Some good conservation news: India’s tiger numbers are going up



Spotting tigers in the wild is a difficult task.
Author provided

Matt Hayward, University of Newcastle and Joseph K. Bump, University of Minnesota

Indian tiger numbers are up, according to one of the most detailed wildlife surveys ever conducted. Tiger populations have risen by 6%, to roughly 3,000 animals.

The massive survey may set a new world standard in counting large carnivores. The encouraging results validate India’s impressive investments in tiger conservation.




Read more:
Tigers confirmed as six subspecies, and that is a big deal for conservation


A mammoth effort

Large, solitary predators hate being seen. They owe their entire existence to being able to avoid detection by prey and sneak close before attacking.

Hence, when we want to count tigers, the tigers don’t help. But accurate population numbers are fundamental to good conservation. Every four years since 2006, the Indian government conducts a national census of tigers and other wildlife.

The efforts the project team undertakes to derive the tiger population estimate are nothing short of phenomenal: 44,000 field staff conducted almost 318,000 habitat surveys across 20 tiger-occupied states of India. Some 381,400 km² was checked for tigers and their prey.

(There is an application in with the Guinness Book of World Records to see if this is the largest wildlife survey ever conducted anywhere in the world.)

The team placed paired camera traps at 26,760 locations across 139 study sites and these collected almost 35 million photos (including 76,523 tiger and 51,337 leopard photos). These camera traps covered 86% of the entire tiger distribution in India. Where it was too dangerous to work in the field (14% of the tigers’ distribution) because of political conflict, robust models estimated population numbers.

Millions of photos were analysed to create an accurate count of India’s tiger population.
Author provided

Count the tigers

Collecting this volume of data would be an utter waste of time if it were poorly analysed. The teams took advice from some of the world’s foremost experts to sort the photos: pattern matching experts who could identify whether a photo of a tiger taken in the monsoon matched that of a tiger taken in the dry season while walking at a different angle, machine learning experts to speed up species identification, and spatial analysis experts to estimate the populations of tigers and their prey.

The research team took this advice and coupled it with their own knowledge of tiger ecology to develop a census that is unique among large carnivore studies.

We were fortunate enough to be among the non-Indian scientists invited to review this process. Peer review is a crucial part of any scientific endeavour, and especially important as early Indian tiger surveys were notoriously unreliable.

Actual numbers

So how did they do? A total of 2,461 individual tigers older than one year of age were photo-captured. The overall tiger population in India was estimated at 2,967 individuals (with an error range of roughly 12%).

Out of this, 83.4% were estimated from camera-trap photos, and the rest estimated from robust modelling. Tiger numbers have increased by 6% per year, continuing the rate of increase from the 2014 census. This is a wonderful success for Indian conservation efforts.

However not all is rosy. There has been a 20% decline in areas occupied by tigers in 2014 to today, although tigers have moved into some new areas (some 8% of their Indian range is new). The coordinators of the tiger survey – Yadvendradev Jhala and Qamar Qureshi – conclude that while established and secure tiger populations in some parts of India have increased, small, isolated populations and those along corridors between established populations have gone extinct.

This highlights the need for conservation efforts to focus on improving connectivity between isolated populations, while incentivising the relocation of people out of core tiger areas, reducing poaching and improving habitat to increase prey resources.

This will be no easy task with India’s burgeoning population, but investment from private sector tourist corporations in land acquisition along corridors and the creation of community conservancies could supplement government funding for expanding protected corridors.




Read more:
Curious Kids: why do tigers have whiskers?


The success of India’s census has led the governments of Nepal and Bangladesh to employ the same project team to help estimate their own tiger populations. These methods can – and should – be employed for other iconic, charismatic species that can be individually identified, such as jaguars in South and Central America; leopards, cheetahs, and hyenas in Africa, and possibly even quolls in Australia.


This article was co-authored by Chris Carbone, Senior Research Fellow at the Zoological Society of London.The Conversation

Matt Hayward, Associate professor, University of Newcastle and Joseph K. Bump, Associate Professor, Gordon W. Gullion Endowed Chair in Forest Wildlife Research and Education, University of Minnesota

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Electronic waste is recycled in appalling conditions in India



File 20190213 181604 ksgdan.jpg?ixlib=rb 1.1
The vast majority of e-waste in India is processed by hand.
Miles Parl, Author provided

Miles Park, UNSW

Electronic waste is recycled in appalling conditions in India

The world produces 50 million tonnes of electronic and electrical waste (e-waste) per year, according to a recent UN report, but only 20% is formally recycled. Much of the rest ends up in landfill, or is recycled informally in developing nations.




