The Paris Agreement 5 years on: big coal exporters like Australia face a reckoning



Shutterstock

Jeremy Moss, UNSW

On Saturday, more than 70 global leaders came together at the UN’s Climate Ambition Summit, marking the fifth anniversary of the Paris Agreement.

Prime Minister Scott Morrison was denied a speaking slot, in recognition of Australia’s failure to set meaningful climate commitments. Meanwhile, the European Union and the UK committed to reduce domestic emissions by 55% and 68% respectively by 2030.

As welcome as these new commitments are, the Paris Agreement desperately needs to be updated. Since it was passed, the production and supply of fossil fuels for export has continued unabated. And the big exporters — such as Norway, Canada, the US, Russia, Saudi Arabia and of course Australia — take no responsibility for the emissions created when those fossil fuels are burned overseas.

It’s time this changed. Australia is the world’s biggest coal exporter. And in 2019, emissions from fossil fuels exported by this nation, as well as the US, Norway and Canada, accounted for more than 10% of total world emissions, according to calculations from a research project on Australia’s carbon budget at the University of NSW, which I run. Exporting nations are not legally responsible for these offshore emissions, but their actions are clearly at odds with the climate emergency.

Business as usual

A 2019 UN report notes governments are planning to extract 50% more fossil fuels than is consistent with meeting a 2℃ target and an alarming 120% more than a 1.5℃ target, by 2030. Coal is the main contributor to this supply overshoot.

UN Secretary-General António Guterres urged all leaders to declare a climate emergency.

But rather than reducing their production of fossil fuels, many countries are doubling down and actually increasing supply. For example, in Australia, government figures show the greenhouse gas emissions from Australia’s exported fossil fuels increased by 4.4% between 2018 to 2019.

Australia is the world’s largest coal exporter and approved three new fossil fuel projects in recent months: the Vickery coal mine extension, Olive Downs and the Narrabri Gas Project

This is a worldwide trend. Let’s take Norway as another example. Norway gets the bulk of its electricity from hydropower and has partially divested its Government Pension Fund from some fossil fuels. Yet it’s also one of the largest exporters of greenhouse gases through its gas exports, behind Qatar and Russia.




Read more:
3 reasons meeting climate targets and dumping Kyoto credits won’t salvage Australia’s international reputation


The situation is mirrored in the corporate world. Many large fossil fuel companies are trumpeting their emissions reductions targets while continuing to push for new fossil fuel mining projects. BHP, one of the world’s biggest miners, stated it is reducing its emissions, yet in October the company increased its stake in an oil field in the Gulf of Mexico.

Responsibility doesn’t stop at the border

What underpins this situation is an outdated “territorial” model of responsibility for climate harms. Governments and companies seem to think responsibility stops at the border, not with the overall livability of the global climate. Once the coal, oil and gas products are loaded onto ships, they are no longer our problem.

Unfortunately, the accounting rules of the United Nations, under the Paris Agreement, currently allow exporters to pass on responsibility for fossil fuel emissions.

We must move from this territorial model of responsibility to one that considers the whole chain of responsibility for climate harms.

So what should Australia, Canada, the US, Norway and other exporting countries do to address the over-supply of fossil fuels?

First, they need to acknowledge their responsibility, at least in part, for the emissions and associated harms caused by their exports. Allowing compensation and funding for mitigation to track the role played in the causal chain better attributes responsibility and places mitigation burdens back on the exporting countries.




Read more:
Global emissions are down by an unprecedented 7% — but don’t start celebrating just yet


Future climate negotiations, such as in Glasgow in 2021 (COP26), need to adjust the scope of their targets to include robust reductions in the supply of fossil fuels in the next round of agreements.

Instead of just focusing on reducing demand, the process needs to function as a kind of “reverse OPEC” (the Organisation of the Petroleum Exporting Countries), where exporting countries are given ambitious phase-out targets for their fossil fuel exports.

Drastic emissions cuts needed

The 2020 Production Gap report notes global fossil fuel production will have to decrease by 6% a year between 2020-30 to meet a 1.5℃ target.

For Australia, this must mean we include the reduction in “exported emissions” as part of any net-zero target. Australia’s exported emissions are double our domestic emissions – a situation that cannot continue.

Top of the list of what’s needed, is the phasing out of generous subsidies for fossil fuel producers. The billions of dollars currently spent annually in Australia on subsidising and encouraging fossil fuel exports are simply not compatible with the aims and spirit of the Paris Agreement.




Read more:
Matt Canavan says Australia doesn’t subsidise the fossil fuel industry, an expert says it does


Phasing out the supply of fossil fuels also needs to occur in a way that doesn’t just pay the current big suppliers to stop. Governments implementing a transition ought to think very carefully about how to fairly deploy scarce resources to ensure a just transition.

Last but not least, governments need to accept that the strong influence fossil fuel corporations wield over the political process is hindering global efforts to address climate change. The donations , rotation of industry staff to government positions and influence of fossil fuel lobby groups cannot lead to good decisions for the climate.

Placing a ban on such influence, particularly at future climate negotiations, would go a long way towards addressing the undue influence of the fossil fuel industry.

Until the fossil fuel export industry is subject to demanding targets, and made to accept responsibility for the emissions associated with their products, Earth will continue on its highly dangerous global warming trajectory.The Conversation

Jeremy Moss, Professor of Political Philosophy, UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Global emissions are down by an unprecedented 7% — but don’t start celebrating just yet



Shutterstock

Pep Canadell, CSIRO; Corinne Le Quéré, University of East Anglia; Glen Peters, Center for International Climate and Environment Research – Oslo; Matthew William Jones, University of East Anglia; Philippe Ciais, Commissariat à l’énergie atomique et aux énergies alternatives (CEA); Pierre Friedlingstein, University of Exeter; Robbie Andrew, Center for International Climate and Environment Research – Oslo, and Rob Jackson, Stanford University

Global emissions are expected to decline by about 7% in 2020 (or 2.4 billion tonnes of carbon dioxide) compared to 2019 — an unprecedented drop due to the slowdown in economic activity associated with the COVID-19 pandemic.

To put this into perspective, the Global Financial Crisis in 2008 saw a 1.5% drop in global emissions compared to 2007. This year’s emissions decline is more than four times larger.

These are the findings we show in the 15th global carbon budget, an annual report card of the Global Carbon Project on the sources and removals of carbon dioxide, the primary driver of human caused climate change.

It may sound like welcome news, but we can’t celebrate yet. A rapid bounce back of emissions to pre-COVID levels is likely, possibly by as soon as next year. A recent study found emissions in China snapped back to above last year’s levels during late spring when economic activity began to return to normal.

