How New Zealand’s well-being budget delivers for the environment



One of the government’s spending priorities is a transformation towards a low-emissions economy.
from http://www.shutterstock.com, CC BY-ND

Troy Baisden, University of Waikato

Internationally, the Ardern government is seen as a progressive beacon, and its recent budget was watched closely as a milestone in the “year of delivery” for Ardern’s well-being agenda.

The budget is a leap ahead of other Western democracies in that it replaces the gross domestic product (GDP) with a set of well-being measures and six focal areas to justify investment. Transforming the economy and society towards environmental sustainability is one of them.

The recently released state of the environment report highlighted deep concerns about trends in biodiversity conservation, greenhouse gas emissions and freshwater health. Budget 2019 signals a meaningful shift, but more in intention than sufficient funding.




Read more:
NZ has dethroned GDP as a measure of success, but will Ardern’s government be transformational?


Two tactics for delivery

Two very different tactics are at play in the well-being budget, and both can be seen in areas related to the environment. First, in conservation, government officials know where support is needed and can use the budget to address historic underinvestment.

Where the path for delivery isn’t clear, the government has budgeted a minimum credible investment over four years and is working through the complexity of directing that investment. This second tactic dominates climate change, freshwater, and their convergence in sustainable land use.

To better understand how these tactics play out, it helps to look at the way information is presented in New Zealand’s budgets, which are seen as a model for transparency. Announcements describe investment of new money, typically over four years, but not necessarily how the money will be spread out across the years. More detailed information that appears with the budget helps to clarify when spending will occur, as well as whether spending will really happen.

A budget includes main estimates, estimated actuals and actuals, listed over three years. These reveal useful insights, including a persistent pattern through the past decade of underspending compared to what was announced in budgets.

Conservation spending

The conservation budget provides a typical example, showing how significant the signalled increases in funding will be. Expenditure increases from steady budget estimates of less than NZ$450 million from 2008 to 2018 to NZ$600 million in 2020.

But from 2010 through to 2016, there was a persistent pattern of underspending by NZ$30–49 million each year, relative to the budget announcements. The pattern ended after becoming controversial, but resulted in a cumulative underinvestment of NZ$275 million, which the latest budget aims to redress.

Budget 2019 also highlights major investments in biosecurity. By 2020, this budget will be nearly double the NZ$205 million spent in 2017. Historically, funding for biosecurity has been stable but low compared to the benefits of maintaining New Zealand’s natural isolation from pests and disease. Such benefits are hard to measure until they are lost following an incursion of a new pest or disease.

Several such cases are a main driver of increased funding for biosecurity, including Mycoplasma bovis infecting cattle throughout much of New Zealand, the arrival of myrtle rust and the disease-causing Kauri dieback.

Climate change and freshwater

The budget includes a sustainable land use package of NZ$229 million over four years, including several components. It addresses the mounting environmental challenges facing agriculture. The sector generates excess nutrient flows to iconic lakes and rivers, and roughly half of New Zealand’s greenhouse gas emissions.




Read more:
New Zealand’s urban freshwater is improving, but a major report reveals huge gaps in our knowledge


The government has committed to transforming the economy toward sustainability, but the budget signals only the broad direction of investment. One clear signal in the budget is an end to government subsidies for intensifying agriculture, confirming last year’s decision to end support for large irrigation projects, on which the previous government spent NZ$13 million in 2017.

But most components in the new package will not reach full funding levels until the 2021 financial year. The amounts of funding signal a credible start, but are unlikely to be enough. On an annual basis, the new package is only about 0.14% of the NZ$40 billion value of land-based primary sector exports.

Past budgets show that complex expenditure that depends on further planning, reorganisation or new structures is often delayed beyond initial projections. This applies to this budget, too. A major freshwater taskforce is now underway but was delayed from its original plan, which means its work is not reflected in this budget. Reform of the software platform that links farm management to environmental regulations will receive NZ$30.5 million, but there are no clear objectives.

Overall, spending with an environmental classification increased 40% from NZ$0.92 billion in 2017 to NZ$1.28 billion last year. However, with a decrease to NZ$1.17 billion estimated for this year, it may make sense to ask whether the projected increase to NZ$1.55 billion for 2020 will be achieved.

To understand the challenges of funding complex environmental issues, we can look to the history of items in the budget – officially called appropriations – containing the words climate change. Budget projections went as high as NZ$64 million to be spent in 2009. But actual spending peaked at NZ$49 million in 2010. This spending bottomed out under NZ$12 million in 2014, and is estimated to be NZ$30 million this year. Estimated expenditure for 2020 exceeds the 2009–10 peak for the first time, at nearly NZ$70 million.

Estimates overshot actual spending by an average of NZ$7 million each year from 2010 through 2018. It makes sense to assume this signals a backlog of work to figure out what needs to be done on climate change issues.

