Invasive species are Australia’s number-one extinction threat



Barking Owls are one of Australia’s 1,770 threatened or endangered species.
Navin/Flickr, CC BY-SA

Andy Sheppard, CSIRO and Linda Broadhurst, CSIRO

This week many people across the world stopped and stared as extreme headlines announced that one eighth of the world’s species – more than a million – are threatened with extinction.

According to the UN report from the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES) which brought this situation to public attention, this startling number is a consequence of five direct causes: changes in land and sea use; direct exploitation of organisms; climate change; pollution; and invasion of alien species.




Read more:
‘Revolutionary change’ needed to stop unprecedented global extinction crisis


It’s the last, invasive species, that threatens Australian animals and plants more than any other single factor.

Australia’s number one threat

Australia has an estimated 600,000 species of flora and fauna. Of these, about 100 are known to have gone extinct in the last 200 years. Currently, more than 1,770 are listed as threatened or endangered.

While the IPBES report ranks invasive alien species as the fifth most significant cause of global decline, in Australia it is a very different story.

Australia has the highest rate of vertebrate mammal extinction in the world, and invasive species are our number one threat.

Cats and foxes have driven 22 native mammals to extinction across central Australia and a new wave of decline – largely from cats – is taking place across northern Australia. Research has estimated 270 more threatened and endangered vertebrates are being affected by invasive species.

Introduced vertebrates have also driven several bird species on Norfolk Island extinct.

The effects of invasive species are getting worse

Although Australia’s stringent biosecurity measures have dramatically slowed the number of new invasive species arriving, those already here have continued to spread and their cumulative effect is growing.

Recent research highlights that 1,257 of Australia’s threatened and endangered species are directly affected by 207 invasive plants, 57 animals and three pathogens.

These affect our unique biodiversity, as well as the clean water and oxygen we breath – not to mention our cultural values.

When it comes to biodiversity, Australia is globally quite distinct. More than 70% of our species (69% of mammals, 46% of birds and 93% of reptiles) are found nowhere else on earth. A loss to Australia is therefore a loss to the world.

Some of these are ancient species like the Wollemi Pine, may have inhabited Australia for up to 200 million years, well before the dinosaurs.




Read more:
Wollemi pines are dinosaur trees


But invasive species are found in almost every part of Australia, from our rainforests, to our deserts, our farms, to our cities, our national parks and our rivers.

The cost to Australia

The cost of invasive species in Australia continue to grow with every new assessment.

The most recent estimates found the cost of controlling invasive species and economic losses to farmers in 2011-12 was A$13.6 billion. However this doesn’t include harm to biodiversity and the essential role native species play in our ecosystems, which – based on the conclusions of the IPBES report – is likely to cost at least as much, and probably far more.

Rabbits, goats and camels prevent native desert plant community regeneration; rabbits alone impacting over 100 threatened species. Rye grass on its own costs cereal farmers A$93M a year.

Aquaculture diseases have affected oysters and cost the prawn industry $43M.

From island to savannah

Globally, invasive species have a disproportionately higher effect on offshore islands – and in Australia we have more than 8,000 of these. One of the most notable cases is the case of the yellow crazy ants, which killed 15,000,000 red land crabs on Christmas Island.




Read more:
A tiny wasp could save Christmas Island’s spectacular red crabs from crazy ants


Nor are our deserts immune. Most native vertebrate extinctions caused by cats have occurred in our dry inland deserts and savannas, while exotic buffel and gamba grass are creating permanent transformation through changing fire regimes.

Australia’s forests, particularly rainforests, are also under siege on a number of fronts. The battle continues to contain Miconia weed in Australia – the same weed responsible for taking over 70% of Tahiti’s native forests. Chytrid fungus, thought to be present in Australia since 1970, has caused the extinction of at least four frog species and dramatic decline of at least ten others in our sensitive rainforest ecosystems.

Myrtle rust is pushing already threatened native Australian Myrtaceae closer to extinction, notably Gossia gonoclada, and Rhodamnia angustifolia and changing species composition of rainforest understories, and Richmond birdwing butterfly numbers are under threat from an invasive flower known as the Dutchman’s pipe.

Australia’s rivers and lakes are also under increasing domination from invasive species. Some 90% of fish biomass in the Murray Darling Basin are European carp, and tilapia are invading many far north Queensland river systems pushing out native species .

Invasive alien species are not only a serious threat to biodiversity and the economy, but also to human health. The Aedes aegypti mosquito found in parts of Queensland is capable of spreading infectious disease such as dengue, zika, chikungunya and yellow fever.

And it’s not just Queensland that is under threat from diseases spread by invasive mosquitoes, with many researchers and authorities planning for when, not if, the disease carrying Aedes albopictus establishes itself in cooler and southern parts of Australia.