Read more:
Does not compute: Australia is still miles behind in recycling electronic products


India generates more than two million tonnes of e-waste annually, and also imports undisclosed amounts of e-waste from other countries from around the world – including Australia.

We visited India to examine these conditions ourselves, and reveal some of the devastating effects e-waste recycling has on workers’ health and the environment.

Obsolete computer electronics equipment lie stacked along the roads in Seelampur.
Alankrita Soni, Author provided

Indian e-waste

More than 95% of India’s e-waste is processed by a widely distributed network of informal workers of waste pickers. They are often referred to as “kabadiwalas” or “raddiwalas” who collect, dismantle and recycle it and operate illegally outside of any regulated or formal organisational system. Little has changed since India introduced e-waste management legislation in 2016.

We visited e-waste dismantlers on Delhi’s outskirts. Along the narrow and congested alleyways in Seelampur we encountered hundreds of people, including children, handling different types of electronic waste including discarded televisions, air-conditioners, computers, phones and batteries.

Open fires create toxic smoke, and locals reported high rates of respiratory problems.
Alankrita Soni, Author provided

Squatting outside shop units they were busy dismantling these products and sorting circuit boards, capacitors, metals and other components (without proper tools, gloves, face masks or suitable footwear) to be sold on to other traders for further recycling.

Local people said the waste comes here from all over India. “You should have come here early morning, when the trucks arrive with all the waste,” a trolley driver told us.

Seelampur is the largest e-waste dismantling market in India. Each day e-waste is dumped by the truckload for thousands of workers using crude methods to extract reusable components and precious metals such as copper, tin, silver, gold, titanium and palladium. The process involves acid burning and open incineration, creating toxic gases with severe health and environmental consequences.




Read more:
Almost everything you know about e-waste is wrong


Workers come to Seelampur desperate for work. We learned that workers can earn between 200 and 800 rupees (A$4-16) per day. Women and children are paid the least; men who are involved with the extraction of metals and acid-leeching are paid more.

Income is linked to how much workers dismantle and the quality of what is extracted. They work 8-10 hours per day, without any apparent regard for their own well-being. We were told by a local government representative that respiratory problems are reportedly common among those working in these filthy smoke-filled conditions.

Residential areas adjoining Seelampur Drain.
Alankrita Soni

Delhi has significant air and water pollution problems that authorities struggle to mitigate. We were surprised to learn that the recycling community does not like to discuss “pollution”, so as not to raise concerns that could result in a police raid. When we asked about the burning of e-waste, they denied it takes place. Locals were reluctant to talk to us in any detail. They live in fear that their trade will be shut down during one of the regular police patrols in an attempt to curb Delhi’s critical air and water problems.




Read more:
As another smog season looms, India must act soon to keep Delhi from gasping


As a result of this fear, e-waste burning and acid washing are often hidden from view in the outskirts of Delhi and the neighbouring states of Uttar Pradesh and Haryana, or done at night when there is less risk of a police raid.

Incidentally, while moving around Seelampur we were shocked to see children playing in drains clogged with dumped waste. During the drier months drains can catch fire, often deliberately lit to reduce waste accumulation.

Young boys searching for valuable metal components they can sell in Seelampur.
Author provided

After our tour of Seelampur we visited Mandoli, a region near Delhi where we were told e-waste burning takes place. When we arrived and asked about e-waste recycling we were initially met with denials that such places exist. But after some persistence we were directed along narrow, rutted laneways to an industrial area flanked by fortified buildings with large locked metal doors and peephole slots not dissimilar to a prison.

We arranged entry to one of these units. Among the swirling clouds of thick, acrid smoke, four or so women were burning electrical cables over a coal fire to extract copper and other metals. They were reluctant to talk and very cautious with their replies, but they did tell us they were somewhat aware of the health and environmental implications of the work.

We could not stay more than a few minutes in these filthy conditions. As we left we asked an elderly gentleman if people here suffer from asthma or similar conditions. He claimed that deaths due to respiratory problems are common. We also learned that most of these units are illegal and operate at night to avoid detection. Pollution levels are often worse at night and affect the surrounding residential areas and even the prisoners at the nearby Mandoli Jail.

Women extracting copper from electrical wires, in a highly polluting process.
Alankrita Soni, Author provided

We had the luxury of being able to leave after our visit. It is devastating to think of the residents, workers and their children who spend their lives living among this toxic waste and breathing poisonous air.

Field trips such as this help illustrate a tragic paradox of e-waste recycling in developed versus developing nations. In Australia and many other advanced industrialised economies, e-waste collection is low and little is recycled. In India, e-waste collection and recycling rates are remarkably high.

