The backflip over Sydney’s marine park is a defiance of science



File 20180920 129850 m92htv.jpg?ixlib=rb 1.1
Sydney’s iconic beaches are not yet part of a marine park.
John Turnbull

David Booth, University of Technology Sydney and John Turnbull, UNSW

The New South Wales government’s decision to back away from establishing no-fishing zones in waters around Sydney leaves significant question marks over the plan, which is open for public consultation until September 27.

Fisheries Minister Niall Blair explained the apparent backflip by saying he was “confident that fishing is not the key threat to the sustainability of our marine environment”, after receiving what he described as “robust” feedback from local communities and anglers.

The original plans for Sydney’s marine park. Click image to enlarge.
NSW government

The originally proposed Sydney Marine Park comprised 17 “sanctuary zones” (totalling 2.4% of the area, including estuaries), 3 “conservation zones” totalling 2.6%, and 21 “special purpose zones”, which would allow (and in some cases protect) fishing.

Sanctuary zones allow no fishing; conservation zones allow taking of lobster and abalone (see below); and special purpose zones have a range of restrictions or allowances, not necessarily of any conservation benefit. For instance, four offshore artificial reefs are classed as special purpose zones.

The plans cover the waters around Sydney, stretching from Newcastle in the north to Wollongong in the south. Formally known as the Hawkesbury Shelf marine bioregion, it is the only bioregion wholly in NSW that does not have a marine park. This is despite Sydney’s magnificent array of underwater and coastal habitats, which are home to more fish species than the entire British Isles.




Read more:
Recreational fishing in marine parks: you can’t be serious!


New zones and ranked threats

The original marine park proposal was far from ideal. A good marine park should have a string of closely connected sanctuary zones, but there was a large gap from southern Sydney to Wollongong where no sanctuary zones were proposed.

Instead, there was a new “conservation zone” to allow fishing for lobster and abalone. Yet lobster in particular are important to this ecosystem, because they protect kelp by preying on sea urchins.

Threats to the marine region around Sydney, as ranked in a NSW government report. Click image to enlarge.
NSW government

The NSW government based its earlier proposal on a principle called TARA, short for “threat and risk assessment”, in which all perceived factors are ranked according to their environmental, social and economic outcomes.

While other major threats such as climate change and pollution are ranked highly, fishing doesn’t appear until number 18 on the government’s list (see page 8 here. One reason for this is that fishing is split into eight categories (such as “recreational fishing by boat – line and trap”), masking its overall impact. Even 4WDs on beaches are ranked as a greater threat to the environment than many types of fishing.

Premier Gladys Berejiklian’s press release about the marine park public consultation didn’t mention the environmental threat posed by fishing at all. Yet there is clear evidence that fishing directly harms fish stocks.

One recent study shows that stocks of inshore fish species have declined in Australia by 30% in a decade, except in sanctuary zones. Worldwide, sanctuary zones (also called no-take zones) have been shown to help fish grow larger and more abundant. And recent studies in NSW coastal waters have reiterated the benefits of no-take zones for species such as morwong, bream, and snapper.

Partial protection doesn’t work

The latest proposals, which would allow recreational but not commercial fishing, would be much less effective than full protection. One recent study suggested that partial protection is no better than no protection at all.

According to a NSW government estimate, recreational fishing removes more than 3 million fish, crustaceans and molluscs from NSW coastal waters every year. But marine parks are primarily about conservation, and this requires us to face some stark realities. With more than 8 million people likely to call Sydney home in the next 40 years, pressures on our coasts will only increase.

Sanctuary zones are one of the best available conservation tools to guard against these impacts. These zones have also been shown to make wildlife more resilient to climate change.

Even before the government’s decision to rescind the proposed sanctuary zones, the original plan for no-take zones to cover just 2.4% of the region was a severe compromise. By comparison, the Great Barrier Reef Marine Park has 30% sanctuary zone coverage, and the rest of NSW has 7-8%. International best practice recommends at least 20%, and even the Commonwealth Marine Reserves Management Plan offers 6% no-take coverage.

But now, with no sanctuary zones, Sydney’s proposed “marine park” is not worthy of the name.