These findings come ahead of the Climate Ambition Summit on Saturday, where global leaders will demonstrate their commitments to climate action five years since the Paris Agreement. This huge drop in emissions should be taken as a unique opportunity to divert the historical course of emissions growth for good.

Emissions in the pandemic year

The total global fossil carbon dioxide emissions for 2020 are estimated to be 34 billion tonnes of carbon dioxide.

Estimated emissions at the beginning of December are lower than their levels in December last year, at least in the transport sectors. However, emissions have been edging back up since the peak global daily decline of 17% in early April.




Read more:
The world endured 2 extra heatwave days per decade since 1950 – but the worst is yet to come


The decline in emissions in 2020 was particularly steep in the United States (12%) and European Union (11%), where emissions were already declining before the pandemic, mainly from reductions in coal use.

Emissions from India dropped by 9%, while emissions from China, which have returned to close or above 2019 values, saw an estimated drop of only about 1.7%.

Australian greenhouse gas emissions during the peak of the pandemic lockdown (the quarter of March to June 2020) were lower by 6.2% compared to the previous quarter. The largest declines were seen in transport and fugitive emissions (emissions released during the extraction, processing and transport of fossil fuels).

A chart showing the emissions decline for China, US, India, EU, and the rest of the world.
The 2020 emission decline was particularly steep in the United States and European Union. While China’s emissions also dropped steeply, they snapped back later in the year.
Pep Canadell, Author provided

Globally, the transport sector also contributed the most to the 2020 emissions drop, particularly “surface transport” (cars, vans and trucks). At the peak of the pandemic lockdowns, the usual levels of transport emissions were halved in many countries, such as in the US and Europe.

While aviation activity collapsed by 75%, its contribution to the total decline was relatively small given the sector only accounts for about 2.8% of the total emissions on an average year. The number of global flights was still down 45% as of the first week of December.

A chart showing the emissions decline for different sectors.
The industry sector, specifically metals production, chemicals and manufacturing, was the second largest contributor in emissions declines.
Pep Canadell, Author provided

Global emissions were already slowing down pre-COVID

Overall, global emissions have increased by 61% since 1990. But the pace of this growth has varied.

In the early 1990s, the growth in emissions slowed down due to the collapse of the former Soviet Union, but then increased very quickly during the 2000s, by 3% per year on average. This was, in part, due to the rise of China as an economic power.




Read more:
South Korea’s Green New Deal shows the world what a smart economic recovery looks like


Over the last decade, however, the pace of emissions began to slow again, with an increase just below 1% per year. And emissions in 2019 didn’t grow much, if at all, when compared to 2018.

Behind the global slowing trend, there are 24 countries that had carbon dioxide fossil emissions declining for at least one decade while their economy continued to grow. They include many European countries such as the Denmark, the UK and Spain, and the USA, Mexico and Japan. For the rest of the world, emissions continued to grow until 2019.

This chart shows how global fossil carbon dioxide emissions have increased.
This chart shows how global fossil carbon dioxide emissions have increased since the 1990s. Note the drops in the early 1990s, in 2008, and the huge drop in 2020.
Pep Canadell, Author provided

An opportunity to boost ambition

The pandemic, along with other recent trends such as the shift towards clean energy, have placed us at a crossroad: the choices we make today can change the course of global emissions.

In addition to the slow down in global emissions in recent years, and this year’s drop, there are now dozens of countries that have pledged to reach net zero emissions by mid century or soon after.

How the emissions of different countries have changed over time.

Importantly, the first (China), second (USA), third (European Union), sixth (Japan) and ninth (South Korea) top emitters — together responsible for over 60% of the global fossil carbon dioxide emissions — have either legally binding pledges or serious ambitions to reach net zero emissions by 2050 or soon after.




Read more:
China just stunned the world with its step-up on climate action – and the implications for Australia may be huge


Coal production, the largest fossil fuel source of carbon dioxide emissions, peaked in 2013. Its decline continues to this date; however, increasing natural gas and oil negate much of this decline in emissions.

How the emissions from coal, oil, gas, and cement sectors changed over time.
How the emissions from coal, oil, gas, and cement sectors changed over time.
Pep Canadell, Author provided

We are in the midst of extraordinary levels of economic investment in response to the pandemic. If economic investment is appropriately directed, it could enable the rapid expansion of technologies and services to put us on track towards net zero emissions.

Many countries have already committed to green recovery plans, such as South Korea and the EU, although investments continue to be dominated by the support of fossil-based infrastructure.

As global leaders prepare for tomorrow’s summit, they have an opportunity like never before. The choices we make now can have a disproportionate impact on the future trajectory of emissions, and keep temperature rise well and truly below 2℃.




Read more:
Coronavirus is a ‘sliding doors’ moment. What we do now could change Earth’s trajectory


The Conversation


Pep Canadell, Chief research scientist, Climate Science Centre, CSIRO Oceans and Atmosphere; and Executive Director, Global Carbon Project, CSIRO; Corinne Le Quéré, Royal Society Research Professor, University of East Anglia; Glen Peters, Research Director, Center for International Climate and Environment Research – Oslo; Matthew William Jones, Senior Research Associate, University of East Anglia; Philippe Ciais, Directeur de recherche au Laboratoire des science du climat et de l’environnement, Institut Pierre-Simon Laplace, Commissariat à l’énergie atomique et aux énergies alternatives (CEA); Pierre Friedlingstein, Chair, Mathematical Modelling of Climate, University of Exeter; Robbie Andrew, Senior Researcher, Center for International Climate and Environment Research – Oslo, and Rob Jackson, Professor, Department of Earth System Science, and Chair of the Global Carbon Project, Stanford University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Emissions projections indicate Australia won’t need carryover credits to meet Paris targets


Michelle Grattan, University of Canberra

Australia is on track to meet its 2030 Paris climate targets without resorting to carryover credits and could exceed them with the aid of the recently-announced technology roadmap, according to projections to be released on Thursday.

Australia has pledged to reduce emissions by 26-28% on 2005 levels by 2030.

The annual update of emissions projections shows that to meet the 26% cut, without using carryover credits, a further reduction of 56 million tonnes would be needed over the decade to 2030.

image.
Author provided

To reach the higher target of a 28% cut without the credits, a reduction of 123 million tonnes would be required over the decade.

Neither of these scenarios includes the technology investment roadmap – which is the government’s policy to support new and emerging energy technologies to a price that is comparable with higher emitting alternatives.