Read more:
Stowaway mozzies enter Australia from Asian holiday spots – and they’re resistant to insecticides


What solutions do we have?

Despite this grim inventory, it’s not all bad news. Australia actually has a long history of effectively managing invasive species.

Targeting viruses as options for controlling rabbits, carp and tilapia; we have successfully suppressed rabbit populations by 70% in this way for 50 years.

Weeds too are successful targets for weed biological control, with over a 65% success rate controlling more than 25 targets.

The IPBES report calls for “transformative action”. Here too Australia is at the forefront, looking into the potential of gene-technologies to suppress pet hates such as cane toads.




Read more:
We’ve cracked the cane toad genome, and that could help put the brakes on its invasion


Past and current invasive species programs have been supported by governments and industry. This has provided the type of investment we need for long-term solutions and effective policies.

Australia is better placed now, with effective biosecurity policies and strong biosecurity investment, than many countries. We will continue the battle against invasive species to stem biodiversity and ecosystem loss.The Conversation

Andy Sheppard, Research Director CSIRO Health & Biosecurity, CSIRO and Linda Broadhurst, Director, Centre for Australian National Biodiversity Research, CSIRO

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

Why Australia needs to kill cats


John Read, University of Adelaide and Katherine Moseby, UNSW

Introduced cats are a key threat to 123 of Australia’s threatened species.

The management of cats is challenging and divisive; many options such as rehoming, trap-neuter-release and euthanasia have been used around the world with varying success.

Australia’s recent commitment to killing 2 million feral cats to protect its native wildlife has attracted international attention and some have considered the project harsh.

While the actual target of 2 million has been rightly criticised as arbitrary and more based on public relations than rigorous science, it’s true non-lethal methods are not enough to stem the environmental havoc cats cause. Particularly in light of a UN report highlighting the world’s extinction crisis, Australia urgently needs well-targeted cat culls.




Read more:
Feral cat cull: why the 2 million target is on scientifically shaky ground


Non-lethal methods

A range of effective non-lethal methods are already protecting wildlife from cats. Cat-exclusion fences have collectively improved the conservation status of many threatened species. In addition, an increasing number of Australian councils have created progressive cat management bylaws designed to protect pet cats, wildlife and humans from the effects of free-ranging cats.

The centrepiece of many of these bylaws, supported by the vast majority of animal welfare groups, is the containment of pet cats on their owner’s property. Indoor cats live longer, safer lives than cats that are allowed to roam.

Stray cats are harder to manage. These are the cats that do not have a home, but may be directly or indirectly fed by people.




Read more:
A hidden toll: Australia’s cats kill almost 650 million reptiles a year


Because they are unowned, no-one is officially accountable for their health or welfare. Groups of like-minded individuals feed and even provide veterinary assistance to some of these cats, further blurring the distinction between pet and feral cats.

A trend promoted by “no kill” shelters and advocacy groups in some US states and Europe is for clowders (groups) of stray cats to be desexed, vaccinated and released back onto the streets. This process is called trap-neuter-release (TNR).

A recent RSPCA best-practice cat management discussion paper proposed a trial of TNR in Australia too – but there are very good reasons why this would be counterproductive for cat welfare.

The risks of releasing unowned cats

Informed animal welfare advocate groups, including PETA, strongly condemn the release of unowned cats, neutered or otherwise, due to the welfare risks to these cats. Human health professionals and wildlife advocates also oppose maintaining groups of cats.

Dense outdoor cat clowders are hotbeds of toxoplasmosis infections. This cat-borne disease is increasingly being linked to a range of chronic mental health conditions including schizophrenia and Alzheimer’s disease.

“No kill” groups that promote TNR erroneously claim that neutered cats significantly reduce the breeding potential of erroneously named cat “colonies”, in the same way that release of neutered mosquitoes is a proven technique for controlling disease-bearing mosquitoes.

One of us (John) has recently written a book on protecting wildlife and cats that suggests five fatal biological flaws in this logic:

  1. Neutering mosquitoes works because impotent individuals “swamp” short-lived wild insect populations that mate only once. By contrast, female cats typically mate repeatedly when on heat, so an encounter with a neutered tom is of little consequence.

  2. Unlike lions, domestic cats evolved as solitary hunters. While domestic cats can tolerate living in high-density clowders, they do not form hierarchical colonies, packs or prides where alpha individuals restrict the feeding, breeding or survival of subordinate animals.

  3. Although loud cat fights might make you assume males fight over the right to exclusively mate with a female, most litters of outdoor cats are sired by multiple males. Even supposedly “dominant” males seldom intervene when another male courts a female. Neutered male cats will not protect females in their clowder from non-desexed interlopers. This means that more than 90% of cats need to be neutered to restrict population increases, an incredibly challenging proposition.