Overall, for science and the environment, a first glance suggests this is hardly a “year of delivery”. Despite a focus on transformation in six areas of spending, including natural and social capital rather than GDP, the budget kicks any real plans for change down the road. But it prioritised achievable goals fairly well, given the big constraints posed by past underinvestment combined with a political commitment to fiscal responsibility.

If the budget succeeds in delivering for New Zealand’s environment, it will be by spending wisely to reverse past underinvestment in specific areas and ensuring that degradation stops and reverses in the relevant areas of environmental well-being. Success can only come through the latter, if groups like the climate change commission and freshwater task force forge clear paths through the political constraints that will guide investment in future budgets.The Conversation

Troy Baisden, Professor and Chair in Lake and Freshwater Sciences, University of Waikato

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

Australia should give victims a voice in tackling environmental crimes


Hadeel Al-Alosi, Western Sydney University and Mark Hamilton, UNSW

Contrary to popular belief, crimes against the environment are not “victimless”. They affect many people, animals, plants and landscapes. Crimes against the environment should not be taken lightly.

Broadly defined, environmental crimes are those that harm the environment. This includes acts such as polluting water or air, illegal fishing or trade in wildlife, and water theft. The international Environmental Investigation Agency reports environmental offending is “one of the most profitable forms of criminal activity”.

Australia is currently missing out on a hugely useful tool in the fight against environmental crime: restorative justice. This approach, which has been used successfully in New Zealand, deserves a nationwide commitment.




Read more:
Why a narrow view of restorative justice blunts its impact


Restorative justice conferencing

Australia is a world leader in using restorative justice to deal with both adult and young offenders.

Simply defined, restorative justice is a process in which the victim, offender, and other parties affected by a crime come together to discuss the aftermath of the offence and its impact. Each party plays a role in resolving the dispute with the help of an impartial facilitator.

Restorative justice is all about restoring harm, preventing the crime from reoccurring, and fixing (or building) relationships.

Research has found that, compared with the traditional criminal court process, restorative justice can reduce the chances of reoffending, increase victim satisfaction, and prompt offenders to feel more responsibility for their actions.

During a conference, victims can explain the effect a crime had on them, and ask questions – giving them a voice in traditional proceedings. Offenders can give reasons why the crime happened, and apologise. A range of other outcomes may be agreed to in a conference, including compensation and community work.

However, our research reveals that conferencing is underused when it comes to environmental crimes in Australia.

New Zealand leads the way

New Zealand is leading the world in using restorative justice to deal with environmental crimes. This is largely a result of two pieces of legislation passed in 2002. First, the Victims’ Rights Act 2002 says that, if possible, the court (or other representative) must arrange a restorative justice conference at a victim’s request. Second, the Sentencing Act 2002 makes it mandatory for a judge to take into account any outcomes reached in a conference.

While more research focusing on the precise benefits is needed, anecdotal evidence from shows New Zealand’s approach is effective. Several judges, prosecutors and facilitators have praised environmental justice in addressing environmental crime.




Read more:
Three rivers are now legally people – but that’s just the start of looking after them


Australia is failing to reap the benefits

Unlike New Zealand, Australian courts have not embraced restorative justice for environmental offending. In fact, Australia has only used restorative justice conferencing in two cases of environmental crime: Williams (2007) and Clarence Valley Council (2018).

Both Williams and Clarence Valley Council involved offending against Aboriginal cultural heritage, in breach of New South Wales’s National Parks and Wildlife Act. The outcomes reached in the conferences went well beyond what a court could have imposed on the offenders.

For example, in Williams, where a mining company built exploratory pits and a private railway siding across areas of Indigenous significance, the maximum penalty at the time was a fine of A$5,500 and 6 months’ imprisonment. The judge suggested the parties engage in a restorative justice conference, during which Craig Williams donated A$32,200 worth of items to the local Aboriginal people.

In Clarence Valley Council, which concerned the council cutting down a protected tree, the council agreed in the conference to donate A$300,000 to the local Aboriginal community to fund research into cultural heritage. The council also agreed to create employment opportunities and youth initiatives for Aboriginal people.

These outcomes are far better in repairing the damage done than a mere fine or prison term.

Complementary to traditional prosecution

Despite these significant benefits, restorative justice conferencing is not a replacement for prosecution. It should be used only after the offender has been assessed as suitable, as in the cases of Williams and Clarence Valley Council.

Restorative justice conferencing can be suitable for all sorts of environmental crime, from water pollution to breaches of planning laws. In the case of offending against Aboriginal cultural heritage, conferencing may be appropriate given its ability to give a voice to members of the Aboriginal community who would otherwise be unable to participate in the formal court process.

The ideal time to integrate conferencing is after conviction but before sentencing, which we refer to as a “back-end model” of conferencing (the method most commonly used in New Zealand).

Typically, a back-end model involves the prosecution bringing charges before the court. The court then considers holding a restorative justice conference and, if appropriate, the proceedings are postponed to allow the conference to occur. The matter is later referred back to the court for sentencing.