Wrong priorities

A peculiar contradiction is that despite one-quarter of the listed threats being fishing-related, the NSW government’s marine estate management strategy includes an initiative to encourage fishing. Pollution is also a high-priority threat, and fishing is the largest source of subtidal debris.

Kelp and a tangle of discarded fishing line.
John Turnbull

If local-level threats such as fishing and litter are not dealt with, resilience to climate change suffers as a result. We must tackle all threats – overfishing, pollution, climate change – and not shy away from one because it’s politically unpalatable.




Read more:
Marine parks for fish and people: here’s how to do it


It is frustrating that the NSW government has opted to abolish these marine sanctuaries before the public consultation was complete. The wider public understands the value of sanctuary zones, as indicated in recent opinion polls showing clear support for the original plans among Sydneysiders – even many of those who fish.

Some fishers are now calling for sanctuary zones to be scrapped or wound back in other iconic NSW marine parks, such as Lord Howe Island and Solitary Islands. This move would be a defiance of the science. The evidence shows that sanctuary zones are essential for restoring and preserving our marine estate for future generations.The Conversation

David Booth, Professor of Marine Ecology, University of Technology Sydney and John Turnbull, , UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

Sydney’s closer to being a zero-carbon city than you think


File 20171130 12069 1wyp7t6.jpg?ixlib=rb 1.1
The potential clean energy sources are all around Sydney, just waiting to be harnessed.
Author provided

Rob Roggema, University of Technology Sydney

You live in one of the sunniest countries in the world. You might want to use that solar advantage and harvest all this free energy. Knowing that solar panels are rapidly becoming cheaper and have become feasible even in less sunny places like the UK, this should be a no-brainer.

Despite this, the Australian government has taken a step backwards at a time when we should be thinking 30 years ahead.


Further reading: Will the national energy guarantee hit pause on renewables?


Can we do it differently? Yes, we can! My ongoing research on sustainable urbanism makes it clear that if we use the available renewable resources in the Sydney region we do not need any fossil resource any more. We can become zero-carbon. (With Louisa King and Andy Van den Dobbelsteen, I have prepared a forthcoming paper, Towards Zero-Carbon Metropolitan Regions: The Example of
Sydney, in the journal SASBE.)

Enough solar power for every household

Abundant solar energy is available in the Sydney metropolitan area. If 25% of the houses each installed 35 square metres of solar panels, this could deliver all the energy for the city’s households.

We conservatively estimate a total yield of 195kWh/m2 of PV panel placed on roofs or other horizontal surfaces. The potential area of all Sydney council precincts suited for PV is estimated at around 385km2 – a quarter of the entire roof surface.

We calculate the potential total solar yield at 75.1TWh, which is more than current domestic household energy use (65.3TWh, according to the Jemena energy company).


Further reading: What’s the net cost of using renewables to hit Australia’s climate target?


Wind turbines to drive a whole city

If we install small wind turbines on land and larger turbines offshore we can harvest enough energy to fuel our electric vehicle fleet. Onshore wind turbines of 1-5MW generating capacity can be positioned to capture the prevailing southwest and northeast winds.

The turbines are placed on top of ridges, making use of the funnel effect to increase their output. We estimate around 840km of ridge lines in the Sydney metropolitan area can be used for wind turbines, enabling a total of 1,400 turbines. The total potential generation from onshore wind turbines is 6.13TWh.

Offshore turbines could in principle be placed everywhere, as the wind strength is enough to create an efficient yield. The turbines are larger than the ones on shore, capturing 5-7.5MW each, and can be placed up to 30km offshore. With these boundary conditions, an offshore wind park 45km long and 6km wide is possible. The total offshore potential then is 5.18TWh.

Altogether, then, we estimate the Sydney wind energy potential at 11.3TWh.

Around 840km of ridge lines (marked in yellow and red) in the Sydney metropolitan area can be used for wind turbines.
Author provided

Further reading: FactCheck Q&A: is coal still cheaper than renewables as an energy source?


Turning waste into biofuels

We can turn our household waste and green waste from forests, parks and public green spaces into biogas. We can then use the existing gas network to provide heating and cooling for the majority of offices.

Biomass from domestic and green waste will be processed through anaerobic fermentation in old power plants to generate biogas. Gas reserves are created, stored and delivered through the existing power plants and gas grid.