The Minister for Emissions Reduction, Angus Taylor, said if the roadmap was taken into account, “Australia is projected to beat its 2030 target by 145 million tonnes”.

This would be without relying on the credits which have been gained from exceeding earlier targets.

“Under this scenario, Australia’s emissions are projected to be 29% below 2005 levels by 2030,” Taylor said.

Scott Morrison has flagged the government won’t use the carryovers if they are not necessary to meet Australia’s commitments.

He is set to confirm this when he addresses a Pacific Islands Forum virtual climate summit on Friday. This precedes the Climate Ambition Summit hosted by Britain, France and the United Nations at the weekend to mark the fifth anniversary of the Paris accord.

The Pacific summit is aimed at putting pressure on the weekend meeting, which is being called “the sprint to Glasgow”, the delayed climate conference to be held in a year’s time.

There has been argy bargy over whether Morrison could get a speaking role at the weekend meeting, where leaders are being asked to make new commitments. As of Wednesday, he was not expected to be a speaker.

The update in the Australia’s emissions projections 2020 report shows Australia’s position against the 2030 target has improved by more than 300 million tonnes since the 2019 projections, and by 639 million tonnes since 2018.

The improvement since 2018 is equivalent to taking all of the country’s passenger vehicles off the road for 15 years.

Emissions are projected to decline to 478 million tonnes in 2030 which is 22% below 2005 levels. Incorporating the technology investment roadmap, emissions are forecast to be 436 million tonnes in 2030 – 29% below 2005 levels.

image.

The update says the downward revision in the 2020 projections reflects:

  • the inclusion of new measures to speed up the development and deployment of low emissions technologies in the recent budget

  • a further reduction in projected emissions from the electricity sector due to continued strong uptake of renewables – especially small and mid-scale solar – by households and businesses; and

  • the temporary effect of COVID-related restrictions on the economy.The Conversation

Michelle Grattan, Professorial Fellow, University of Canberra

This article is republished from The Conversation under a Creative Commons license. Read the original article.

New research: nitrous oxide emissions 300 times more powerful than CO₂ are jeopardising Earth’s future



Shutterstock

Pep Canadell, CSIRO; Eric Davidson, University of Maryland, Baltimore; Glen Peters, Center for International Climate and Environment Research – Oslo; Hanqin Tian, Auburn University; Michael Prather, University of California, Irvine; Paul Krummel, CSIRO; Rob Jackson, Stanford University; Rona Thompson, Norwegian Institute for Air Research, and Wilfried Winiwarter, International Institute for Applied Systems Analysis (IIASA)

Nitrous oxide from agriculture and other sources is accumulating in the atmosphere so quickly it puts Earth on track for a dangerous 3℃ warming this century, our new research has found.

Each year, more than 100 million tonnes of nitrogen are spread on crops in the form of synthetic fertiliser. The same amount again is put onto pastures and crops in manure from livestock.

This colossal amount of nitrogen makes crops and pastures grow more abundantly. But it also releases nitrous oxide (N₂O), a greenhouse gas.

Agriculture is the main cause of the increasing concentrations, and is likely to remain so this century. N₂O emissions from agriculture and industry can be reduced, and we must take urgent action if we hope to stabilise Earth’s climate.

2000 years of atmospheric nitrous oxide concentrations. Observations taken from ice cores and atmosphere. Source: BoM/CSIRO/AAD.

Where does nitrous oxide come from?

We found that N₂O emissions from natural sources, such as soils and oceans, have not changed much in recent decades. But emissions from human sources have increased rapidly.

Atmospheric concentrations of N₂O reached 331 parts per billion in 2018, 22% above levels around the year 1750, before the industrial era began.

Agriculture caused almost 70% of global N₂O emissions in the decade to 2016. The emissions are created through microbial processes in soils. The use of nitrogen in synthetic fertilisers and manure is a key driver of this process.

Other human sources of N₂O include the chemical industry, waste water and the burning of fossil fuels.




Read more:
Intensive farming is eating up the Australian continent – but there’s another way


N₂O is destroyed in the upper atmosphere, primarily by solar radiation. But humans are emitting N₂O faster than it’s being destroyed, so it’s accumulating in the atmosphere.

N₂O both depletes the ozone layer and contributes to global warming.

As a greenhouse gas, N₂O has 300 times the warming potential of carbon dioxide (CO₂) and stays in the atmosphere for an average 116 years. It’s the third most important greenhouse gas after CO₂ (which lasts up to thousands of years in the atmosphere) and methane.

N₂O depletes the ozone layer when it interacts with ozone gas in the stratosphere. Other ozone-depleting substances, such as chemicals containing chlorine and bromine, have been banned under the United Nations Montreal Protocol. N₂O is not banned under the protocol, although the Paris Agreement seeks to reduce its concentrations.

A farmer emptying fertiliser into machinery
Reducing fertiliser use on farms is critical to reducing N₂O emissions.
Shutterstock

What we found

The Intergovernmental Panel on Climate Change has developed scenarios for the future, outlining the different pathways the world could take on emission reduction by 2100. Our research found N₂O concentrations have begun to exceed the levels predicted across all scenarios.

The current concentrations are in line with a global average temperature increase of well above 3℃ this century.

We found that global human-caused N₂O emissions have grown by 30% over the past three decades. Emissions from agriculture mostly came from synthetic nitrogen fertiliser used in East Asia, Europe, South Asia and North America. Emissions from Africa and South America are dominated by emissions from livestock manure.

In terms of emissions growth, the highest contributions come from emerging economies – particularly Brazil, China, and India – where crop production and livestock numbers have increased rapidly in recent decades.

N₂O emissions from Australia have been stable over the past decade. Increase in emissions from agriculture and waste have been offset by a decline in emissions from industry and fossil fuels.

Regional changes in N₂O emissions from human activities, from 1980 to 2016, in million tons of nitrogen per year. Data from: Tian et al. 2020, Nature. Source: Global Carbon Project & International Nitrogen Initiative.

What to do?

N₂O must be part of efforts to reduce greenhouse gas emissions, and there is already work being done. Since the late 1990s, for example, efforts to reduce emissions from the chemicals industry have been successful, particularly in the production of nylon, in the United States, Europe and Japan.

Reducing emissions from agriculture is more difficult – food production must be maintained and there is no simple alternative to nitrogen fertilisers. But some options do exist.




Read more:
Emissions of methane – a greenhouse gas far more potent than carbon dioxide – are rising dangerously


In Europe over the past two decades, N₂O emissions have fallen as agricultural productivity increased. This was largely achieved through government policies to reduce pollution in waterways and drinking water, which encouraged more efficient fertiliser use.

