

We should also reduce the amount of nutrients coming from fertilisers washing into freshwater wetlands, lakes, reservoirs and rivers as it leads to organic matter production, such as toxic algal blooms. This will help curtail methane emissions from inland waters.

These actions will be most effective if we apply them in the aquatic ecosystems that have the greatest contribution of aquatic methane: freshwater wetlands, lakes, reservoirs, rice paddies and aquaculture farms.

This will be no small effort, and will require knowledge across many disciplines. But with the right choices we can create conditions that bring methane fluxes down while also preserving ecosystems and biodiversity.The Conversation

Judith Rosentreter, Postdoctoral Research Fellow, Yale University; Alberto Borges, Research Director FRS-FNRS, Associate Professor at ULiège, Université de Liège; Ben Poulter, Research scientist, NASA, and Bradley Eyre, Professor of Biogeochemistry, Director of the Centre for Coastal Biogeochemistry, Southern Cross University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Climate explained: rising carbon emissions (probably) won’t make the Earth uninhabitable


Shutterstock/Jurik Peter

Laura Revell, University of Canterbury


CC BY-ND

Climate Explained is a collaboration between The Conversation, Stuff and the New Zealand Science Media Centre to answer your questions about climate change.

If you have a question you’d like an expert to answer, please send it to climate.change@stuff.co.nz


Even with all humanity’s carbon emissions to date, there’s a lot less carbon dioxide in Earth’s atmosphere than Venus, and Earth is further away from the Sun. But if carbon emissions continue at the current rate, is there any risk of reaching a tipping point at which a runaway greenhouse effect takes over, making Earth uninhabitable for any form of life?

When sunlight enters the Earth’s atmosphere, some is reflected back to space by clouds, some is reflected by bright surfaces such as ice and snow and some is absorbed by the land surface and ocean.

To maintain a balance, the Earth emits energy back to space in the form of infrared, or longwave, radiation. Some longwave radiation is absorbed in the atmosphere by heat-trapping gases, such as carbon dioxide.

This is the well-known greenhouse effect.




Read more:
Climate Explained: what Earth would be like if we hadn’t pumped greenhouse gases into the atmosphere


As is already well established, concentrations of carbon dioxide have increased over the past 250 years, causing the average surface temperature to increase.

One consequence of increasing atmospheric carbon dioxide concentrations is that, as the atmosphere warms, it can contain more water vapour. Since water vapour is itself a greenhouse gas, this can create an amplifying effect.

In general, as surface temperature increases, the Earth emits more longwave radiation to space to maintain the energy balance. But there is a limit to how much longwave radiation can be emitted.

If the atmosphere becomes completely saturated with water vapour, the Earth’s surface and lower atmosphere warm up, but further increases in emission of longwave radiation are not possible.

The runaway greenhouse

This is termed a runaway greenhouse and would mean the Earth would become lethally hot and unable to cool itself by emitting heat to space.

Ultimately, this is the fate of the Earth. In billions of years from now the Sun will become brighter and grow into a Red Dwarf. As the Sun’s luminosity increases, the Earth will become hotter and its oceans will evaporate.

We’re doomed … but not for billions of years.

The hot and steamy atmosphere will ensure the Earth is just as uninhabitable to current life-forms as Venus is today.

But could we bring such a situation about on a shorter timeframe through continued carbon dioxide emissions? The good news is, probably not.

We’re safe, for now

Previous research has found that, due to differences in the properties of water vapour and carbon dioxide as greenhouse gases, adding carbon dioxide to the atmosphere is likely insufficient to trigger a runaway greenhouse.

Atmospheric carbon dioxide is currently around 416 parts per million (ppm) – up from approximately 280 ppm since the first industrial revolution began, some 250 years ago.

In geological terms, this is a very large increase to take place over a short period of time. Yet human emissions of carbon dioxide are considered insufficient to trigger a runaway greenhouse, given the fossil fuel reserves available.

The Earth should be safe from a runaway greenhouse developing for at least another 1.5 billion years.

But then …

The caveat to all the above is that the models scientists use to study future climate are built based on past, known conditions. It is therefore difficult to predict how certain parts of the climate system might operate under extremely high greenhouse gas emissions scenarios.

Clouds hiding the Sun but with rays of light emerging from behind top.
Clouds can reflect sunlight back to space.
Flickr/scheendijk, CC BY

For example, clouds can reflect sunlight back to space, or they can trap heat emitted by the Earth. In a warming world, scientists are still unclear on the role clouds will play.




Read more:
Expect the new normal for NZ’s temperature to get warmer


While a runaway greenhouse would make Earth completely uninhabitable to life as we know it, the losses that may accrue from just a few degrees Celsius of global warming are serious and must not be discounted.

Sea level rise, increased frequency and intensity of extreme weather events, threats to endangered species and unique ecosystems are just a few of the many reasons we have to be concerned.

The silver lining is we (probably) don’t need to worry about becoming like our neighbour Venus any time soon.The Conversation

We’re not heading this way just yet.

Laura Revell, Senior Lecturer in Environmental Physics, University of Canterbury

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Electricity has become a jigsaw. Coal is unable to provide the missing pieces



Bohbeh/Shutterstock

Peter Martin, Crawford School of Public Policy, Australian National University

There’s something the energy minister said when they announced the early closure of Victoria’s second-biggest coal-fired power station last week that was less than complete.