Further reading: Biogas: smells like a solution to our energy and waste problems


Algae has enormous potential for generating bio-energy. Algae can purify wastewater and at the same be harvested and processed to generate biofuels (biodiesel and biokerosene).

Specific locations to grow algae are Botany Bay and Badgerys Creek. It’s noteworthy that both are close to airports, as algae could be important in providing a sustainable fuel resource for planes.

Using algae arrays to treat the waste water of new precincts, roughly a million new households as currently planned in Western Sydney, enables the production of great quantities of biofuel. Experimental test fields show yields can be high. A minimum of 20,000 litres of biodiesel per hectare of algae ponds is possible if organic wastewater is added. This quantity is realisable in Botany Bay and in western Sydney.

Biomass fermentation of household and green waste and wastewater treatment using algae arrays can generate biogas, biodiesel and biokerosene.
Author provided

Further reading: Biofuel breakthroughs bring ‘negative emissions’ a step closer


Extracting heat from beneath the city

Shallow geothermal heat can be tapped through heat pumps and establishing closed loops in the soil. This can occur in large expanses of urban developments within the metropolitan area, which rests predominantly on deposits of Wianamatta shale in the west underlying Parramatta, Liverpool and Penrith.

Where large water surfaces are available, such as in Botany Bay or the Prospect Reservoir, heat can also be harvested from the water body.

The layers of the underlying Hawkesbury sandstone, the bedrock for much of the region, can yield deep geothermal heat. This is done by pumping water into these layers and harvesting the steam as heat, hot water or converted electricity.

Sydney’s geology offers sources of both shallow and deep theothermal heat.
Author provided

Further reading: Explainer: what is geothermal energy?


Hydropower from multiple sources

The potential sources of energy from hydro generation are diverse. Tidal energy can be harvested at the entrances of Sydney Harbour Bay and Botany Bay, where tidal differences are expected to be highest.

Port Jackson, the Sydney Harbour bay and all of its estuaries have a total area of 55km2. With a tidal difference of two metres, the total maximum energy potential of a tidal plant would be 446TWh. If Sydney could harvest 20% of this, that would be more than twice the yield of solar panels on residential roofs.

If we use the tide to generate electricity, we can also create a surge barrier connecting Middle and South Head. Given the climatic changes occurring and still ahead of us, we need to plan how to protect the city from the threats of future cyclones, storm surges and flooding.

I have written here about the potential benefits of artificially creating a Sydney Barrier Reef. The reef, 30km at most out at sea, would provide Sydney with protection from storms.

At openings along the reef, wave power generators can be placed. Like tidal power, wave power can be calculated: mass displacement times gravity. If around 10km of the Sydney shoreline had wave power vessels, the maximum energy potential would be 3.2TWh.

In the mouths of the estuaries of Sydney Harbour and Botany Bay, freshwater meets saltwater. These places have a large potential to generate “blue energy” through reverse osmosis membrane technology.

To combine protective structures with tidal generating power, an open closure barrier is proposed for the mouth of Sydney Harbour. The large central gates need to be able to accommodate the entrance of large cruise ships and to close in times of a storm surge. At the same time, a tidal plant system operates at the sides of the barrier.

An artist’s impression of the Sydney Harbour surge barrier and tidal plant.
Drawing: Andy van den Dobbelsteen, Author provided

Further reading: Catching the waves: it’s time for Australia to embrace ocean renewable energy


Master plan for a zero-carbon city

All these potential energy sources are integrated into our Master Plan for a Zero-Carbon Sydney. Each has led to design propositions that together can create a zero-carbon city.

The Zero-Carbon Sydney Master Plan maps out how the city can be fossil-free.
Author provided

The ConversationThe research shows there is enough, more than enough, potential reliable renewable energy to supply every household and industry in the region. What is needed is an awareness that Australia could be a global frontrunner in innovative energy policy, instead of a laggard.

Rob Roggema, Professor of Sustainable Urban Environments, University of Technology Sydney

This article was originally published on The Conversation. Read the original article.

Australia: Sydney – Green and Golden Bell Frog


The link below is to a media release concerning the Green and Golden Bell Frog, an endangered frog species in New South Wales, Australia.