Other ways to reduce N₂O emissions from agriculture include:

  • better management of animal manure

  • applying fertiliser in a way that better matches the needs of growing plants

  • alternating crops to include those that produce their own nitrogen, such as legumes, to reduce the need for fertiliser

  • enhanced efficiency fertilisers that lower N₂O production.

Global nitrous oxide budget 2007-16. Adopted from Tian et al. 2020. Nature. Source: Global Carbon Project & International Nitrogen Initiative.

Getting to net-zero emissions

Stopping the overuse of nitrogen fertilisers is not just good for the climate. It can also reduce water pollution and increase farm profitability.

Even with the right agricultural policies and actions, synthetic and manure fertilisers will be needed. To bring the sector to net-zero greenhouse gas emissions, as needed to stabilise the climate, new technologies will be required.




Read more:
Earth may temporarily pass dangerous 1.5℃ warming limit by 2024, major new report says


The Conversation


Pep Canadell, Chief research scientist, Climate Science Centre, CSIRO Oceans and Atmosphere; and Executive Director, Global Carbon Project, CSIRO; Eric Davidson, Director, Appalachian Laboratory and Professor, University of Maryland, Baltimore; Glen Peters, Research Director, Center for International Climate and Environment Research – Oslo; Hanqin Tian, Director, International Center for Climate and Global Change Research, Auburn University; Michael Prather, Distinguished Professor of Earth System Science, University of California, Irvine; Paul Krummel, Research Group Leader, CSIRO; Rob Jackson, Professor, Department of Earth System Science, and Chair of the Global Carbon Project, Stanford University; Rona Thompson, Senior scientist, Norwegian Institute for Air Research, and Wilfried Winiwarter, , International Institute for Applied Systems Analysis (IIASA)

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Climate explained: does building and expanding motorways really reduce congestion and emissions?



Oleg Podchashynskyi/Shutterstock

Simon Kingham, University of Canterbury


CC BY-ND

Climate Explained is a collaboration between The Conversation, Stuff and the New Zealand Science Media Centre to answer your questions about climate change.

If you have a question you’d like an expert to answer, please send it to climate.change@stuff.co.nz


Q: Does building and expanding motorways really reduce congestion and emissions, or does it increase it?

Historically, building more and wider roads, including motorways, was seen as a way of reducing congestion. This in turn is supposed to lower emissions.

The new motorways of the future.

Fuel efficiency is optimised for driving at around 80kmh and it decreases the faster you go above that. But with speed limits up to 110kmh, people are likely to drive above 80kmh on motorways — and this means building and expanding motorways will actually increase emissions.

Many countries, especially in Europe, are now looking to lower speed limits partly to reduce emissions.




Read more:
Remove car lanes, restrict vehicles and improve transit to reduce traffic congestion


In addition to speeding, rapid acceleration and braking can lower mileage by 15-30% at highway speeds and 10-40% in stop-and-go traffic. If building or expanding motorways did reduce congestion, the smoother driving would be a benefit.

But this assumption is not backed by evidence. Research shows even on roads with no impediments drivers brake and accelerate unnecessarily, increasing congestion and emissions.

One of the arguments for future autonomous vehicles is that such braking and accelerating should not occur and emissions should reduce.

New roads, new drivers

The most significant impact new and expanded motorways have on congestion and emissions is the effect on the distance people travel.

Historically, engineers assumed cars (and more pertinently their drivers) would behave like water. In other words, if you had too much traffic for the road space provided, you would build a new road or expand an existing one and cars would spread themselves across the increased road space.

A traffic jam on a motorway to Auckland.
Congested traffic on a motorway into the centre of Auckland.
patjo/Shutterstock

Unfortunately, this is not what happens. New road capacity attracts new drivers. In the short term, people who had previously been discouraged from using congested roads start to use them.

In the longer term, people move further away from city centres to take advantage of new roads that allow them to travel further faster.

This is partly due to the “travel time budget” — a concept also known as Marchetti’s constant — which suggests people are prepared to spend around an hour a day commuting. Cities tend to grow to a diameter of one-hour travel time.

City sprawl

The concept is supported by evidence that cities have sprawled more as modes of transport have changed. For example, cities were small when we could only walk, but expanded along transport corridors with rail and then sprawled with the advent of cars. This all allows commuters to travel greater distances within the travel time budget.

Building or expanding roads releases latent demand — widely defined as “the increment in new vehicle traffic that would not have occurred without the improvement of the network capacity”.

This concept is not new. The first evidence of it can be found back in the 1930s. Later research in 1962 found that “on urban commuter expressways, peak-hour traffic congestion rises to meet maximum capacity”.

A considerable body of evidence is now available to confirm this. But, despite this indisputable fact, many road-improvement decisions continue to be based on the assumption that extra space will not generate new traffic.

If you build it, they will drive

A significant change occurred in 1994 when a report by the UK Advisory Committee on Trunk Road Appraisal confirmed road building actually generates more traffic.

In New Zealand, this wasn’t acknowledged until the Transport Agency’s 2010 Economic Evaluation Manual, which said:

[…] generated traffic often fills a significant portion (50–90%) of added urban roadway capacity.

Vehicle lights blur at night on a busy motorway into Auckland.
Traffic increases as motorways expand.
Shaun Jeffers/Shutterstock

Some congestion discourages people from driving (suppresses latent demand), but with no congestion traffic will fill road space over time, particularly in or near urban areas.

Interestingly, the opposite can also work. Where road space is removed, demand can be suppressed and traffic reduces without other neighbouring roads becoming overly congested.




Read more:
Climate explained: could electric car batteries feed power back into the grid?


One of the best examples of this is the closure of the Cheonggyecheon Freeway in the middle of Seoul, South Korea.

When the busy road was removed from the city, rather than the traffic moving to and congesting nearby roads, most of the traffic actually disappeared, as Professor Jeff Kenworthy from Curtin University’s Sustainable Policy Institute notes.

This suppression of latent demand works best when good alternative ways of travel are available, including high-quality public transport or separated cycle lanes.

The short answer to the question about road building and expansion is that new roads do little to reduce congestion, and they will usually result in increased emissions.The Conversation

Simon Kingham, Professor, University of Canterbury

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Astronomers create 40% more carbon emissions than the average Australian. Here’s how they can be more environmentally friendly



Shutterstock

Adam Stevens, University of Western Australia and Sabine Bellstedt, University of Western Australia

Astronomers know all too well how precious and unique the environment of our planet is. Yet the size of our carbon footprint might surprise you.