  4. Despite the misleading label “colony”, cat clowders are not closed populations. Rather, cats typically move around to take advantage of abundant food resources. And unwanted pets are often dumped at clowder sites. The failures of several well-studied TNR programs are attributed to cats migrating or being dumped at these sites.

  5. Despite needing repeated vaccinations to protect them from debilitating diseases, few stray cats can be captured a second time. And many can never be captured at all. This leaves them and their clowder effectively unmanageable.

TNR is biologically flawed, cruel to cats – because it returns them to a hazardous environment – and ineffective when not accompanied by high levels of adoption.

Harming marine ecosystems

Not only do predatory cats harm native wildlife, but stray or feral clowders can also directly influence marine ecosystems and fisheries.

Many commercial cat foods contain increasingly threatened predatory fish that are high in the food chain and hence use more nutrients and biological energy than plants or herbivores. US dogs and cats consume one-third of the animal-derived protein eaten by humans, with accompanying greenhouse gas emissions.

The cat food provided to stray clowders adds to this biological expense. In 2009 alone, the US-based Best Friends Animal Society, one of the major promoters of TNR, distributed over 80,000 tonnes of cat food to unowned cats. There are no similar studies in Australia, and we appear to have far lower rates of stray-cat-feeding, but it is still part of the ecological impact of stray cats.

Even more insidiously, seals, otters and dolphins in oceans around the world die from cat-borne diseases spread mainly from clowders.




Read more:
For whom the bell tolls: cats kill more than a million Australian birds every day


Humane euthanasia

Fortunately, both science and animal welfare standards are consistent about management of cats. All healthy domestic cats for which safe homes can be found should be adopted or rehomed, then kept indoors following neutering and vaccination. All other cats, including ferals and strays that cannot be rehomed quickly, should be humanely euthanased.

Feeding or releasing cats (neutered or otherwise) threatens our wildlife and perpetuates the cycle of suffering, disease, predation and social annoyance. Non-lethal options such as feral cat-proof fencing can still be part of the solution, but euthanasia remains an important part of controlling feral and stray cats to protect our native wildlife.


Among the Pigeons: Why our cats belong indoors (2019) by John Read is published by Wakefield Press.The Conversation

John Read, Associate Lecturer, Ecology and Environmental Sciences, University of Adelaide and Katherine Moseby, Research fellow, UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.

How indigenous expertise improves science: the curious case of shy lizards and deadly cane toads



File 20190408 2901 1tbo2ex.jpg?ixlib=rb 1.1
The Balanggarra Rangers are land management representatives of the Balanggarra people, the indigenous traditional owners of the East Kimberley. (L-R) Wes Alberts, Bob Smith (coordinator) James ‘Birdy’ Birch, Isiah Smith, Quentin Gore.
The Kimberley Land Council, Author provided

Georgia Ward-Fear, University of Sydney and Rick Shine, University of Sydney

It’s a common refrain – western ecologists should work closely with indigenous peoples, who have a unique knowledge of the ecosystems in their traditional lands.

But the rhetoric is strong on passion and weak on evidence.

Now, a project in the remote Kimberley area of northwestern Australia provides hard evidence that collaborating with Indigenous rangers can change the outcome of science from failure to success.




Read more:
We’ve cracked the cane toad genome, and that could help put the brakes on its invasion


Fighting a toxic invader

This research had a simple but ambitious aim: to develop new ways to save at-risk predators such as lizards and quolls from the devastating impacts of invasive cane toads.

Cane toads are invasive and highly toxic to Australia’s apex predators.
David Nelson

All across tropical Australia, the arrival of these gigantic alien toads has caused massive die-offs among meat-eating animals such as yellow-spotted monitors (large lizards in the varanid group) and quolls (meat-eating marsupials). Mistaking the new arrivals for edible frogs, animals that try to eat them are fatally poisoned by the toad’s powerful toxins.

Steep population declines in these predators ripple out through entire ecosystems.

But we can change that outcome. We expose predators to a small cane toad, big enough to make them ill but not to kill them. The predators learn fast, and ignore the larger (deadly) toads that arrive in their habitats a few weeks or months later. As a result, our trained predators survive, whereas their untrained siblings die.




Read more:
What is a waterless barrier and how could it slow cane toads?


Conservation ‘on Country’

But it’s not easy science. The site is remote and the climate is harsh.

We and our collaborators, the Western Australian Department of Biodiversity, Conservation and Attractions, decided at the outset that we needed to work closely with the Indigenous Traditional Owners of the east Kimberley – the Balanggarra people.

So as we cruised across the floodplain on quad bikes looking for goannas, each team consisted of a scientist (university-educated, and experienced in wildlife research) and a Balanggarra Indigenous ranger.