This creates an opportunity for the sentencing judge to consider any results from the conference, but maintains a court’s essential oversight role by ensuring the outcomes reached are adequate, achievable and legally binding.

A more environmentally friendly response

Restorative justice conferencing can provide a more effective way of dealing with environmental harms because, according to Trevor Chandler, a facilitator in Canada, “punishment makes people bitter, whereas restorative solutions make people better”.

Of course, conferencing is not without limits. Just as restorative justice may not work for all young people, it may not work for all environmental offenders. Conferencing can require more time, money and energy than traditional court processes. However, this may be an investment well worth making for the environment.




Read more:
Restorative justice may not work for all young offenders


It is time for Australia to follow New Zealand’s example by embracing a back-end model of restorative justice.

This would give victims a much-needed voice in the process, and create a better chance to heal ruptured relationships and restore the harm done to the environment as far as possible.The Conversation

Hadeel Al-Alosi, Lecturer, School of Law, Western Sydney University and Mark Hamilton, PhD Candiate (Law); Sessional tutor in criminology (School of Social Sciences), UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.

NZ introduces groundbreaking zero carbon bill, including targets for agricultural methane



Agriculture – including methane from cows and sheep – currently contributes almost half of New Zealand’s greenhouse emissions.
from http://www.shutterstock.com, CC BY-ND

Robert McLachlan, Massey University

New Zealand’s long-awaited zero carbon bill will create sweeping changes to the management of emissions, setting a global benchmark with ambitious reduction targets for all major greenhouse gases.

The bill includes two separate targets – one for the long-lived greenhouse gases carbon dioxide and nitrous oxide, and another target specifically for biogenic methane, produced by livestock and landfill waste.

Launching the bill, Prime Minister Jacinda Ardern said:

Carbon dioxide is the most important thing we need to tackle – that’s why we’ve taken a net zero carbon approach. Agriculture is incredibly important to New Zealand, but it also needs to be part of the solution. That is why we have listened to the science and also heard the industry and created a specific target for biogenic methane.

The Climate Change Response (Zero Carbon) Amendment Bill will:

  • Create a target of reducing all greenhouse gases, except biogenic methane, to net zero by 2050
  • Create a separate target to reduce emissions of biogenic methane by 10% by 2030, and 24-47% by 2050 (relative to 2017 levels)
  • Establish a new, independent climate commission to provide emissions budgets, expert advice, and monitoring to help keep successive governments on track
  • Require government to implement policies for climate change risk assessment, a national adaptation plan, and progress reporting on implementation of the plan.



Read more:
Climate change is hitting hard across New Zealand, official report finds


Bringing in agriculture

Preparing the bill has been a lengthy process. The government was committed to working with its coalition partners and also with the opposition National Party, to ensure the bill’s long-term viability. A consultation process in 2018 yielded 15,000 submissions, more than 90% of which asked for an advisory, independent climate commission, provision for adapting to the effects of climate change and a target of net zero by 2050 for all gasses.

Throughout this period there has been discussion of the role and responsibility of agriculture, which contributes 48% of New Zealand’s total greenhouse gas emissions. This is an important issue not just for New Zealand and all agricultural nations, but for world food supply.


Ministry for the Environment, CC BY-ND

Another critical question involved forestry. Pathways to net zero involve planting a lot of trees, but this is a short-term solution with only partly understood consequences. Recently, the Parliamentary Commissioner for the Environment suggested an approach in which forestry could offset only agricultural, non-fossil emissions.

Now we know how the government has threaded its way between these difficult choices.




Read more:
NZ’s environmental watchdog challenges climate policy on farm emissions and forestry offsets


Separate targets for different gases

In signing the Paris Agreement, New Zealand agreed to hold the increase in the global average temperature to well below 2°C and to make efforts to limit it to 1.5°C. The bill is guided by the latest Intergovernmental Panel on Climate Change (IPCC) report, which details three pathways to limit warming to 1.5°C. All of them involve significant reductions in agricultural methane (by 23%-69% by 2050).

Farmers will be pleased with the “two baskets” approach, in which biogenic methane is treated differently from other gasses. But the bill does require total biogenic emissions to fall. They cannot be offset by planting trees. The climate commission, once established, and the minister will have to come up with policies that actually reduce emissions.

In the short term, that will likely involve decisions about livestock stocking rates: retiring the least profitable sheep and beef farms, and improving efficiency in the dairy industry with fewer animals but increased productivity on the remaining land. Longer term options include methane inhibitors, selective breeding, and a possible methane vaccine.

Ambitious net zero target

Net zero by 2050 on all other gasses, including offsetting by forestry, is still an ambitious target. New Zealand’s emissions rose sharply in 2017 and effective mechanisms to phase out fossil fuels are not yet in place. It is likely that with protests in Auckland over a local 10 cents a litre fuel tax – albeit brought in to fund public transport and not as a carbon tax per se – the government may be feeling they have to tread delicately here.