Yallourn, in the Latrobe Valley, provides up to 20% of Victoria’s power. It has been operating for 47 years. Since late 2017 at least one of its four units has broken down 50 times. Its workforce doubles for three to four months most years to deal with the breakdowns. It pumps out 3% of Australia’s carbon emissions.

On Wednesday Energy Australia gave seven years notice of its intention to close it in mid-2028, four years earlier than previously announced, a possibility for which regulators had been preparing.

In what might have been a rhetorical flourish, Energy Minister Angus Taylor warned of “price spikes every night when the sun goes down”.

Then he drew attention to what had happened when two other coal-fired power stations closed down — Victoria’s Hazelwood and South Australia’s Northern (South Australia’s last-remaining coal-fired generator).

He said “wholesale prices skyrocketed by 85%”.

And there he finished, without going on to detail what really mattered. South Australia and Victoria now have the lowest wholesale power prices in the National Electricity Market — that’s right, the lowest.

Coal-fired plants close, then prices fall

Before Northern closed, South Australia had Australia’s highest price.

Five years after the closure of Northern in 2016, and four years after the closure of Hazelwood in 2017, South Australia and Victorian have wholesale prices one-third lower than those in NSW and two-fifths lower than those in Queensland.

Something happened after the closure (largely as a result of the closure) that forced prices down.

South Australia became a renewables powerhouse.

South Australian wind projects congregate around power lines.
AEMO

The Australian National University’s Hugh Saddler points out that renewable-sourced power — wind and grid solar — now accounts for 62% of power supplied to the South Australian grid, and at times for all of it.

Much of it is produced near Port Augusta, where the Northern and Playford coal-fired power stations used to be, because that’s where the transmission lines begin.

Being even cheaper than the power produced by the old brown-coal-fired power stations, there is at times so much it that it sends prices negative, meaning generators get paid to turn off in order to avoid putting more power into the system than users can take out.

It’s one of the reasons coal-fired plants are closing: they are hard to turn off. They are just as hard to turn on, and pretty hard to turn up.

Coal can’t respond quickly

There are times (when the wind doesn’t blow and there’s not much sun, such as last Friday in South Australia) when prices can get extraordinarily high.

But coal-fired plants, especially brown-coal-fired plants such as Victoria’s Hazelwood and Yallourn and Victoria’s two remaining big plants, Loy Yang A and B, are unable to quickly ramp up to take advantage of them.

Although “dispatchable” in the technical meaning of the term used by the minister, coal-fired stations can’t fill gaps quickly.




Read more:
The death of coal-fired power is inevitable — yet the government still has no plan to help its workforce


Batteries can respond instantly to a loss of power from other sources (although not for very long), hydro can respond in 30 to 70 seconds, gas peaking plants can respond within minutes.

But coal can barely move. As with nuclear power, coal-fired power needs to be either on (in which case it can only slowly ramp up) or off, in which case turning it on from a standing start would be way too slow.

What was a feature is now a bug

That’s why coal-fired generators operate 24-7, to provide so-called base-load, because they can’t really do anything else.

Snowy Hydro generators can be turned on and off at will.
Alex Ellinghausen/AAP

Brown coal generators are the least dispatchable. Brown coal is about 60% water. To make it ignite and keep boiling off the water takes sustained ultra-high temperatures. Units at Yallourn have to keep burning coal at high output (however low or negative the prices) or turn off.

In the days when the other sources of power could be turned on and off at will, this wasn’t so much of a problem.

Hydro or gas could be turned on in the morning when we turned on our lights and heaters and factories got down to business, and coal-fired power could be slowly ramped up.

At night, when there was less demand for coal-fired power, some could be created by offering cheap off-peak water heating.

But those days are gone. Nationwide, wind and solar including rooftop solar supplies 20% of our needs. It turns on and off at will.

Wind often blows strongly at night. What was a feature of coal — its ability to provide steady power rather than fill gaps – has become a bug.

Gas and batteries can fill gaps coal can’t

It’s as if our power system has become a jigsaw with the immovable pieces provided by the wind and the sun. It’s our job to fill in the gaps.

To some extent, as the prime minister says, gas will be a transition fuel, able to fill gaps in a way that coal cannot. But gas has become expensive, and batteries are being installed everywhere.

Energy Australia plans to replace its Yallourn power station with Australia’s first four-hour utility-scale battery with a capacity of 350 megawatts, more than any battery operating in the world today. South Australia is planning an even bigger one, up to 900 megawatts.




Read more:
Huge ‘battery warehouses’ could be the energy stores of the future


Australia’s Future Fund and AGL Energy are investing $2.7 billion in wind farms in NSW and Queensland which will fill gaps in a different way — their output peaks at different times to wind farms in South Australia and Victoria.

Filling the gaps won’t be easy, and had we not gone down this road there might still have been a role for coal, but the further we go down it the less coal can help.

As cheap as coal-fired power is, it is being forced out of the system by sources of power that are cheaper and more dispatchable. We can’t turn back.The Conversation

Peter Martin, Visiting Fellow, Crawford School of Public Policy, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.