Light Pollution and Night Skies


Your drive to the shops makes life pretty noisy for whales

File 20180221 161926 7puvco.jpg?ixlib=rb 1.1
Living alongside humans gets noisier all the time.
Katrina Burgers/

Andrew J. Wright, Fisheries and Oceans Canada

As unlikely as it may seem, your drive to the supermarket is responsible for a lot of noise pollution in our oceans – and a lot of stress to marine life as a result.

Of course, it’s not the specific sound of your car trundling along the street that the fish and whales hear. But many of the products that feature in your weekly shop – from the goods you buy, to the petrol you burn, to your car’s component parts – contribute to marine noise pollution.

Read more:
Noise from offshore oil and gas surveys can affect whales up to 3km away

The fuel

Let’s start with the oil. Before we can drill the oil or turn it into fuel to drive our cars, oil companies have to discover it.

Companies look for oil using high-pressure airguns. These machines are towed across the surface of the ocean, firing off sounds to determine the make-up of sediment layers in the seafloor. These are some of the loudest human-created sounds – researchers working in the middle of the Atlantic Ocean have been able to record the sounds produced from coastal oil surveys.

Rex Virtual Drilling.
Chooywa/wikimedia, CC BY-SA

These sounds are problematic for marine life. Whales and other animals that rely heavily on sound for communicating and finding food are most affected. Hearing is to these animals much the same as vision is to humans. Unusually loud sounds can disturb whales’ behaviour and, if they are close enough, can damage their hearing. There is even some suggestion that the airguns can cause whale strandings, although this is not yet completely certain.

Currently, one-third of all oil comes from offshore sources and this proportion is expected to increase. This can only mean more bad news for our marine life.

The car

What about the metal box that consumes all the oil? Parts for the car are sourced from all over the world and have to be shipped across our oceans. In turn, the raw materials needed to make these parts are usually shipped in from yet more places. The commercial shipping needed for all this represents another problematic source of ocean noise.

The relative density of commercial shipping routes in our oceans.
B.S. Halpern/Wikimedia Commons, CC BY-SA

The contributions of individual ships may seem trivial in comparison to the loud noise from airguns. However, the world merchant fleet includes around 52,000 ships. Collectively, these increase the ambient noise levels in our oceans. In fact, the amount of low-frequency sound in some parts of our oceans has doubled each decade over the past 60 years.

Humans perceive only some of this sound, because of the very low pitches involved. But these sounds are well within the frequency range used by baleen whales. Recent work suggests that this constrains the communication ranges in whales, causing chronic stress and potentially interrupting mating behaviour.

Parts of the ocean are filling up with man-made noise, and that presents many dangers to marine life.
B. Southall/NMFS and NOAA

The groceries

Oh, and most of your groceries are shipped around the world at some point too, as are many other consumer items – including the battery in your hybrid car, if you have one. Around 90% of world trade is carried by commercial ships at some stage. Not all of this ends up in your shopping bag, but a large proportion enters the consumer market at some point.

Certain grocery items, such as fish, originate from the oceans themselves. Like cargo ships, fishing vessels produce noise from their engines and propellers, but they also have noisy fish-finding sonars and winches as well.

Read more:
10 tips for eating locally and cutting the energy used to produce your food

The solutions

The good news is that noise pollution, unlike chemical pollution, dissipates quickly. This means that the future for underwater noise remains bright. If you want to give the whales a break, just drive a little less, or support higher efficiency standards for vehicles. This will not only reduce oil consumption, but also the wear and tear on your car, meaning that fewer replacement parts will need to be shipped in.

Time for a rethink?
Joe Goldberg/flickr, CC BY-SA

You can also buy locally produced items and support the local economy too. That way everyone wins.

The ConversationNo matter how connected we think everything is, the situation is generally even more complicated than we can imagine. So next time you walk to the shops and buy an apple grown in your state, you should allow yourself a moment to feel good about yourself, safe in the knowledge that you have helped to make the oceans a tiny bit quieter.

Andrew J. Wright, Marine Mammal Researcher, Fisheries and Oceans Canada

This article was originally published on The Conversation. Read the original article.

Deposit schemes reduce drink containers in the ocean by 40%

File 20180219 75997 dw2qiv.jpg?ixlib=rb 1.1
Uncountable numbers of drink containers end up in the ocean every year.

Qamar Schuyler, CSIRO; Britta Denise Hardesty, CSIRO, and Chris Wilcox, CSIRO

Plastic waste in the ocean is a global problem; some eight million metric tonnes of plastic ends up in the ocean every year.

Read more:
Eight million tonnes of plastic are going into the ocean each year

One possible solution – paying a small amount for returned drink containers – has been consistently opposed by the beverage industry for many years. But for the first time our research, published in Marine Policy, has found that container deposits reduce the amount of beverage containers on the coasts of both the United States and Australia by 40%.