Our study, released today in Nature Astronomy, estimated the field produces 25,000 tonnes of carbon dioxide-equivalent emissions per year in Australia. With fewer than 700 active researchers nationwide (including PhD students), this translates to 37 tonnes per astronomer per year.




Read more:
Carbon footprints are hard to understand — here’s what you need to know


As a point of reference, the average Australian adult was responsible for 26 tonnes of emissions in 2019, total. That means the job of being an astronomer is 40% more carbon-intensive than the average Australian’s job and home life combined.

While we often defer to governments for climate policy, our global carbon footprint can be dramatically reduced if every industry promotes strategies to reduce their own footprint. For individual industries to make progress, they must first recognise just how much they contribute to the climate emergency.

Where do all the emissions come from?

We found 60% of astronomy’s carbon footprint comes from supercomputing. Astronomers rely on supercomputers to not only process the many terabytes of data they collect from observatories everyday, but also test their theories of how the Universe formed with simulations.

Antennas and a satellite dish in the foreground, with others in the background, in the WA desert.
Antennas of CSIRO’s ASKAP telescope at the Murchison Radio-astronomy Observatory in Western Australia.
CSIRO Science Image

Frequent flying has historically been par for the course for astronomers too, be it for conference attendance or on-site observatory visits all around the world. Prior to COVID-19, six tonnes of annual emissions from flights were attributed to the average astronomer.

An estimated five tonnes of additional emissions per astronomer are produced in powering observatories every year. Astronomical facilities tend to be remote, to escape the bright lights and radio signals from populous areas.

Some, like the Parkes radio telescope and the Anglo-Australian Telescope near Coonabarabran, are connected to the electricity grid, which is predominately powered by fossil fuels.

Others, like the Murchison Radio-astronomy Observatory in Western Australia, need to be powered by generators on site. Solar panels currently provide around 15% of the energy needs at the Murchison Radio-astronomy Observatory, but diesel is still used for the bulk of the energy demands.

Finally, the powering of office spaces accounts for three tonnes of emissions per person per year. This contribution is relatively small, but still non-negligible.

They’re doing it better in Germany

Australia has an embarrassing record of per-capita emissions. At almost four times the global average, Australia ranks in the top three OECD countries for the highest per-capita emissions. The problem at large is Australia’s archaic reliance on fossil fuels.

A study at the Max Planck Institute for Astronomy in Germany found the emissions of the average astronomer there to be less than half that in Australia.

The difference lies in the amount of renewable energy available in Germany versus Australia. The carbon emissions produced for each kilowatt-hour of electricity consumed at the German institute is less than a third pulled from the grid in Australia, on average.

The challenge astronomers in Australia face in reducing their carbon footprint is the same challenge all Australian residents face. For the country to claim any semblance of environmental sustainability, a swift and decisive transition to renewable energy is needed.

Taking emissions reduction into our own hands

A lack of coordinated action at a national level means organisations, individuals, and professions need to take emissions reduction into their own hands.

For astronomers, private arrangements for supercomputing centres, observatories, and universities to purchase dedicated wind and/or solar energy must be a top priority. Astronomers do not control the organisations that make these decisions, but we are not powerless to effect influence.




Read more:
Climate explained: what each of us can do to reduce our carbon footprint


The good news is this is already happening. A recent deal made by Swinburne University to procure 100% renewable energy means the OzSTAR supercomputer is now a “green machine”.

CSIRO expects the increasing fraction of on-site renewables at the Murchison Radio-astronomy Observatory has the potential to save 2,000 tonnes of emissions per year from diesel combustion. And most major universities in Australia have released plans to become carbon-neutral this decade.

As COVID-19 halted travel worldwide, meetings have transitioned to virtual platforms. Virtual conferences have a relatively minute carbon footprint, are cheaper, and have the potential to be more inclusive for those who lack the means to travel. Despite its challenges, COVID-19 has taught us we can dramatically reduce our flying. We must commit this lesson to memory.




Read more:
The carbon footprint of tourism revealed (it’s bigger than we thought)


And it’s encouraging to see the global community banding together. Last year, 11,000 scientists from 153 countries signed a scientific paper, warning of a global climate emergency.

As astronomers, we have now identified the significant size of our footprint, and where it comes from. Positive change is possible; the challenge simply needs to be tackled head-on.The Conversation

Adam Stevens, Research Fellow in Astrophysics, University of Western Australia and Sabine Bellstedt, Research Associate in Astronomy, University of Western Australia

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Climate explained: methane is short-lived in the atmosphere but leaves long-term damage



Shutterstock/effective stock photos

Zebedee Nicholls, University of Melbourne and Tim Baxter, University of Melbourne


CC BY-ND

Climate Explained is a collaboration between The Conversation, Stuff and the New Zealand Science Media Centre to answer your questions about climate change.

If you have a question you’d like an expert to answer, please send it to climate.change@stuff.co.nz


Methane is a shorter-lived greenhouse gas – why do we average it out over 100 years? By doing so, do we risk emitting so much in the upcoming decades that we reach climate tipping points?

The climate conversation is often dominated by talk of carbon dioxide, and rightly so. Carbon dioxide is the climate warming agent with the biggest overall impact on the heating of the planet.

But it is not the only greenhouse gas driving climate change.

Comparing apples and oranges

For the benefit of policy makers, the climate science community set up several ways to compare gases to aid with implementing, monitoring and verifying emissions reduction policies.

In almost all cases, these rely on a calculated common currency – a carbon dioxide-equivalent (CO₂-e). The most common way to determine this is by assessing the global warming potential (GWP) of the gas over time.

The simple intent of GWP calculations is to compare the climate heating effect of each greenhouse gas to that created by an equivalent amount (by mass) of carbon dioxide.




Read more:
Climate explained: why countries don’t count emissions from goods they import


In this way, emissions of one gas – like methane – can be compared with emissions of any other – like carbon dioxide, nitrous dioxide or any of the myriad other greenhouse gases.

These comparisons are imperfect but the point of GWP is to provide a defensible way to compare apples and oranges.

Limits of metrics

Unlike carbon dioxide, which is relatively stable and by definition has a GWP value of one, methane is a live-fast, die-young greenhouse gas.

Methane traps very large quantities of heat in the first decade after it is released in to the atmosphere, but quickly breaks down.

After a decade, most emitted methane has reacted with ozone to form carbon dioxide and water. This carbon dioxide continues to heat the climate for hundreds or even thousands of years.

Emitting methane will always be worse than emitting the same quantity of carbon dioxide, no matter the time scale.