For more visit:
http://www.environment.nsw.gov.au/media/OEHMedia17071801.htm

The Sydney Barrier Reef: engineering a natural defence against future storms


Rob Roggema, University of Technology Sydney

The risk of more severe storms and cyclones in the highly urbanised coastal areas of Newcastle, Sydney and Wollongong might not be acute, but it is a real future threat with the further warming of the southern Pacific Ocean. One day a major storm – whether an East Coast Low or even a cyclone – could hit Sydney. The Conversation

With higher ocean temperatures killing and bleaching coral along the Great Barrier Reef to the north, we could also imagine where the right temperatures for a coral reef would be in a warmer climate. Most probably, this would be closer to the limits of the low latitudes, hence in front of the Sydney metro area.

We should then consider whether it is possible to help engineer a natural defence against storms, a barrier reef, should warming oceans make conditions suitable here.

Ocean warming trend is clear

The oceans are clearly warming at an alarming rate, with the unprecedented extent and intensity of coral bleaching events a marker of rising temperatures. After the 2016-2017 summer, coral bleaching affected two-thirds of the Great Barrier Reef.

On the other side of the Pacific, sea surface temperatures off Peru’s northern coast have risen 5-6℃ degrees above normal. Beneath the ocean surface, the warming trend is consistent too.

The East Australian Current keeps the waters around Lord Howe Island warm enough to sustain Australia’s southernmost coral reef. The waters off Sydney are just a degree or two cooler.

With the East Australian Current now extending further south, the warming of these south-eastern coastal waters might be enough in a couple of decades for Nemo to swim in reality under Sydney Harbour Bridge.

This shift in ocean temperatures is expected to drive strong storms and inland floods, according to meteorologists.

On top of this, when we plot a series of maps since 1997 of cyclone tracks across the Pacific, it shows a slight shift to more southern routes. These cyclones occur only in the Tasman Sea and way out from the coast, but, still, there is a tendency to move further south. The northern part of New Zealand recently experienced the impacts this could have.

Think big to prepare for a big storm

If we would like to prevent what Sandy did to New York, we need to think big.

If we don’t want a storm surge entering Parramatta River, flooding the low-lying areas along the peninsulas, if we don’t want flash-flooding events as result of river discharges, if we don’t want our beaches to be washed away, if we want to keep our property along the water, and if we want to save lives, we’d better prepare to counter these potential events through anticipating their occurrence.

The coast is the first point where a storm impacts the city. Building higher and stronger dams have proven to be counterproductive. Once the dam breaks or overflows the damage is huge. Instead we should use the self-regenerating defensive powers nature offers us.

Thinking big, we could design a “Sydney Barrier Reef”, which allows nature to regenerate and create a strong and valuable coast.

The first 30-40 kilometres of the Pacific plateau is shallow enough to establish an artificial reef. The foundations of this new Sydney Barrier Reef could consist of a series of concrete, iron or wooden structures, placed on the continental shelf, just beneath the water surface. Intelligently composed to allow the ocean to bring plants, fish and sand to attach to those structures, it would then start to grow as the base for new coral.

This idea has not been tested for the Sydney continental flat yet. But in other parts of the world experiments with artificial reefs seem promising. At various sites, ships, metro carriages and trains seem to be working as the basis for marine life to create a new underworld habitat

The Sydney Barrier Reef will have the following advantages:

  1. Over decades a natural reef will grow. Coral will develop and a new ecosystem will emerge.

  2. This reef will protect the coast and create new sandbanks, shallow areas and eventually barrier islands, as the Great Barrier Reef has done.

  3. It will increase the beach area, because the conditions behind the reef will allow sediments to settle.

  4. It creates new surfing conditions as a result of the sandbanks.

  5. It will protect Sydney from the most severe storm surges as it breaks the surge.

  6. It will present a new tourist attraction of international allure.

Let’s create a pilot project as a test. Let’s start to design and model the pilot to investigate what happens in this particular location. Let’s simulate the increase of temperature over time and model the impact of a cyclone.

Let’s create, so when Sandy hits Sydney, we will be better protected.

Rob Roggema, Professor of Sustainable Urban Environments, University of Technology Sydney

This article was originally published on The Conversation. Read the original article.