This is all due to informal recyclers, the kabadiwalas or raddiwalas. They are resourceful enough to extract value at every stage of the recycling process, but this comes with a heavy toll to their health and the environment.


This article was co-written by Ms. Alankrita Soni, UNSW Alumni & practising Environmental Architect from India.The Conversation

Miles Park, Senior Lecturer, Industrial Design, UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.

India unveils the world’s tallest statue, celebrating development at the cost of the environment


Ruth Gamble, La Trobe University and Alexander E. Davis, La Trobe University

India’s Prime Minister Narendra Modi will today inaugurate the world’s largest statue, the Statue of Unity in Gujarat. At 182m tall (240m including the base), it is twice the height of the Statue of Liberty, and depicts India’s first deputy Prime Minister, Sardar Vallabhbhai Patel.

The statue overlooks the Sardar Sarovar Dam on the Narmada River. Patel is often thought of as the inspiration for the dam, which came to international attention when the World Bank withdraw its support from the project in 1993 after a decade of environmental and humanitarian protests. It wasn’t until 2013 that the World Bank funded another large dam project.

Like the dam, the statue has been condemned for its lack of environmental oversight, and its displacement of local Adivasi or indigenous people. The land on which the statue was built is an Adivasi sacred site that was taken forcibly from them.




Read more:
India’s development debate must move beyond Modi


The Statue of Unity is part of a broader push by Modi’s Bharatiya Janata Party (BJP) to promote Patel as a symbol of Indian nationalism and free-market development. The statue’s website praises him for bringing the princely states into the Union of India and for being an early advocate of Indian free enterprise.

The BJP’s promotion of Patel also serves to overshadow the legacy of his boss, India’s first prime minister, Jawaharlal Nehru. Nehru’s descendants head India’s most influential opposition party, the Indian National Congress.

The statue was supposed to be built with both private and public money, but it attracted little private investment. In the end, the government of Gujarat paid for much of the statue’s US$416.67 million price tag.

The statue under construction, January 2018.
Alexander Davis

The Gujarat government claims its investment in the statue will promote tourism, and that tourism is “sustainable development”. The United Nations says that sustainable tourism increases environmental outcomes and promotes local cultures. But given the statue’s lack of environmental checks and its displacement of local populations, it is hard to see how this project fulfils these goals.

The structure itself is not exactly a model of sustainable design. Some 5,000 tonnes of iron, 75,000 cubic metres of concrete, 5,700 tonnes of steel, and 22,500 tonnes of bronze sheets were used in its construction.

Critics of the statue note that this emblem of Indian nationalism was built partly with Chinese labour and design, with the bronze sheeting subcontracted to a Chinese firm.

The statue’s position next to the controversial Sardar Sarovar Dam is also telling. While chief minister of Gujarat from 2001 to 2014, Modi pushed for the dam’s construction despite the World Bank’s condemnation. He praised the dam’s completion in 2017 as a monument to India’s progress.

Both the completion of the dam and the statue that celebrates it suggest that the BJP government is backing economic development over human rights and environmental protections.

The statue’s inauguration comes only a month after the country closed the first nature reserve in India since 1972. Modi’s government has also come under sustained criticism for a series of pro-industry policies that have eroded conservation, forest, coastal and air pollution protections, and weakened minority land rights.

India was recently ranked 177 out of 180 countries in the world for its environmental protection efforts.

Despite this record, the United Nations’ Environmental Programme (UNEP) recently awarded Modi its highest environmental award. It made him a Champion of the Earth for his work on solar energy development and plastic reduction.

The decision prompted a backlash in India, where many commentators are concerned by the BJP’s environmental record.




Read more:
Bridges and roads in north-east India may drive small tribes away from development


Visitors to the statue will access it via a 5km boat ride. At the statue’s base, they can buy souvenirs and fast food, before taking a high-speed elevator to the observation deck.

The observation deck will be situated in Patel’s head. From it, tourists will look out over the Sardar Sarovar Dam, as the accompanying commentary praises “united” India’s national development successes.

But let’s not forget the environmental and minority protections that have been sacrificed to achieve these goals.


This article was amended on November 7, 2018, to clarify the role of Chinese companies in the statue’s design and construction.The Conversation

Ruth Gamble, David Myers Research Fellow, La Trobe University and Alexander E. Davis, New Generation Network Fellow, La Trobe University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

China and India’s border dispute is a slow-moving environmental disaster



File 20180615 32307 1p57oni.jpg?ixlib=rb 1.1
Development is peaking in the high country between India and China.
Vinay Vaars/Wikimedia Commons, CC BY-SA

Ruth Gamble, La Trobe University

Chinese and Indian competition on their shared Himalayan border is more likely to create a slow-moving environmental catastrophe than a quick military or nuclear disaster.