How much worse depends on the time period used to average out its effects. The most commonly used averaging period is 100 years, but this is not the only choice, and it is not wrong to choose another.

As a starting point, the Intergovernmental Panel on Climate Change’s (IPCC) Fifth Assessment Report from 2013 says methane heats the climate by 28 times more than carbon dioxide when averaged over 100 years and 84 times more when averaged over 20 years.

Many sources of methane

On top of these base rates of warming, there are other important considerations.

Fully considered using the 100-year GWP and including natural feedbacks, the IPCC’s report says fossil sources of methane – most of the gas burned for electricity or heat for industry and houses – can be up to 36 times worse than carbon dioxide. Methane from other sources – such as livestock and waste – can be up to 34 times worse.

Some cattle at a farm in New Zealand
Livestock are a source of methane emission into the atmosphere.
Flickr/mikeccross, CC BY-NC-ND

While some uncertainty remains, a well-regarded recent assessment suggested an upwards revision of fossil and other methane sources, that would increase their GWP values to around 40 and 38 times worse than carbon dioxide respectively.

These works will be assessed in the IPCC’s upcoming Sixth Assessment Report, with the physical science contribution due in 2021.

While we should prefer the most up to date science at any given time, the choice to consider – or not – the full impact of methane and the choice to consider its impact over 20, 100 or 500 years is ultimately political, not scientific.

Undervaluing or misrepresenting the impact of methane presents a clear risk for policy makers. It is vital they pay attention to the advice of scientists and bodies such as the IPCC.

Undervaluing methane’s impact in this way is not a risk for climate modellers because they rely on more direct assessments of the impact of gases than GWP.

Tipping points

The idea of climate tipping points is that, at some point, we may change the climate so much that it crosses an irreversible threshold.

At such a tipping point, the world would continue to heat well beyond our capability to limit the harm.

There are many tipping points we should be aware of. But exactly where these are – and precisely what the implications of crossing one would be – is uncertain.




Read more:
Climate explained: why does geothermal electricity count as renewable?


Unfortunately, the only way we can be sure of where these tipping points are is to cross them. The only thing we know for sure about them is that the impact on lives, livelihoods and the places we love would be beyond catastrophic if we did.

But we cannot ignore disturbing impacts of climate change that are already here.

For example, damage to the landscape from the Black Summer bushfires may be irreversible and this represents its own form of climate tipping point.

The scientific understanding of climate change goes well beyond simple metrics like GWP. Shuffling between metrics – such as 20-year or 100-year GWP – cannot avoid the fact our very best chance of avoiding ever-worsening climate harm is to massively reduce our reliance on coal, oil and gas, along with reducing our emissions from all other sources of greenhouse gas.

If we do this, we offer ourselves the best chance of avoiding crossing thresholds we can never return from.The Conversation

Zebedee Nicholls, PhD Researcher at the Climate & Energy College, University of Melbourne and Tim Baxter, Fellow – Melbourne Law School; Senior Researcher – Climate Council; Associate – Australian-German Climate and Energy College, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Aussie invention could save old coal stations by running them on zero-emissions ‘Lego’ blocks



Authors provided

Erich Kisi, University of Newcastle and Alexander Post, University of Newcastle

As climate change worsens, the future of fossil fuel jobs and infrastructure is uncertain. But a new energy storage technology invented in Australia could enable coal-fired power stations to run entirely emissions-free.

The novel material, called miscibility gap alloy (MGA), stores energy in the form of heat. MGA is housed in small blocks of blended metals, which receive energy generated by renewables such as solar and wind.

The energy can then be used as an alternative to coal to run steam turbines at coal-fired power stations, without producing emissions. Stackable like Lego, MGA blocks can be added or removed, scaling electricity generation up or down to meet demand.

MGA blocks are a fraction of the cost of a rival energy storage technology, lithium-ion batteries. Our invention has been proven in the lab – now we are moving to the next phase of proving it in the real world.

Steam billows from a coal-fired power station
MGA blocks promise to give new life to old coal stations.
Themba Hadebe/AP

Why energy storage is important

Major renewable energy sources such as solar and wind power are “intermittent”. In other words, they only produce energy when the sun is shining and the wind is blowing. Sometimes they produce more energy than is needed, and other times, less.

So moving to 100% renewable electricity requires the energy to be “dispatchable” – stored and delivered on demand. Some forms of storage, such as lithium-ion batteries, are relatively expensive and can only store energy for short periods. Others, such as hydro-electric power, can store energy for longer periods, but are site-dependent and can’t just be built anywhere.




Read more:
45,000 renewables jobs are Australia’s for the taking – but how many will go to coal workers?


If our electricity grid is to become emissions-free, we need an energy storage option that’s both affordable and versatile enough to be rolled out at massive scale – providing six to eight hours of dispatchable power every night.

MGAs store energy for a day to a week. This fills a “middle” time frame between batteries and hydro-power, and allows intermittent renewable energy to be dispatched when needed.

Researchers Alex Post and Erich Kisi, look at a MGA block.
Researchers Alex Post and Erich Kisi. The company is looking to built a pilot manufacturing plant in NSW.
Authors provided

How our invention works

In the next two decades, many coal-fired power stations around the world will retire or be decommissioned, including in Australia. Our proposed storage may mean power stations could be repurposed, retaining infrastructure and preventing job losses.

For coal stations to use our technology, the furnace and boiler must be removed and replaced by a storage unit containing MGA blocks.

MGA blocks are 20cm x 20cm x 16cm. They essentially comprise a blend of metals – some that melt when heated, and others that don’t. Think of a block as like a choc-chip muffin heated in a microwave. The muffin consists of a cake component, which holds everything in shape when heated, and the choc chips, which melt.




Read more:
Japan is closing its old, dirty power plants – and that’s bad news for Australia’s coal exports


The blocks don’t just store energy – they heat water to create steam. In an old coal plant, this steam can be used to run turbines and generators to produce electricity, rather than burning coal to produce the same effect.

Courtesy University of Newcastle.

To create the steam, the blocks can be designed with internal tubing, through which water is pumped and boiled. Alternatively, the blocks can interact with a heat exchanger – a specially designed system to heat the water.

Old coal plants could run on renewable energy that would otherwise be switched off during periods of oversupply in the middle of the day (in the case of solar) or times of high wind (wind energy).

Our research has shown the blocks are a fraction the cost of a lithium battery of the same size, yet produce the same amount of energy.