Although our study species is huge – a male yellow-spotted monitor can grow to more than 1.7 metres in length and weigh more than 6kg – the animals are well-camouflaged and difficult to find.

Over an 18-month study, we caught and radio-tracked more than 80 monitors, taught some of them not to eat toads, and then watched with trepidation as the cane toad invasion arrived.




Read more:
Yes, you heard right: more cane toads really can help us fight cane toads


Excitingly, the training worked. Half of our trained lizards were still alive by the end of the study, whereas all of the untrained lizards died soon after toads arrived.

That positive result has encouraged a consortium of scientists, government authorities, conservation groups, landowners and local businesses to implement aversion training on a massive scale (see www.canetoadcoalition.com), with support from the Australian Research Council.

A yellow-spotted monitor fitted with a radio transmitter in our study. This medium-sized male was trained and lived for the entirety of the study in high densities of cane toads.
Georgia Ward-Fear, University of Sydney



Read more:
Teaching reptiles to avoid cane toads earns top honour in PM’s science prizes


Cross-cultural collaboration key to success

But there’s a twist to the tale, a vindication of our decision to make the project truly collaborative.

When we looked in detail at our data, we realised that the monitor lizards found by Indigenous rangers were different to those found by western scientists. The rangers found shyer lizards, often further away from us when sighted, motionless, and in heavy cover where they were very difficult to see.

Gregory Johnson, Balanggarra elder and ranger.
Georgia Ward-Fear

We don’t know how much the extraordinary ability of the rangers to spot those well-concealed lizards was due to genetics or experience – but there’s no doubt they were superb at finding lizards that the scientists simply didn’t notice.

And reflecting the distinctive “personalities” of those ranger-located lizards, they were the ones that benefited the most from aversion training. Taking a cautious approach to life, a nasty illness after eating a small toad was enough to make them swear off toads thereafter.

In contrast, most of the lizards found by scientists were bold creatures. They learned quickly, but when a potential meal hopped across the floodplain a few months later, the goanna seized it before recalling its previous experience. And even holding a toad briefly in the mouth can be fatal.

Comparisons of conditions under which lizards were initially sighted in the field by scientists and Indigenous rangers (a) proximity to lizards in metres (b) density of ground-cover vegetation (>30cm high) surrounding the lizard (c) intensity of light directly on lizard (light or shade) (d) whether the lizard was stationary or moving (i.e. walking or running). Sighting was considered more difficult if lizards were further away, in more dense vegetation, in shade, and stationary.
Georgia Ward-Fear, University of Sydney

As a result of the intersection between indigenous abilities and lizard personalities, the overall success of our project increased as a result of our multicultural team.

If we had just used the conventional model – university researchers doing all of the work, indigenous people asked for permission but playing only a minor role – our project could have failed, and the major conservation initiative currently underway may have died an early death.

So our study, now published in Conservation Letters, provides an unusual insight – backed up by evidence.

Moving beyond lip service, and genuinely involving Indigenous Traditional Owners in conservation research, can make all the difference in the world.

Georgia Ward-Fear (holding a yellow-spotted monitor) with Balanggarra Rangers Herbert and Wesley Alberts.
David Pearson, WA Department of Biodiversity, Conservation and Attractions

This research was published in collaboration with James “Birdy” Birch and his team of Balanggarra rangers in the eastern Kimberley.The Conversation

Georgia Ward-Fear, Post doctoral fellow and Conservation Ecologist , University of Sydney and Rick Shine, Professor in Evolutionary Biology, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Like cats and dogs: dingoes can keep feral cats in check



File 20190403 177175 6uzk99.jpg?ixlib=rb 1.1
Feral cats are linked to the extinction of at least 20 Australian mammals.
Shutterstock

Mike Letnic, UNSW and Ben Feit

The role of dingoes in the Australian landscape is highly debated between ecologists, conservationists and graziers. They kill livestock, but also hunt introduced animals and keep kangaroo populations in check.

Now new research sheds more light on the benefits dingoes bring to the outback. For the first time, our research clearly shows that dingoes suppress feral cat numbers.

Our research, published recently in Ecosystems, used the world’s largest fence to compare essentially identical environments with and without dingoes. Over the course of the six-year study, dingoes drove down cat numbers – and kept them down.




Read more:
A hidden toll: Australia’s cats kill almost 650 million reptiles a year


Feral cats are out of control

Feral cats are a serious conservation threat. They have been linked to the extinction of at least 20 mammal species in Australia and threaten the ongoing survival of more than 100 native species.

For our study, we asked whether “top-down” pressure from dingoes (through direct killing and competition for food) had a greater influence on controlling cat numbers than “bottom-up” effects (the availability of shared food sources preyed on by cats).