But the bill requires real action. The first carbon budget will cover 2022-2025. Work to strengthen New Zealand’s Emissions Trading Scheme is already underway and will likely involve a falling cap on emissions that will raise the carbon price, currently capped at NZ$25.




Read more:
Why NZ’s emissions trading scheme should have an auction reserve price


In initial reaction to the bill, the National Party welcomed all aspects of it except the 24-47% reduction target for methane, which they believe should have been left to the climate commission. Coalition partner New Zealand First is talking up their contribution and how they had the agriculture sector’s interests at heart.

While climate activist groups welcomed the bill, Greenpeace criticised the bill for not being legally enforceable and described the 10% cut in methane as “miserly”. The youth action group Generation Zero, one of the first to call for zero carbon legislation, is understandably delighted. Even so, they say the law does not match the urgency of the crisis. And it’s true that since the bill was first mooted, we have seen a stronger sense of urgency, from the Extinction Rebellion to Greta Thunberg to the UK parliament’s declaration of a climate emergency.




Read more:
UK becomes first country to declare a ‘climate emergency’


New Zealand’s bill is a pioneering effort to respond in detail to the 1.5ºC target and to base a national plan around the science reported by the IPCC.

Many other countries are in the process of setting and strengthening targets. Ireland’s Parliamentary Joint Committee on Climate recently recommended adopting a target of net zero for all gasses by 2050. Scotland will strengthen its target to net zero carbon dioxide and methane by 2040 and net zero all gasses by 2045. Less than a week after this announcement, the Scottish government dropped plans to cut air departure fees (currently £13 for short and £78 for long flights, and double for business class).

One country that has set a specific goals for agricultural methane is Uruguay, with a target of reducing emissions per kilogram of beef by 33%-46% by 2030. In the countries mentioned above, not so different from New Zealand, agriculture produces 35%, 23%, and 55% of emissions, respectively.

New Zealand has learned from processes that have worked elsewhere, notably the UK’s Climate Change Commission, which attempts to balance science, public involvement and the sovereignty of parliament. Perhaps our present experience in balancing the demands of different interest groups and economic sectors, with diverse mitigation opportunities and costs, can now help others.The Conversation

Robert McLachlan, Professor in Applied Mathematics, Massey University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Despite its green image, NZ has world’s highest proportion of species at risk



File 20190429 194606 lj1e80.jpg?ixlib=rb 1.1
About 74% of New Zealand’s land birds, including the endemic takahe, are either threatened or at risk of extinction.
AAP/Brendon Doran, CC BY-ND

Michael (Mike) Joy, Victoria University of Wellington and Sylvie McLean, Victoria University of Wellington

A recent update on the state of New Zealand’s environment paints a particularly bleak picture about the loss of native ecosystems and the plants and animals within them.

Almost two-thirds of rare ecosystems are threatened by collapse, according to Environment Aotearoa 2019, and thousands of species are either threatened or at risk of extinction. Nowhere is the loss of biodiversity more pronounced than in Aotearoa New Zealand: we have the highest proportion of threatened indigenous species in the world.

This includes 90% of all seabirds, 84% of reptiles, 76% of freshwater fish and 74% of terrestrial birds. And this may well be an underestimate. An additional one-third of named species are listed as “data deficient”. It is likely many more would be on the threatened list had they been assessed. Then there are the species that have not been named and we have no idea about.




Read more:
Climate change is hitting hard across New Zealand, official report finds


Why biological diversity matters

Biodiversity is a word that means different things to different people. Its use has exploded recently as more people appreciate the magnitude of its decline and its importance to people’s future.

Popularly biodiversity is understood as the number of species in a given country or ecosystem. For scientists, the concept is deeper. It includes genetic and ecosystem diversity and has crucial components such as endemicity (species found nowhere else), native diversity (the proportion of native species) and keystone species (species that are crucial to ecosystem function).

Globally, biodiversity in all its guises is undergoing an unprecedented decline. Estimates are that we are now losing species at more than 1,000 times the background or natural rate. People are also moving species outside their native ranges, and this results in a global biological homogenisation and has helped a small number of species to thrive in human-dominated habitats across the world.

The classification of threat status, globally and in New Zealand, is complex. There are multiple levels, ranging from “nationally critical” to “at risk”. When describing levels of biodiversity decline, it is simpler to look at the proportion of species listed as “not threatened”.

In New Zealand, only around 18% of beetles, 26% of freshwater fish, 38% of marine mammals, 12% lizards, 5% of snails and 50% of plants are listed as not threatened or not at risk. This is a rather dire situation, especially given the 100%-pure slogan used to market Aotearoa New Zealand overseas.

Ineffective legal protection

Another important facet of biodiversity decline is that New Zealand has many endemic species, with around 40% of plants, 90% of fungi, 70% of animals and 80% of freshwater fish found nowhere else. If they are lost here they are lost entirely.