The Himalayan plateau plays a crucial role in Asia. It generates the monsoonal rains and seasonal ice-melts that feed rivers and deliver nutrients to South, Southeast and East Asia. Almost half the world’s population and 20% of its economy depend on these rivers, and they are already threatened by climate change. China and India’s competition for their headwaters increases this threat.

Until the mid-20th century, the Himalaya’s high altitude prevented its large-scale development and conserved its environment. But after the Republic of India and the People’s Republic of China were created in the late 1940s, these two new states began competing for high ground in the western and eastern Himalayas. They fought a war over their unresolved border in 1962, and have scuffled ever since. The most recent clash was in 2017, when China built a road into Doklam, an area claimed by Bhutan and protected by India.




Read more:
Lessons from the Doklam Pass: how little Bhutan faced down China over a border dispute


Tensions rose again last week when China unveiled a new mine in Lhunze, near the de facto border with India’s northeastern state of Arunachal Pradesh, east of Bhutan. The mine sits on a deposit of gold, silver and other precious metals worth up to US$60 billion.

Most analysis of the Sino-Indian border dispute has focused on the potential for another war between these two nuclear-armed neighbours. The environmental impacts of their continued entrenchment are rarely mentioned, despite the fact that they are significant and growing.

The various tracts of the disputed Sino-Indian border are host to many new development projects.
Author provided

All of this development along the border is built on the world’s third-largest ice-pack or in biodiversity hotspots. The region was militarised during the 1962 war, and has since been inundated by troops, roads, airports, barracks and hospitals. These have caused deforestation, landslides, and – if a study on troop movements on other glaciers is any guide – possibly even glacial retreat.

The buildup of troops on the border has displaced local ethnic groups, and they have been encouraged to give up their land to make way for intensive farming. Animal habitats have decreased and clashes with tigers and snow leopards have increased. Population transfers and agricultural intensification have even heightened the risk that antibiotic-resistant superbugs and other toxic pollutants will seep into the world’s most diffused watershed.

During the past 20 years, first China and then India have increased this degradation by building large-scale mines and hydroelectric dams in this sensitive region. These projects have not been profitable or environmentally sound, but they have solidified state control by entrenching populations, upgrading transport networks, and integrating these fringes into national economies. The tightening of state control along the border has been further complicated by calls from the Tibetans and other ethnic groups for greater autonomy.

Many of the projects have been developed within the transnational Brahmaputra River basin. This river’s headwaters are in China, but most of its catchment is in Arunachal Pradesh, which is controlled by India but claimed by China. It then flows through Assam and Bangladesh, where it joins the Ganges River. Some 630 million people live in the Ganges-Brahmaputra River catchment.

China and India’s geopolitical resources rush threatens the safety of this entire river system. The new Lhunze mine’s position among the Brahmaputra’s headwaters is so precarious that its owner, Hua Yu Mining, was only allowed to mine there under strict environmental conditions. To its credit, Hua Yu has agreed to be a “green” miner, limiting emissions, water use and minimising “grassland disturbance”. But even if the company does not inadvertently leak acid and arsenic into the environment like other mines in Tibet, the mine is still liable to be damaged by the region’s frequent earthquakes. Any toxic leak from Lhunze will flow straight into the Brahmaputra and then into the lower Ganges.




Read more:
China’s growing footprint on the globe threatens to trample the natural world


On its side of the border, India has concentrated on dams rather than mines. Between 2000 and 2016, the Arunachal Pradesh government approved the construction of 153 dams, before realising that it had overextended itself.

So far only one dam is complete, and all the other projects have stalled. One of these stalled dams is on the Subansiri River, the same river from which the Lhunze mine draws water. India is racing to build these dams without community consultation or environmental studies because it sees itself as competing with China for the region’s water. China has already built four dams in the upper Brahmaputra River basin.

Indian strategists argue that they can stop China building more dams by building hydroelectric projects whose need for water will be recognised under international law. Given China’s dismissal of previous rulings by the International Court of Justice, and its recent refusal to share water-flow data with India after the Doklam incident (data that India needs to plan flood controls), this strategy seems unlikely to succeed.

Even if it does, it is hard to see how building large hydropower projects in an earthquake-probne region will ultimately help India. It won’t stop China developing the borderland, and it could cause more problems than it solves.