Dingoes drive down the population of introduced animals.
Kim/flickr, CC BY-SA

We conducted our study by comparing the numbers of dingoes, cats and their major prey species on either side of the dingo fence in the Strzelecki Desert. The fence runs along the borders of New South Wales and South Australia and was originally built to exclude dingoes from sheep grazing lands in NSW.

The state border follows the longitude line 141 east, so the fence does not demarcate any natural boundary. It simply cuts a straight line through sand dunes with similar landforms and vegetation on either side. Thus the dingo fence provides a unique opportunity to study apex predators’ effects on ecosystems: dingoes are common on the SA side, “outside” the fence, whereas on the NSW “inside” of the fence, dingoes are rare due to intensive persecution by humans.




Read more:
Let’s move the world’s longest fence to settle the dingo debate


We collected data from sites on either side of the fence in the Strzelecki Desert, at roughly four-month intervals between 2011 and 2017. Dingo and cat scat was collected at each site, to analyse and compare diets, and spotlight searches were used to record numbers of dingoes, feral cats, as well as two of their common shared food sources: rabbits and hopping mice.

Spotlight surveys revealed dingoes to be virtually absent from study areas inside the fence, with only four dingoes recorded during the study. Where dingoes were rare inside the fence, cat numbers closely followed fluctuations of their prey species consistently over the six-year span of our study. As prey numbers increased, cat numbers also increased, and similarly as prey numbers declined, cat numbers also declined.

A feral cat in outback Australia.
Shutterstock

Outside the fence, where dingoes were common, it was quite a different story. There, cat numbers were consistently lower, with numbers of both cats and dingoes following fluctuations in prey numbers across the first two years of the study. However, from 2013 onward, dingo numbers remained high and matched trends in their prey numbers for the remainder of the study.

During this time, cat numbers remained low, and by the end of 2015, cats had virtually disappeared from our study sites outside the fence and were not recorded during spotlight surveys between November 2015 and the end of our study in July 2017.

The most likely explanation for this drastic reduction in cat populations is through interference competition – either by dingoes killing some cats or by scaring others away from habitats in which they would usually hunt. Indeed, we occasionally found cat remains in dingo scats, which suggests dingoes prey on cats.

Although our scat analyses indicated that dingoes and cats eat similar foods, there was no evidence that competition for food was a major factor in how dingoes reduce cat populations. This is because prey were plentiful outside the fence, where dingoes were common and cats were rare.




Read more:
Why do some graziers want to retain, not kill, dingoes?


This research show how dingoes can help conservation efforts by suppressing feral cat populations. It adds to previous work showing dingoes are important in maintaining healthy ecosystems, as they reduce and eradicate feral herbivores like pigs and goats, and stop kangaroos from overpopulating districts.


This article was updated on April 5 to credit Ben Feit as a co-author.The Conversation

Mike Letnic, Professor, Centre for Ecosystem Science, UNSW and Ben Feit, Post-doctoral researcher

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Invasive ants: federal budget takes aim but will it be a lethal shot?



File 20190404 131415 1ag8r2w.jpg?ixlib=rb 1.1
Argentine ants are a fact of life in many parts of Australia, but can still potentially be banished from Norfolk Island.
Davefoc/Wikimedia Commons, CC BY-SA

Lori Lach, James Cook University

Amid all the usual items we expect to see in the federal budget was one that raised eyebrows: A$28.8 million for three ant eradication programs.

Yet amid the inevitable media puns about the government “upping the ant-e”, we should note that these funds are for the continuation of existing programs that have already attracted significant funding and made substantial progress. Stopping now would have meant previous funding was wasted.

The funds will go a long way towards protecting Australia’s economy and environment from the damage wrought by invasive ants. But despite the apparent cash splurge, it nevertheless falls short of what is really needed.

Of the $28.8 million, $18.3 million was for the National Red Imported Fire Ant Eradication Program. These funds are part of a $411 million, ten-year program begun in 2017 to eradicate red imported fire ants from southeast Queensland, the only place they are found in Australia.




Read more:
Cannibalism helps fire ants invade new territory


Removing these pests will avoid an estimated $1.65 billion in total costs to 19 different parts of the economy. With previous funding, the program eradicated these ants from 8,300 hectares near the Port of Brisbane, making it the world’s largest ant eradication to date.

The Yellow Crazy Ant Eradication Program was allocated $9.2 million over three years. Yellow crazy ants have caused a cascade of ecological effects on Christmas Island, and at their peak abundance temporarily blinded a Queensland cane farmer with their acid spray.

The Wet Tropics Management Authority, which runs the program, had requested $6 million per year for six years to continue removing the ant from in and around the Wet Tropics World Heritage Area. The federal funding is $3 million short of this, and the authority is still waiting to hear whether the Queensland government will provide the remainder.