In a recent report to the UN Convention on Biological Diversity, the Department of Conservation could not say whether New Zealand’s biodiversity is declining or not. One quarter of the nearly 4,000 species currently classified as threatened or at risk have only been assessed once and there is no way to know whether their conservation status has changed. Of the remaining roughly 3,000 threatened or at risk species, 10% had worsened to a more threatened ranking. Only 3% had improved.

The numbers above show the failure of legislation intended to protect biodiversity in Aotearoa New Zealand. The Wildlife Act (1953) purportedly gives absolute protection to all wildlife. But it is not enforced in any meaningful way, and therefore has had no impact on biodiversity conservation.

The Native Plants Protection Act (1934) stipulates that native plants have protection on conservation land but makes no mention of protection outside that and, in any case, is not enforced. Native fish are not covered by the Wildlife Act and the Freshwater Fisheries Act affords them no protection either.

Human impact on land

Apart from ineffective species protection, another factor is the loss of habitat and ecosystems through land-use change for agricultural and urban intensification. The first changes happened with Polynesian arrival, and then again after European colonisation, including massive forest clearance and wetland drainage. More recently, the expansion of dairy farms has contributed to significant biodiversity losses.

Freshwater fish are a good example. The increase in the proportion of threatened species has gone from around one-quarter in the early 1990s to three-quarters now. This recent loss reveals the failure of successive governments to protect biota, their habitats and ecosystems. Lowland coastal forests and wetlands in particular continue to be degraded by human activity.




Read more:
New Zealand’s urban freshwater is improving, but a major report reveals huge gaps in our knowledge


Indigenous terrestrial vegetation cover is now less than 30%, down from approximately 90% in pre-human times. One-third of the country is covered in exotic grasslands.

About one-third of the country is putatively protected by being within the conservation estate. This sounds impressive, but it obscures the true state of protected areas. The ecosystem types in the estate are far from a representative selection. It mostly contains areas that are too steep to farm and too inhospitable to live in.

The failure to protect habitats is reflected in the reduction in ecosystem diversity: 62% of the ecosystems classified as rare are now listed as threatened, and more than 90% of wetlands have been destroyed. This loss is not confined to the past. Estimates are that 214 wetlands (1,250 ha) were lost between 2001 and 2016, and a further 746 wetlands declined in size.

Marine conservation

Protection levels of marine habitats are even worse. New Zealand’s marine area is 15 times larger than its land area, but marine biodiversity is poorly regulated. Only 0.4% is covered by “no-take” marine reserves.




Read more:
Squid team finds high species diversity off Kermadec Islands, part of stalled marine reserve proposal


As a signatory to the UN Sustainable Development Goals (SDGs), New Zealand is obligated to reduce biodiversity loss. We have committed to achieving SDG 14 (life under water) and SDG 15 (life on land). The former stipulates that we “conserve and sustainably use the oceans, seas and marine resources for sustainable development”. The latter that we “protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss”.

There is no sign of any real achievement in reducing biodiversity loss. While New Zealand produced a national biodiversity strategy in 2000, it has been largely ineffective at improving the state of biodiversity. As the OECD noted, the strategy and plan lack clarity and clear implementation pathways.

We have tried writing plans with no teeth. Now it is time for action from all levels of society. Cities and regions need to ensure parks and protected areas are adequately managed. Government must work to update ineffective legislation and commit to enforcing the law.The Conversation

Michael (Mike) Joy, Senior Researcher; Institute for Governance and Policy Studies, Victoria University of Wellington and Sylvie McLean, Masters Student in Environmental Studies, Victoria University of Wellington

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Climate change is hitting hard across New Zealand, official report finds



File 20190418 139088 13sw1xb.jpg?ixlib=rb 1.1
Finance minister Grant Robertson (left) and climate minister James Shaw address school children during a climate protest, promising that New Zealand will introduce zero carbon legislation this year.
AAP/Boris Jancic, CC BY-ND

Robert McLachlan, Massey University

The major focus on climate change in Environment Aotearoa 2019, a stocktake on New Zealand’s environment released today, is a welcome change.

The report describes an environment that faces serious pressures, including species at risk of extinction, polluted rivers and streams, the loss of productive land as cities expand, and climate change.

On climate change, the report is more detailed and hard-hitting than past reports have been.




Read more:
New Zealand’s urban freshwater is improving, but a major report reveals huge gaps in our knowledge


New Zealand’s global share of emissions

New Zealand’s greenhouse gas emissions are high internationally. In 2015, New Zealanders produced 17.5 tonnes of greenhouse gases (measured as carbon dioxide equivalent) per person, 33% higher than the average of 13.2 tonnes from industrialised countries.

In the latest figures from 2017, gross emissions rose 2.2% from 2016 and remain 23% above 1990 levels. The immediate causes are clearly stated: high emissions of methane and nitrous oxide from agriculture and sharply rising emissions of carbon dioxide from transport.