Coal worker
The technology may help prevent job losses in the coal industry.
KYDPL KYODO/AP

Proving MGA blocks in the real world

Our team perfected the novel material through research at the University of Newcastle between 2010 and 2018. Last year we formed a company, MGA Thermal, and are focused on commercialising the technology and conducting real-world projects.

In July this year, MGA Thermal received a A$495,000 grant from the federal Department of Industry, Innovation and Science, to establish a pilot manufacturing plant in Newcastle, New South Wales. This project is due to start operating in the second half of next year. The goal is to begin manufacturing a commercial quantity of MGA blocks economically, at scale, for large demonstration projects.




Read more:
Yes, carbon emissions fell during COVID-19. But it’s the shift away from coal that really matters


MGA Thermal have partnered with a Swiss company, E2S Power AG, to test the technology in the rapidly changing coal-fired power industry in Europe. Beginning next year, the testing will include retrofitting a functioning coal power plant with MGA storage. This will also verify the economic case for the technology.

We are aiming for a cost of storage of A$50 per kilowatt hour, including all surrounding infrastructure. Currently, lithium-ion batteries cost around A$200 per kilowatt hour, with added costs if energy is to be exported to the electricity grid.

So what are the downfalls? Well, MGA does have a much slower response time than batteries. Batteries respond in milliseconds and are excellent at filling short spikes or dips in supply (such as from wind turbines). Meanwhile MGA storage has a response time above 15 minutes, but does have much longer storage capacity.

A combination of all three options – batteries, MGA/thermal storage and hydro – would provide large-scale energy storage that can still respond quickly to fluctuating renewable supply.

Courtesy University of Newcastle.

Safe and recyclable

MGA blocks are safe and non-toxic – there is no risk of explosion or leakage, unlike some other fuels.

The blocks can also be recycled. They are expected to last 25-30 years, then can be easily separated into their individual materials – to be made into new blocks, or recycled as raw materials for other uses.

Like any new technology, MGA blocks must be financially proven before they’re accepted by industry and used widely in commercial projects. The first full-scale demonstrations of the technology are on the horizon. If successful, they could allow coal-fired power plants to be used cleanly, and provide hope for the future of coal workers.The Conversation

Erich Kisi, Professor of Engineering , University of Newcastle and Alexander Post, Conjoint Lecturer, University of Newcastle

This article is republished from The Conversation under a Creative Commons license. Read the original article.

To reduce disasters, we must cut greenhouse emissions. So why isn’t the bushfire royal commission talking about this?



Shutterstock

Robert Glasser, Australian National University

With next fire season already underway,
the bushfire royal commission yesterday released an interim report.

Its observations in the wake of our Black Summer suggest the commission’s final report, due on October 28, may recommend a major shake-up of how disaster management is governed at the federal level. This includes setting up a national body focused on recovery from and resilience to future disasters.

Most initial observations are uncontroversial and sensible, but there is a glaring omission. It involves the most urgent measure to reduce the risk of future disasters: reducing greenhouse gas emissions.

In my former role as the United Nations Secretary General’s Special Representative for Disaster Risk Reduction, I saw first-hand the impacts of natural disasters, and nations’ efforts to build their climate change resilience. The royal commission process is a unique opportunity to accelerate progress in these areas, which are so critical for Australia’s future.

What’s in the report?

In February, the royal commission was tasked with finding ways to improve disaster management in three main areas:

  1. how the federal government coordinates with other levels of government
  2. resilience to climate change and mitigating disaster risk
  3. the laws governing the federal government response to national emergencies.

The initial observations touch on each of these areas. This includes the need to collate, harmonise and share disaster data across jurisdictions; enhance research in climate and disaster resilience; reassess aerial firefighting capabilities; and plan more effectively around critical infrastructure.

It’s also worth noting the royal commission hasn’t yet formed a view on a key change Prime Minister Scott Morrison suggested was necessary in the wake of the bushfires: establishing the legal authority for the federal government to declare a national state of emergency. Currently, only state and territory governments have this power.




Read more:
Explainer: what is a ‘state of disaster’ and what powers does it confer?


And controversially, the commission suggests the long-standing role of the Australasian Fire and Emergency Service Authorities Council (AFAC) should be transferred to a federal government agency.

AFAC is a non-government organisation that facilitates the deployment of emergency personnel and equipment interstate and internationally. But the states and territories may not be willing to relinquish the engagement they have under the current arrangements.

A bushfire danger rating sign, pointing to 'extreme'
The royal commission also reported that many people said terms like ‘watch and act’ were confusing.
Shutterstock

Most importantly, the royal commission is considering consolidating disaster recovery and resilience functions in a new national body.

These functions reside in at least three agencies. They include Emergency Management Australia, the National Bushfire Recovery Agency, and the National Drought and North Queensland Flood Response and Recovery Agency.

Consolidation makes good sense as the recovery phase from disasters can contribute to strengthening resilience.

It’s also sensible to separate the resilience function from the disaster response function, currently led by Emergency Management Australia. In my experience, resilience work rarely gets the whole-of-government attention it deserves when it’s embedded in agencies focused around responding to emergencies.

Three months of disasters

After the devastation Black Summer wrought, it’s clear resilience to future disasters must start with action on climate change. So it’s disappointing the royal commission has not yet commented on the need to lower greenhouse gas emissions as rapidly as possible.

Although COVID-19 has masked our awareness of the rapidly increasing climate threat, the evidence — even over just the past three months — is overwhelming.

In June, the record was set for the highest temperature ever recorded in the Arctic. The associated unprecedented heatwave in Siberia contributed to massive bushfires razing an astonishing 20 million hectares.

While Siberia burned, severe floods devastated South Asia, China and Japan. One-third of Bangladesh was underwater, affecting almost 15 million people.

Two boys use a rubber tube to float in a flooded street in Bangladesh
Catastrophic floods in Bangladesh were among many disasters that occurred in the last three months.
EPA/Monirul Alam

In China the figure was 63 million, with daily rainfall records set across the country. China’s Three Gorges Hydroelectric Dam, the world’s biggest, received the largest inflow of water in its history, prompting fears last week the dam would be breached.




Read more:
Summer bushfires: how are the plant and animal survivors 6 months on? We mapped their recovery


In southern Japan, record-setting rains that dumped 1,000 millimetres of water in just three days forced hundreds of thousands of people from their homes.

Then, earlier this month, deadly fires erupted across California, exacerbated by persistent drought and record-setting temperatures. In just five days, the fires burned more land in the state than was destroyed in all of 2019.

We can’t ignore climate change

While it’s difficult to scientifically demonstrate that climate change “causes” any one disaster, the general direction is crystal clear. As the climate continues to warm, the frequency and severity of these events will increase.