Since 2013, the program has received $9.5 million from the federal government (and $3 million from the Queensland government). No yellow crazy ants have been observed in about half of the target area in more than a year. A yet-to-be published analysis estimates the benefit-cost ratio for the program as 178:1.

“It’s a mop-up operation… we’ve got our foot on the throat of this thing.”

A further $1.3 million was allocated to the Argentine Ant Eradication Strategy on Norfolk Island in the South Pacific. Argentine ants have invaded places with Mediterranean-type climates all over the world, including southwestern Western Australia and parts of southern Australia, and become firmly established. But unlike those areas, the population on Norfolk Island is still considered small enough to be eradicable, and federally funded efforts to remove them began in 2010.

Yellow crazy ants in Queensland and Argentine ants on Norfolk Island directly threaten World Heritage Areas. The ants can have significant impacts on native birds, mammals, insects, reptiles, amphibians, and plants. Getting rid of them is important for meeting Australia’s international obligations to protect World Heritage sites.

What is ant eradication?

Ant eradication means removing all individuals of a particular ant species from a given area.

The first step is to define the extent of that area. Depending on the species, this may involve visual searches and/or placing lures such as sausages, cat food, or jam to attract the ants. The public can help by notifying relevant authorities of unusual ants in their gardens, and by not transporting materials that have ants on them.

The second step is treatment. Currently, the only way to eradicate ants is with insecticidal baits. Ants’ social structure makes this particularly challenging: killing the queens is vital for eradication, but queens typically stay sheltered in the nest – the only ants we see out foraging are workers.

Some of the most problematic ant species can have hundreds of queens and tens of thousands of workers per nest. They can reach extraordinarily high densities, partly because invasive ant species, unlike most of our native ant species, do not fight one another for territories.

Yellow crazy ants, proving it is possible to feel sorry for a cockroach.
Bradley Rentz/Wikimedia Commons, CC BY-SA

Beating ants means turning their biology against them. Bait needs to be attractive enough for workers to bring back to the colony and share, but not so deadly that they die before they get there. (And yes, this means if you’re spraying foraging ants in your kitchen you won’t get rid them for good, because the queens are somewhere hidden, laying more eggs and making more ants.)

Most ant eradication programs take three to four years to fine-tune their baiting regime because of a multitude of factors that need to be considered, such as seasonal changes in ant foraging behaviour and food preference, and the desire to avoid harming non-target species. Typically, two to six treatments are required, depending on the ant species, the size of the area, and the habitat type.

Beating the 1%

The hardest part of ant eradication is the end-game. Getting rid of the final 1% requires first finding them. This may mean painstaking searches through hundreds of hectares of bushland and residential areas, and the placement of hundreds of thousands of lures. Detector dogs can be very helpful, but they cannot be used in all environments and also need substantial resources for training, handling, and maintenance.

Ironically, it is at this stage that public and political support for eradication programs is most likely to wane, because ant numbers are too low to be seen as a threat to the public, economy or environment. Yet it is vital not to stop now, or else the remaining 1% will simply build up their numbers again. Experienced staff are also lost when programs suffer cuts or delays in their funding.




Read more:
Eradicating fire ants is still possible, but we have to choose now


Disappointingly not mentioned in the budget was funding for eradicating electric ants. Like red imported fire ants, electric ants have a painful sting, and when left to multiply will eventually turn gardens and swimming pools into no-go zones. They also pose a significant threat to native animals such as the southern cassowary, and can blind animals as large as elephants.

They are currently only found in the Cairns region. The National Electric Ant Eradication Program, funded by federal and state governments, ran from 2006 until 2017 and had likely reduced numbers down to that last 1%. The program has been running on state funding with reduced staff since then, but several new detections in the past three months demonstrate the cost of the gap in funding.

In those inevitable “federal budget winners and losers” lists, invasive ants have found themselves firmly in the losers column for 2019. But it’s worth remembering that most of the world’s roughly 15,000 known ant species provide vital services for the functioning of our ecosystems.

They aerate soil and redistribute its nutrients, protect plants from herbivores, disperse seeds, and repurpose dead organisms. They may even help slow down the spread of those pesky invasive ants that are much less friendly.The Conversation

Lori Lach, Associate Professor, James Cook University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

What is a waterless barrier and how could it slow cane toads?



File 20190327 139349 gmn4ie.jpg?ixlib=rb 1.1
A dam near Gemtree, Northern Territory.
Shutterstock

Mike Letnic, UNSW

A federal parliamentary inquiry into stopping cane toads’ relentless march across Australia has proposed creating “waterless barriers” in the semi-arid land between Western Australia’s Kimberley and Pilbara regions.

Because cane toads need regular access to water to survive, the plan is to fence off man-made watering points like dams and tanks, creating the equivalent of a firebreak the toads cannot cross.

