Australia: Sydney – Green and Golden Bell Frog


The link below is to a media release concerning the Green and Golden Bell Frog, an endangered frog species in New South Wales, Australia.

For more visit:
http://www.environment.nsw.gov.au/media/OEHMedia17071801.htm

Advertisements

The Sydney Barrier Reef: engineering a natural defence against future storms


Rob Roggema, University of Technology Sydney

The risk of more severe storms and cyclones in the highly urbanised coastal areas of Newcastle, Sydney and Wollongong might not be acute, but it is a real future threat with the further warming of the southern Pacific Ocean. One day a major storm – whether an East Coast Low or even a cyclone – could hit Sydney. The Conversation

With higher ocean temperatures killing and bleaching coral along the Great Barrier Reef to the north, we could also imagine where the right temperatures for a coral reef would be in a warmer climate. Most probably, this would be closer to the limits of the low latitudes, hence in front of the Sydney metro area.

We should then consider whether it is possible to help engineer a natural defence against storms, a barrier reef, should warming oceans make conditions suitable here.

Ocean warming trend is clear

The oceans are clearly warming at an alarming rate, with the unprecedented extent and intensity of coral bleaching events a marker of rising temperatures. After the 2016-2017 summer, coral bleaching affected two-thirds of the Great Barrier Reef.

On the other side of the Pacific, sea surface temperatures off Peru’s northern coast have risen 5-6℃ degrees above normal. Beneath the ocean surface, the warming trend is consistent too.

The East Australian Current keeps the waters around Lord Howe Island warm enough to sustain Australia’s southernmost coral reef. The waters off Sydney are just a degree or two cooler.

With the East Australian Current now extending further south, the warming of these south-eastern coastal waters might be enough in a couple of decades for Nemo to swim in reality under Sydney Harbour Bridge.

This shift in ocean temperatures is expected to drive strong storms and inland floods, according to meteorologists.

On top of this, when we plot a series of maps since 1997 of cyclone tracks across the Pacific, it shows a slight shift to more southern routes. These cyclones occur only in the Tasman Sea and way out from the coast, but, still, there is a tendency to move further south. The northern part of New Zealand recently experienced the impacts this could have.

Think big to prepare for a big storm

If we would like to prevent what Sandy did to New York, we need to think big.

If we don’t want a storm surge entering Parramatta River, flooding the low-lying areas along the peninsulas, if we don’t want flash-flooding events as result of river discharges, if we don’t want our beaches to be washed away, if we want to keep our property along the water, and if we want to save lives, we’d better prepare to counter these potential events through anticipating their occurrence.

The coast is the first point where a storm impacts the city. Building higher and stronger dams have proven to be counterproductive. Once the dam breaks or overflows the damage is huge. Instead we should use the self-regenerating defensive powers nature offers us.

Thinking big, we could design a “Sydney Barrier Reef”, which allows nature to regenerate and create a strong and valuable coast.

The first 30-40 kilometres of the Pacific plateau is shallow enough to establish an artificial reef. The foundations of this new Sydney Barrier Reef could consist of a series of concrete, iron or wooden structures, placed on the continental shelf, just beneath the water surface. Intelligently composed to allow the ocean to bring plants, fish and sand to attach to those structures, it would then start to grow as the base for new coral.

This idea has not been tested for the Sydney continental flat yet. But in other parts of the world experiments with artificial reefs seem promising. At various sites, ships, metro carriages and trains seem to be working as the basis for marine life to create a new underworld habitat

The Sydney Barrier Reef will have the following advantages:

  1. Over decades a natural reef will grow. Coral will develop and a new ecosystem will emerge.

  2. This reef will protect the coast and create new sandbanks, shallow areas and eventually barrier islands, as the Great Barrier Reef has done.

  3. It will increase the beach area, because the conditions behind the reef will allow sediments to settle.

  4. It creates new surfing conditions as a result of the sandbanks.

  5. It will protect Sydney from the most severe storm surges as it breaks the surge.

  6. It will present a new tourist attraction of international allure.

Let’s create a pilot project as a test. Let’s start to design and model the pilot to investigate what happens in this particular location. Let’s simulate the increase of temperature over time and model the impact of a cyclone.

Let’s create, so when Sandy hits Sydney, we will be better protected.

Rob Roggema, Professor of Sustainable Urban Environments, University of Technology Sydney

This article was originally published on The Conversation. Read the original article.

Cuts to WaterNSW’s science staff will put Sydney’s water quality at risk


Ian Wright, Western Sydney University

The recent axing of five of the six senior scientists charged with protecting the health and safety of Sydney’s drinking water has understandably created concerns.

This follows last year’s merger of the New South Wales State Water Corporation and the Sydney Catchment Authority, creating a single body called WaterNSW to oversee water for the entire state. Later in the year the newly created agency suffered around 80 job cuts.