The ConversationTo keep Asia’s major rivers flowing and relatively non-toxic, both nations need to stop competing and start collaborating. Their leaders understand that neither nation would win a nuclear war. Now they need to realise that no one will benefit from destroying a shared watershed.

Ruth Gamble, David Myers Research Fellow, La Trobe University

This article was originally published on The Conversation. Read the original article.

Delhi suffers second smog crisis in 12 months, as wake-up calls go unheeded


Vijay Koul, CSIRO

A year ago Delhi was choking, as smog in the Indian capital soared to 16 times the government’s safe limit for particulate pollution. Now the same thing has happened again.

Levels of the most dangerous particles, called PM2.5, have once again reached last November’s levels: more than 700 micrograms per cubic metre in some parts of the city. Experts say that prolonged exposure to this level of pollution is equivalent to smoking more than two packs of cigarettes a day.

Just 12 months after the record-breaking pollution that should have been a major wake-up call, Delhi is again plunged into darkness. It is a big embarrassment that authorities were not better prepared for this year’s smog season.


Read more: As another smog season looms, India must act soon to keep Delhi from gasping


In July, I released a detailed analysis of the factors that cause Delhi’s November smog.

Based on data from India’s Central Pollution Control Board and from NASA, I concluded that Delhi’s record-breaking pollution in November 2016 was largely due to slow wind speeds and prevailing northerly winds, as well as Diwali fireworks, and the widespread practice of burning crop residues. Others, including the Delhi government, reported similar findings.

But this knowledge has not stopped it happening again, much to the frustration of Delhi residents who now face a second consecutive pollution-plagued winter.

Of course, the authorities do not control the wind speed or direction. But they can and should take steps to curb the other crucial factors.

Burning issue

In Haryana and Punjab states to the north of Delhi, farmers routinely burn their croplands after the summer harvest, ridding their fields of stubble, weed and pests and readying them for winter planting.

This agricultural event coincides with Diwali, India’s festival of lights, which features three or four nights of fireworks before and after the festival, in October or early November.

This series of NASA satellite images clearly shows the pollution plume moving across the landscape during the first two weeks of November. Red dots indicate live fires.

November 1.
NASA
November 8.
NASA
November 14.
NASA

These images show that crop burning is still continuing, especially in parts of Punjab. As the graph below shows, crop burning produced significant amounts of pollution from November 2, 2017, after an earlier pollution spike around October 20 due to Diwali.

https://datawrapper.dwcdn.net/ZHncI/1/

Other countries have taken measures to limit crop burning. In Australia, the Victorian state government strongly encourages farmers to retain crop stubble residues, although it allows sporadic burning. In some Canadian provinces, stubble burning is allowed by permit only.

There is no such legislation under consideration in India. But without a ban on crop burning, Delhi’s pollution woes are likely to continue.

It is high time that the government responded, before Delhi’s pollution gets even more out of hand. Particles in the PM2.5 size range can travel deep into the respiratory tract, reaching the lungs. Exposure to fine particles can cause short-term health effects such as eye, nose, throat and lung irritation, coughing, sneezing, runny nose and shortness of breath.

Exposure to fine particles can also affect lung function and worsen medical conditions such as asthma and heart disease. Studies have linked increases in daily PM2.5 exposure with increased respiratory and cardiovascular hospital admissions, emergency department visits and deaths. More than a million deaths in 2015 were attributed to India’s air pollution.

What governments and residents can do

There is a range of short- and long-term options to combat the problem.

Farmers in Haryana and Punjab should be banned from residue crop burning during October and November, and should be given financial compensation for the inconvenience.

Meanwhile, Delhi’s residents should consider driving less, either by carpooling or using public transport. The city’s authorities, meanwhile, could restrict the entry of polluting trucks and heavy-duty goods vehicles, gradually phase out and ultimately ban older vehicles, and increase parking charges or restrict families to a single car.

A reliable 24-hour power supply would help to reduce the reliance on heavily polluting diesel generators in offices and factories. Subsidies for cleaner fuels or electric or hybrid cars would also help.


Read more: Air pollution causes more than 3 million premature deaths a year worldwide


Authorities also have a duty to keep the public informed of pollution levels, through daily television, radio and social media updates, as well as pamphlets warning of the effects of air quality on health. On the worst days, schools should be closed and children and older people urged to stay indoors.

In the longer terms, a “green belt” could be planted around the city, to help soak up traffic-induced air and noise pollution.

The ConversationMany of these policies would involve significant upheaval. But Delhi needs action before it is too late. The alternative is to be plunged ever deeper into the murk.

Vijay Koul, Honorary fellow, CSIRO

This article was originally published on The Conversation. Read the original article.