My colleagues and I have been working with the federal inquiry to create this proposal. Here are the facts.

What is a waterless barrier?

There are large areas of Australia that are naturally dry. Except after big rains, there’s very little above-ground water. When people began farming sheep and cattle out in the western ranges, they created artificial water points with the help of dams, tanks and bores.

These water points are refuges for cane toads during droughts and act as stepping-stones when it rains, because the toads can move safely from point to point. This is how they are colonising large areas of Australia.

But if the toads can’t reach open water they cannot live through a dry season. The proposal aims to restrict the toads’ access to the water, but still let the cattle drink.

The poisonous cane toads are considered non-native pests in Australia.
Shutterstock

What kind of fences are we talking about?

Many water sources are actually already inaccessible to cane toads. Steel or plastic tanks filled from pipelines or underground dams cannot be reached. Troughs give a very limited supply.

The main problem comes from turkeynest dams (these are classic dams: pools of water in the ground with a mounded earth edge). My colleagues and I did research years ago that found a simple 60cm fence is enough to keep cane toads out.




Read more:
We’ve cracked the cane toad genome, and that could help put the brakes on its invasion


This doesn’t mean fencing dams is easy: the stations where this would be most helpful are very remote and have plenty of water sources, so fencing (and maintaining) them all presents a logistical hurdle. However many stations are increasingly replacing dams with tanks, which serve the same purpose (and lose far less water to leakage and evaporation).

Cane toads need moisture to survive.
Shutterstock

Another promising development is the number of farmers installing “cut-off switches” for the pumps that fill dams. This is a move away from the older system of turning on a pump and leaving it on until the generator ran out of fuel – perhaps days later. This meant considerable overflow, and created ideal conditions for cane toads. Tanks with solar panels and a cut-off switch that senses when a trough is full can save farms water, power and money, as well as stranding cane toads.




Read more:
Yes, you heard right: more cane toads really can help us fight cane toads


Would it affect native animals?

It’s true some of these dams are now part of the landscape – they’ve been there for a long time. On the other hand, we’re talking about areas that did not originally have much above-ground water before people showed up, and most animals native to the area don’t really need the water (of course, they will drink it if it’s there).

The other part of the equation is the presence of cane toads seriously threatens native wildlife. Cane toads are poisonous and kill native predators, with devastating effects to the environment.

Herd cows drinking water from a Northern Territory dam.
Shutterstock

How big does the barrier need to be, and won’t the rains let the toads cross anyway?

The cattle stations in northern Australia are huge – often 5,000ha. On this scale, just a handful of stations could make a huge difference.

Research suggests a barrier of 50km across could stop toads in their tracks.

The distance a toad can travel in a day varies highly with the environment and weather. In a hot, humid environment a toad might be able to travel roughly 20-30km during a wet season; during cold or dry weather they’re stuck where they are.

Therefore even after heavy rains there won’t be enough water in standing puddles or river beds to let the toads cross the waterless barrier. The puddles would dry out, leaving the toads stranded and without access to dams they would quickly die.




Read more:
The economics of ‘cash for cane toads’ – a textbook example of perverse incentives


Why should we do it?

Cane toads haven’t been found in this part of Australia, but we believe they will be soon. By creating waterless barriers we can cut them off.

Excitingly, this strategy also has potential to be used in other parts of the country to push cane toads back, reclaiming invaded areas.

Most of the pests Australia has really gone to war against affect agriculture. Cane toads, on the other hand, are an environmental pest: they wreak havoc on native fauna, but have comparatively little impact on cash crops.

Eradication of environmental pests receives comparatively little resources. This proposal would be both a win against a devastating invader, and also a symbol of how much we care for our natural environment, and how important it is to protect it.The Conversation

Mike Letnic, Professor, Centre for Ecosystem Science, UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Stowaway mozzies enter Australia from Asian holiday spots – and they’re resistant to insecticides



File 20190320 93051 1rj4pog.jpg?ixlib=rb 1.1
We might not be able to use common insecticides to kill mosquitoes that arrive from other countries.
from www.shutterstock.com

Tom Schmidt, University of Melbourne; Andrew Weeks, University of Melbourne, and Ary Hoffmann, University of Melbourne

Planning a trip to the tropics? You might end up bringing home more than just a tan and a towel.

Our latest research looked at mosquitoes that travel as secret stowaways on flights returning to Australia and New Zealand from popular holiday destinations.

We found mosquito stowaways mostly enter Australia from Southeast Asia, and enter New Zealand from the Pacific Islands. Worse still, most of these stowaways are resistant to a wide range of insecticides, and could spread disease and be difficult to control in their new homes.




Read more:
Why naming all our mozzies is important for fighting disease


Secret stowaways

Undetected insects and other small creatures are transported by accident when people travel, and can cause enormous damage when they invade new locations.