Read more:
California is on fire. From across the Pacific, Australians watch on and buckle up


We’re already seeing worrying signs of this in Queensland, our most hazard-prone state. Over the past three years, 53 of Queensland’s 77 local government areas have endured three or more major disasters. And 71 out of 77 local government areas have experienced two or more such events.

These communities are increasingly in the unsustainable situation of chronically recovering from disasters.

The prime minister has argued “Australia, on its own, cannot control the world’s climate, as Australia accounts for just 1.3% of global emissions”.

But because we’re disproportionately vulnerable to the threats of climate change, it’s imperative we convince other nations to reduce their greenhouse gas emissions.

Our international advocacy will only be credible if we strengthen our own ambition to mitigate climate change. And as the government prepares to submit its updated targets under the Paris Climate Agreement, a recommendation to reduce emissions from the royal commission would be appropriate and extremely useful.The Conversation

Robert Glasser, Visiting Fellow, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

4 reasons why a gas-led economic recovery is a terrible, naïve idea



Shutterstock

Samantha Hepburn, Deakin University

Australia’s leading scientists today sent an open letter to Chief Scientist Alan Finkel, speaking out against his support for natural gas.

Finkel has said natural gas plays a critical role in Australia’s transition to clean energy. But, as the scientists write:

that approach is not consistent with a safe climate nor, more specifically, with the Paris Agreement. There is no role for an expansion of the gas industry.

And yet, momentum in the support for gas investment is building. Leaked draft recommendations from the government’s top business advisers support a gas-led economic recovery from the COVID-19 pandemic. They call for a A$6 billion investment in gas development in Australia.

This is a terrible idea. Spending billions on gas infrastructure and development under the guise of a COVID-19 economic recovery strategy — with no attempt to address pricing or anti-competitive behaviour — is ill-considered and injudicious.

It will not herald Australia’s economic recovery. Rather, it’s likely to hinder it.

The proposals ignore obvious concerns

The draft recommendations — from the National COVID-19 Coordination Commission — include lifting the moratorium on fracking and coal seam gas in New South Wales and remaining restrictions in Victoria, and reducing red and “green tape”.

It also recommends providing low-cost capital to existing small and medium market participants, underwriting costs at priority supply hubs, and investing in strategic pipeline development.

But the proposals have failed to address a range of fundamental concerns.

  1. gas is an emissions-intensive fuel

  2. demand for fossil fuels are in terminal decline across the world and investing in new infrastructure today is likely to generate stranded assets in the not-too-distant future

  3. renewable technology and storage capacity have rapidly accelerated, so gas is no longer a necessary transition resource, contrary to Finkel’s claims

  4. domestic gas pricing in the east coast market is unregulated.

Let’s explore each point.

The effect on climate change

Accelerating gas production will increase greenhouse gas emissions. Approximately half of Australian gas reserves need to remain in the ground if global warming is to stay under 2℃ by 2030.

Natural gas primarily consists of methane, and the role of methane in global warming cannot be overstated. It’s estimated that over 20 years, methane traps 86 times as much heat in the atmosphere as carbon dioxide.




Read more:
A contentious NSW gas project is weeks away from approval. Here are 3 reasons it should be rejected


And fast-tracking controversial projects, such as the Narrabri Gas Project in northern NSW, will add an estimated 500 million tonnes of additional greenhouse gases into the atmosphere.

Accelerating such unconventional gas projects also threatens to exacerbate damage to forests, wildlife habitat, water quality and water levels because of land clearing, chemical contamination and fracking.

These potential threats are enormous concerns for our agricultural sector. Insurance Australia Group, one of the largest insurance companies in Australia, has indicated it will no longer provide public liability insurance for farmers if coal seam gas equipment is on their land.

Fossil fuels in decline

Investing in gas makes absolutely no sense when renewable energy and storage solutions are expanding at such a rapid pace.

It will only result in stranded assets. Stranded assets are investments that don’t generate a viable economic return. The financial risks associated with stranded fossil fuel assets are prompting many large institutions to join the growing divestment movement.




Read more:
Why it doesn’t make economic sense to ignore climate change in our recovery from the pandemic


Solar, wind and hydropower are rolling out at unprecedented speed. Globally, renewable power capacity is set to expand by 50% between 2019 and 2024, led by solar PV.

Solar PV alone accounts for almost 60% of the expected growth, with onshore wind representing one-quarter. This is followed by offshore wind capacity, which is forecast to triple by 2024.

Domestic pricing is far too expensive

Domestic gas in Australia’s east coast market is ridiculously expensive. The east coast gas market in Australia is like a cartel, and consumers and industry have experienced enormous price hikes over the last decade. This means there is not even a cost incentive for investing in gas.

Indeed, the price shock from rising gas prices has forced major manufacturing and chemical plants to close.

The domestic price of gas has trebled over the last decade, even though the international price of gas has plummeted by up to 40% during the pandemic.




Read more:
Australia has plenty of gas, but our bills are ridiculous. The market is broken


As Australian Competition and Consumer Commission chair Rod Simms declared in the interim gas report released last week, these price issues are “extremely concerning” and raise “serious questions about the level of competition among producers”.

To date, the federal government has done very little in response, despite the implementation of the Australian Domestic Gas Security Mechanism in 2017.

This mechanism gives the minister the power to restrict LNG exports when there’s insufficient domestic supply. The idea is that shoring up supply would stabilise domestic pricing.

But the minister has never exercised the power. The draft proposals put forward by the National COVID-19 Coordination Commission do not address these concerns.

A gas-led disaster

There is no doubt gas producers are suffering. COVID-19 has resulted in US$11 billion of Chevron gas and LNG assets being put up for sale.

And the reduction in energy demand caused by COVID-19 has produced record low oil prices. Low oil prices can stifle investment in new sources of supply, reducing the ability and incentive of producers to explore for and develop gas.




Read more:
Victoria quietly lifted its gas exploration pause but banned fracking for good. It’s bad news for the climate


It’s clear the National COVID-19 Coordination Commission’s recommendations are oriented towards helping gas producers. But investing in gas production and development won’t help Australia as a whole recover from the pandemic.

The age of peak fossil fuel is over. Accelerating renewable energy production, which coheres with climate targets and a decarbonising global economy, is the only way forward.

A COVID-19 economic strategy that fails to appreciate this not only naïve, it’s contrary to the interests of broader Australia.The Conversation

Samantha Hepburn, Director of the Centre for Energy and Natural Resources Law, Deakin Law School, Deakin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.