The report is silent on the root causes of rising emissions, including ineffective government action and community attitudes that rank climate change as a relatively low priority. Instead it states:

Our high per-person emissions are reversible if we adopt policies, technologies, or other means that reduce our production of greenhouse gases.

But this obscures the story of 30 years of policy work on climate change and 11 years trying to make New Zealand’s Emissions Trading Scheme work.




Read more:
Why NZ’s emissions trading scheme should have an auction reserve price


An earlier report on climate change did not foresee the flood of vehicles entering the country. This has now given New Zealand the highest rate of vehicle ownership in the OECD. New Zealand has 4.36 million vehicles, up half a million since 2015, but lacks the regulations found in many other countries, such as CO₂-linked registration fees and fuel efficiency standards. With a flood of cheap, high-emission used imports, it is no surprise that New Zealand’s transport emissions continue to rise.

Known unknowns

A key function of this latest report is to identify knowledge gaps. An important one for New Zealand is the relative strengths of different carbon sources and sinks, for example by different types of vegetation, soils and agricultural practices.

As emphasised recently by the Parliamentary Commissioner for the Environment, New Zealand is still focusing too much on plantation forestry as a short-term fix for our emissions problem. It is a risk because it creates a carbon liability for the future, as well as exposure to diseases and fires. Its true environmental impact is not well understood.




Read more:
The scandal of calling plantations ‘forest restoration’ is putting climate targets at risk


The section on current climate impacts could not be more clear.

Climate change is already affecting Aotearoa New Zealand. Changes include alteration to temperature, precipitation patterns, sea-level rise, ocean acidity, wind, and sunshine.

New Zealand’s temperature has increased by 1ºC since 1909. While this is close to the global average, it is less than the global land average which has increased by 1.4ºC. New Zealand is protected to some degree by the Southern Ocean.

Warm days have increased and frosts decreased. Soils have dried, glaciers have melted, sea levels have been rising, the oceans have warmed and acidified, and sunshine hours have increased. No surprises so far. Climate science predicts an increase in extreme rainfall events, but this has not yet been detected statistically. At one-third of the measured sites, extreme wind has decreased, whereas an overall increase in wind is expected.

New Zealand not immune to climate change

If anything, the section on current impacts is too conservative. The data stops in 2016 before the epic years of 2017 and 2018, which saw many extreme weather events of all types. These were linked in part to El Niño, which raises global temperatures, and in part to an extreme Southern Annular Mode, an indicator whose strengthening is itself linked to climate change.




Read more:
Farmed fish dying, grape harvest weeks early – just some of the effects of last summer’s heatwave in NZ


Few New Zealanders will forget the sequence of ex-tropical cyclones, 1-in-100-year floods, the sight of the Southern Alps without snow or the Port Hills on fire.

The report’s final section covers future impacts in the most forceful official statement seen yet. It lays out a blizzard of impacts in all areas of the environment, country, economy and infrastructure, including coastal flooding, erosion, tsunami risk, liquefaction risk and saltwater intrusion.

All aspects of life in New Zealand will be impacted.

The way forward

The uncertainties are clear. We don’t have a clear idea of the rate of future emissions, or the impacts under different emission scenarios. Some of the most important impacts, such as sea-level rise, are also the most uncertain. The report notes that information on cumulative and cascading impacts is limited. Climate change has the capacity to undermine environmental efforts elsewhere.

Polls show a rising awareness of climate change and a hunger for stronger action. The Zero Carbon bill is expected to go to select committee before June, but even when passed, emissions will not start falling until the mid-2020s, with the heavy lifting left to the 2040s and future emission reductions technologies.

A recent report on New Zealand’s transition to a low-emission economy outlines many more immediate actions. Let’s hope that this report, along with the public pressure from the School Strike 4 Climate and Extinction Rebellion movements, give the government the courage to act decisively.The Conversation

Robert McLachlan, Professor in Applied Mathematics, Massey University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Squid team finds high species diversity off Kermadec Islands, part of stalled marine reserve proposal



File 20190308 150693 xpab44.jpg?ixlib=rb 1.1
This squid belongs to one of the families (Histioteuthidae) that is highly diverse but was not previously recorded from the Kermadecs.
Richard Young, CC BY-SA

Kat Bolstad, Auckland University of Technology and Heather Braid, Auckland University of Technology

Squids and octopuses could be considered the “parrots of the ocean”. Some are smart, and many have complex behaviours. And, of course, they have strange, bird-like beaks.

They are the subject of ancient myths and legends about sea monsters, but they do not live for decades. In fact, their high intelligence and short lifespan represent an unusual paradox.

In our latest research we have discovered several new species that have never been reported from New Zealand waters. Our study almost doubles the known diversity for the Kermadec region, north of New Zealand, which is part of the proposed, but stalled, Kermadec–Rangitāhua ocean sanctuary.