Of all stowaway species, few have been as destructive as mosquitoes. Over the past 500 years, mosquitoes such as the yellow fever mosquito (Aedes aegypti) and Asian tiger mosquito (Aedes albopictus) have spread throughout the world’s tropical and subtropical regions.

Dengue spread by Aedes aegypti mosquitoes now affects tens to hundreds of millions of people every year.




Read more:
Explainer: what is dengue fever?


Mosquitoes first travelled onboard wooden sailing ships, and now move atop container ships and within aircraft.

Adults in your luggage

You probably won’t see Aedes mosquitoes buzzing about the cabin on your next inbound flight from the tropics. They are usually transported with cargo, either as adults or occasionally as eggs (that can hatch once in contact with water).

It only takes a few Aedes stowaways to start a new invasion. In Australia, they’ve been caught at international airports and seaports, and in recent years there has been a large increase in detections.

Aedes aegypti mosquito detections per year at Australian international terminals – passenger airline terminals in white; seaports or freight terminals in black.
Tom Schmidt, Author provided



Read more:
Curious Kids: When we get bitten by a mosquito, why does it itch so much?


In our new paper, we set out to determine where stowaway Aedes aegypti collected in Australia and New Zealand were coming from. This hasn’t previously been possible.

Usually, mosquitoes are only collected after they have “disembarked” from their boat or plane. Government authorities monitor these stowaways by setting traps around airports or seaports that can capture adult mosquitoes. Using this method alone, they’re not able to tell which plane they came on.

But our approach added another layer: we looked at the DNA of collected mosquitoes. We knew from our previous work that the DNA from any two mosquitoes from the same location (such as Vietnam, for example) would be more similar than the DNA from two mosquitoes from different locations (such as Vietnam and Brazil).

So we built a DNA reference databank of Aedes aegypti collected from around the world, and compared the DNA of the Aedes aegypti stowaways to this reference databank. We could then work out whether a stowaway mosquito came from a particular location.

We identified the country of origin of most of the Aedes aegypti stowaways. The majority of these mosquitoes detected in Australia are likely to have come from flights originating in Bali.

Here’s where the Aedes aegypti mozzies come into Australia and New Zealand from.
Tom Schmidt, Author provided

Now we can work with these countries to build smarter systems for stopping the movement of stowaways.

As the project continues, we will keep adding new collections of Aedes aegypti to our reference databank. This will make it easier to identify the origin of future stowaways.

New mosquitoes are a problem

As Aedes aegypti has existed in Australia since the 19th century, the value of this research may seem hard to grasp. Why worry about invasions by a species that’s already here? There are two key reasons.

Currently, Aedes aegypti is only found in northern Australia. It is not found in any of Australia’s capital cities where the majority of Australians live. If Aedes aegypti established a population in a capital city, such as Brisbane, there would be more chance of the dengue virus being spread in Australia.

The other key reason is because of insecticide resistance. In places where people use lots of insecticide to control Aedes aegypti, the mosquitoes develop resistance to these chemicals. This resistance generally comes from one or more DNA mutations, which are passed from parents to their offspring.




Read more:
The battle against bugs: it’s time to end chemical warfare


Importantly, none of these mutations are currently found in Australian Aedes aegpyti. The danger is that mosquitoes from overseas could introduce these resistance mutations into Australian Aedes aegpyti populations. This would make it harder to control them with insecticides if there is a dengue outbreak in the future.

In our study, we found that every Aedes aegpyti stowaway that had come from overseas had at least one insecticide resistance mutation. Most mosquitoes had multiple mutations, which should make them resistant to multiple types of insecticides. Ironically, these include the same types of insecticides used on planes to stop the movement of stowaways.

Other species to watch

We can now start tracking other stowaway species using the same methods. The Asian tiger mosquito (Aedes albopictus) hasn’t been found on mainland Australia, but has invaded the Torres Strait Islands and may reach the Cape York Peninsula soon.

Worse still, it is even better than Aedes aegypti at stowing away, as Aedes albopictus eggs can handle a wider range of temperatures.

A future invasion of Aedes albopictus could take place through an airport or seaport in any major Australian city. Although it is not as effective as Aedes aegypti at spreading dengue, this mosquito is aggressive and has a painful bite. This has given it the nickname “the barbecue stopper”.

Beyond mosquitoes, our DNA-based approach can also be applied to other pests. This should be particularly important for protecting Australia’s A$45 billion dollar agricultural export market as international movement of people and goods continues to increase.




Read more:
Explainer: what is Murray Valley encephalitis virus?


The Conversation


Tom Schmidt, Research fellow, University of Melbourne; Andrew Weeks, Senior Research Fellow, University of Melbourne, and Ary Hoffmann, Professor, School of BioSciences and Bio21 Institute, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.