Domestic water supply systems are generally managed in ways that eliminate or reduce any possible risk to water quality. It appears to be problematic that the new agency loses its specific focus on Sydney’s water supply at the same time that it loses its most knowledgeable and experienced staff.

Water big deal

Sydney has Australia’s biggest and most complex domestic water supply network. In 2013-14 the city’s 4.5 million inhabitants used 536,607 million litres of water – roughly equivalent to an Olympic swimming pool of water every hour.

The challenge of supplying the greater Sydney population with clean, safe and reliable water has not always been met. In 1998, Sydneysiders were forced to boil their drinking water when the network was infected with Cryptosporidium and Giardia, after heavy rains washed these chlorine-resistant parasites into the water supply.

The pathogens were detected and nobody became seriously ill. Nevertheless the incident was a great embarrassment for the state government and tarnished Sydney Water’s coveted reputation for water cleanliness and safety.

The subsequent inquiry recommended that the catchments and water supply infrastructure become the responsibility of a separate agency, leading to the creation of the Sydney Catchment Authority (SCA) in 1999.

Science plan

The inquiry also pointed to a lack of scientific certainty about the sources of water supply contaminants, and how they should be dealt with. So the SCA developed an in-house team of scientists, and commissioned others from CSIRO and universities, to gather the expertise needed to provide safe and reliable water in the face of factors such as droughts, deluges, pollution and pathogens.

This scientific effort was no mean feat, given the size of Sydney’s water infrastructure and the SCA’s modest workforce of fewer than 300 staff. Sydney’s catchments collect water from an area covering 16,000 square km of land west and south of the city. The water is stored in 21 dams, including the massive Warragamba Dam. These are linked to consumers by a complex array of pipelines, tunnels and other infrastructure.

What’s more, the catchments themselves are extensively developed. More than 100,000 people (and many domesticated animals) live in the region. Towns such as Katoomba, Lithgow, Goulburn, Moss Vale, Bowral and Berrima all discharge their treated sewage waste into catchment waterways.

As a result, Sydney’s water catchments have many potential sources of pathogens, including those from human and animal waste. A crucial part of the SCA’s research was to determine which of these contaminants poses a serious threat to humans.

The scientific research improved routine operational monitoring of the effectiveness of the multiple barriers that protect the quality of the water from the headwaters of the catchment through various storages, filtration and treatment systems, to the reticulated network of pipes to the consumer.

The SCA science team has undertaken and published some of the world’s most thorough research on the effects of subsidence from coal mining and its impacts on surface waters, such as Waratah Rivulet, an important waterway that feeds the Woranora Dam.

The research thoroughly documents the changes in surface water flows and chemistry as the mine subsidence fractures the sandstone strata. The freshly fractured sandstone “captures” some or all of the stream flow and a complex array of chemical reactions occur, resulting in increased salinity and concentrations of metals zinc, nickel and cobalt. It is less clear how mining was able to inflict such environmental damage in such well-protected catchments.

Other sources of catchment water pollution received less attention from the SCA scientists even though coal mining in Sydney’s water catchments continues to generate considerable community concern. One example is Springvale Colliery in the Warragamba catchment near Lithgow. The mine has just been extended despite having been identified as the largest source of salinity in the Coxs River catchment, the second-biggest waterway that flows into Warragamba Dam.

Financial flows

Although the SCA was a government agency, it earned revenues of just over A$200 million in 2013-14 by selling water to its customers, principally Sydney Water. Rather than costing the NSW government money, it paid the state a dividend of A$27.9 million in 2013-14.

It remains to be seen whether WaterNSW, with its significantly smaller scientific team, can continue this vital research to protect Sydney’s catchments and infrastructure. I expect that its biggest customer, Sydney Water, and NSW Health will demand that rigorous scientific standards continue to be upheld.

In its previous incarnation, the Sydney Catchment Authority had as its motto “Healthy catchments, quality water – always”. It’s an important principle to uphold, and regional areas could benefit if this guiding principle pervades WaterNSW’s operations across the state. It needs to ensure that the high standards that protected Sydneysiders’ water are not sacrificed.

The Conversation

Ian Wright, Lecturer in Environmental Science, Western Sydney University

This article was originally published on The Conversation. Read the original article.

Australian Fisherman Removes Fishing Line From Whale’s Mouth


TIME

An Australian fisherman says he had a close encounter with a whale when it apparently came looking for help.

Ivan Iskenderian was fishing with some friends in Middle Harbour, Sydney, when he spotted a whale in trouble swimming next to his boat, according to Seven Network, an Australian television network.

“It was lifting its head up and it had a bit of plastic bag and some fishing line on its head,” Iskenderian told the network.

Iskenderian said the whale just swam up next to him and his friends.

“I sorta just reached out, (the whale) sorta wanted me to grab…

Read the rest of the story from our partners at NBC News

View original post