Read more:
Why we’re watching the giant Australian cuttlefish


More than we bargained for

Collectively, squids and octopuses are known as cephalopods, because their limbs attach directly to their head (cephalus). Our team studies cephalopods in our part of the world – the waters between Antarctica and the most northern reaches of New Zealand, the Kermadec Islands – as well as further afield.

Our first inkling of an impressive regional diversity came as we began to open boxes of frozen cephalopod samples at the National Institute for Water and Atmospheric Research (NIWA). These animals had been collected during a deep-sea survey voyage to the Kermadec Islands to better understand the region’s marine biodiversity. Members of the AUT Lab for Cephalopod Ecology and Systematics (ALCES), also known as the “squid lab”, had come to identify and examine them.

As we gently defrosted each specimen, we marvelled at their perfect suckers, iridescent eyes, and shining light organs. We noticed that many species were rare among New Zealand collections. There were some familiar faces, but also some we had only rarely or never encountered before in our local waters. Some were known from neighbouring regions; others, we suspected, might be entirely new to science.

We examined them, photographed each one, took small samples of muscle tissue for DNA analysis, and preserved them for additional work in the future. Then we set about systematically comparing our observations with what had previously been reported in New Zealand waters. And we were in for a surprise.

Doubling known diversity

Among the 150 cephalopod specimens that were collected, we identified 43 species, including 13 species that had not been previously found anywhere in New Zealand waters. Three entire orders – the taxonomic rank above family, which is the level at which, for example, egg-laying mammals split off from all other living mammals – had not been reported from this region: “Bobtail squids” (sepiolids), “comb-fin squids” (genus Chtenopteryx, order Bathyteuthoidea), and myopsid squids (coastal squids with eyes covered by a cornea).

We extracted DNA and obtained sequences for the species that had been seen for the first time in New Zealand waters. This allows us to compare them with individuals from other regions of the world. These included the strange tubercle-covered “glass” (cranchiid) squid Cranchia scabra, and the little “ram’s horn squid” Spirula spirula.

Examples of squid specimens collected recently from the Kermadec Islands Ridge: A) Histioteuthis miranda, B) Heteroteuthis sp. ‘KER’ (likely new to science), C) Chtenopteryx sp. ‘KER1’ (likely new to science), D) Leachia sp. (likely new to science), E) Pyroteuthis serrata, F) Enoploteuthis semilineata. Scale bars: 5mm.
Images by Rob Stewart/Keren Spong, CC BY-ND

Five species appear likely new to science, across a number of families with colourful common names such as “strawberry” and “fire” squids (Histioteuthidae and Pyroteuthidae, respectively). These individuals were genetically distinct from all other specimens that had been previously identified and sequenced (by us or others). Their physical appearances will now need to be compared in detail with other similar-looking species in order to fully evaluate their taxonomic status.

In total, 28 of the species we encountered had not previously been reported in the Kermadecs. This brings the total number of species in the region to at least 70. Of these, half are not known to occur elsewhere in New Zealand waters.

Kermadec–Rangitāhua Ocean Sanctuary

The Kermadec Islands, north-north-east of New Zealand, represent a diverse and nearly pristine environment. The region includes (among other habitats) a chain of seamounts and the second-deepest ocean trench in the world.

Currently, the Kermadec Islands region is on a tentative list of UNESCO World Heritage Sites. A small proportion of the area is already protected by an existing marine reserve, which extends 12 nautical miles around each of five islands and pinnacles.

This map shows New Zealand’s Exclusive Economic Zone (EEZ) in light grey, the existing Kermadec Islands marine reserve in dark grey, and the proposed Kermadec–Rangitāhua Ocean Sanctuary outlined in black.
Heather Braid, Kat Bolstad, CC BY-ND

The proposed Kermadec–Rangitāhua Ocean Sanctuary would extend the protection to 200 nautical miles and protect 15% of New Zealand’s ocean environment. It would be among the world’s largest marine protected areas.




Read more:
More than 1,200 scientists urge rethink on Australia’s marine park plans


We strongly support the establishment of the proposed sanctuary, especially since most of the cephalopod taxa newly reported by this research are deep-sea species whose habitat is not protected by the existing marine reserve.

Although the creation of the sanctuary is supported by most political parties, New Zealand First, which is part of the government coalition, opposes it. So does the fishing industry because fishing would be banned. It is possible that the sanctuary might be created with a lower level of protection than originally proposed (with some fishing still permitted), but the government has reached an impasse.

If the Kermadec–Rangitāhua ocean sanctuary were to be established, it would protect habitats that are used by over half of the known squid and octopus biodiversity in New Zealand waters, including 34 species that have so far only been reported from the Kermadec region.The Conversation

Kat Bolstad, Senior Lecturer, Auckland University of Technology and Heather Braid, Postdoctoral Research Fellow, Auckland University of Technology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

NZ’s environmental watchdog challenges climate policy on farm emissions and forestry offsets



File 20190327 139361 ecbjab.jpg?ixlib=rb 1.1
The Parliamentary Commissioner for the Environment has warned that afforestation is a risky approach to combatting climate change.
from http://www.shutterstock.com, CC BY-SA

Ivan Diaz-Rainey, University of Otago

The greenhouse gases methane and nitrous oxide, from burping and urinating livestock, account for about half of New Zealand’s total emissions. These agricultural emissions have been the elephant in the room of New Zealand climate policy for some time.

A report released by the Parliamentary Commissioner for the Environment (PCE) this week suggests New Zealand should treat biological emissions differently from carbon dioxide emissions. It also says afforestation is a risky approach to combating climate change if planting trees is used to offset carbon emissions.

The report threatens to turn environmental policy and its principal policy tool, the New Zealand Emissions Trading Scheme (NZ ETS), on its head.




Read more:
A new approach to emissions trading in a post-Paris climate


Emissions trading in New Zealand

New Zealand’s Emissions Trading Scheme, established by Helen Clark’s Labour administration in 2008, was meant to be a bold first in the world. It was going to cover all greenhouse-gases and all sectors and include forestry as an emissions sink. Critically, it was to include agriculture and the related biological emissions.

But the election of John Key’s National administration in 2009, with their rural electorate, meant agriculture never entered the scheme and was therefore “given a free ride” in the decade or so since. To put this “free ride” into context, the rest of the economy could buy cheap, and in some cases dubious, international carbon units for the bulk of that period.

After international trading was stopped, they could buy relatively cheap domestic forestry units. In truth, it was never much of a free ride for agriculture since no one was working particularly hard to mitigate anyhow.

The PCE report challenges the scheme’s architecture. It makes a number of recommendations. First, it suggests that biological emission should be treated differently to carbon dioxide emissions, with a zero target on carbon dioxide and a much lower but unspecified target for biological emissions.

The second recommendation is to no longer allow forestry sinks to be used to offset carbon dioxide emission, but to continue using them to offset biological emission.

This shifts the burden of mitigation away from biological emissions in agriculture towards carbon dioxide emissions from energy use and transport.

The PCE’s recommendations

The report provides an alternative vision to the “all gasses and all sectors” flexibility envisioned for the original NZ ETS. It differentiates between carbon dioxide and biological emissions since carbon dioxide is a long-lived greenhouse gas, but biological emissions include the long-lived nitrous oxide and the shorter-lived but potent methane.

The recommendation that afforestation sinks should no longer be used to offset carbon dioxide emissions represent a radical departure. It is likely to be opposed by foresters and those not wanting to create too much uncertainty in the NZ ETS. These are fair points that must be balanced against the logic behind the recommendation.

Using afforestation to mitigate carbon dioxide emissions is risky because forests may burn down (especially in a warming world) and release the carbon again. Commercial plantation forests only hold the carbon until the next harvesting cycle, and ultimately the land available for tree planting is limited and may crowd out other land uses.

Using afforestation to tackle carbon dioxide reductions also means we do not work hard enough to decarbonise the economy in more fundamental ways, including switching to electric vehicles, building houses for passive solar heating and making process heat renewable.

The search for cross-party consensus

Overall, the report signals a fundamentally different approach to climate policy from that envisioned for the NZ ETS over a decade ago. Differentiating carbon and biological emissions is sensible both from a science and a political expediency perspective.

The latter is particularly important if we are to have a political consensus behind the proposed Zero Carbon Act. Ultimately, the opposition National party will not back anything that unduly affects its agricultural electorate. Reducing reliance on carbon sinks also seems sensible as it pushes the cost of mitigation into the future, imposing it on future generations.




Read more:
A fresh start for climate change mitigation in New Zealand


Does this mean a free ride for agriculture once more? Probably not, but the devil will be in the detail. What the reduction targets for biological emissions should be is not clear. The report cites a range of between 22% to 48% by 2050 as potentially feasible with investment in research and development.

The degree to which afforestation can be used to offset agricultural emissions also needs to be thought about. Unlimited forestry offsets could lead to landscapes that are either planted in trees or relatively intensive dairy farming, with little else in between. This is undesirable as it could lead to changes in biological diversity and water quality and ultimately damage New Zealand’s green and clean brand.

Clearly, there needs to be strong incentives to reduce biological emissions beyond the offset option that push towards more sustainable forms of farming. There is a strong case to limit offsets for agriculture as well, but this might depress the forestry sector.

Finally, to remove the carbon offset option from the market immediately or in the next few years would be unfair to foresters and companies that have been planning to use offsets based on the current architecture. A transition period would be needed to lessen the regulatory shock.The Conversation

Ivan Diaz-Rainey, Associate Professor of Finance & Director, Climate and Energy Finance Group, University of Otago

This article is republished from The Conversation under a Creative Commons license. Read the original article.