What’s more, the reduction is even more pronounced in areas of lower socio-economic status, where plastic waste is most common.

Plastic not so fantastic

There have been many suggestions for how to reduce marine debris. Some promote reducing plastic packaging, re-purposing plastic debris], or cleaning beaches. There has been a push to get rid of plastic straws, and even Queen Elizabeth II has banned single use plastics from Royal Estates! All of these contribute to the reduction of plastics, and are important options to consider.

Read more:
Pristine paradise to rubbish dump: the same Pacific island, 23 years apart

Legislation and policy are another way to address the problems of plastic pollution. Recent legislation includes plastic bag bans and microbead bans. Economic incentives, such as container deposits, have attracted substantial attention in countries around the world.

Several Australian jusrisdictions, including South Australia, the Northern Territory, and New South Wales), already have container deposit laws, with Western Australia and Queensland set to start in 2019. In the United States, 10 states have implemented container deposit schemes.

But how effective is a cash for containers program? While there is evidence to suggest that container deposits increase return rates and decrease litter, until now there has been no study asking whether they also reduce the sources of debris entering the oceans.

In Australia, we analysed data from litter surveys by Keep South Australia Beautiful, and Keep Australia Beautiful. In the US, we accessed data from the Ocean Conservancy’s International Coastal Cleanup.

Read more:
The future of plastics: reusing the bad and encouraging the good

We compared coastline surveys in states with a container deposit scheme to those without. In both Australia and the US, the proportion of beverage containers in states without a deposit scheme was about 1.6 times higher than their neighbours. Based on estimates of debris loading on US beaches that we conducted previously, if all coastal states in the United States implemented deposit schemes, there would be 6.6 million fewer containers on the shoreline each year.

Keep your lid on

But how do we know that this difference is caused by the deposit scheme? Maybe people in states with container deposit schemes simply drink fewer bottled beverages than people states without them, and so there are fewer containers in the litter stream?

To answer that question, we measured the ratio of lids to containers from the same surveys. Lids are manufactured in equal proportion to containers, and arrive to the consumer on the containers, but do not attract a deposit in either country.

If deposit schemes cause a decrease in containers in the environment, it is unlikely to cause a similar decrease in littered lids. So, if a cashback incentive is responsible for the significantly lower containers on the shorelines, we would expect to see a higher ratio of lids to containers in states with these programs, as compared to states without.

That’s exactly what we found.

We were also interested in whether other factors also influenced the amount of containers in the environment. We tested whether the socio-economic status of the area (as defined by data from the Australian census) was related to more containers in the environment. Generally, we found fewer containers in the environment in wealthier communities. However, the presence of a container deposit reduced the container load more in poorer communities.

This is possibly because a relatively small reward of 10 cents per bottle may make a bigger difference to less affluent people than to more wealthy consumers. This pattern is very positive, as it means that cashback programs have a stronger impact in areas of lower economic advantage, which are also the places with the biggest litter problems.

Read more:
Sustainable shopping: take the ‘litter’ out of glitter

Ultimately, our best hope of addressing the plastic pollution problem will be through a range of approaches. These will include bottom-up grassroots governance, state and federal legislation, and both hard and soft law.

The ConversationAlong with these strategies, we must see a shift in the type of we products use and their design. Both consumers and manufacturers are responsibility for shifting from a make, use, dispose culture to a make, reuse, repurpose, and recycle culture, also known as a circular economy.

Qamar Schuyler, Research Scientist, Oceans and Atmospheres, CSIRO; Britta Denise Hardesty, Principal Research Scientist, Oceans and Atmosphere Flagship, CSIRO, and Chris Wilcox, Senior Research Scientist, CSIRO

This article was originally published on The Conversation. Read the original article.


Common products, like perfume, paint and printer ink, are polluting the atmosphere

File 20180215 131000 1ie7l5j.jpg?ixlib=rb 1.1
We need to measure the volatile compounds that waft off the products in our homes and offices.

Jenny Fisher, University of Wollongong and Kathryn Emmerson, CSIRO

Picture the causes of air pollution in a major city and you are likely to visualise pollutants spewing out of cars, trucks and buses.

For some types of air pollutants, however, transportation is only half as important as the chemicals in everyday consumer products like cleaning agents, printer ink, and fragrances, according to a study published today in Science.

Air pollution: a chemical soup

Air pollution is a serious health concern, responsible for millions of premature deaths each year, with even more anticipated due to climate change.

Read more:
Climate change set to increase air pollution deaths by hundreds of thousands by 2100

Although we typically picture pollution as coming directly from cars or power plants, a large fraction of air pollution actually comes from chemical reactions that happen in the atmosphere. One necessary starting point for that chemistry is a group of hundreds of molecules collectively known as “volatile organic compounds” (VOCs).

VOCs in the atmosphere can come from many different sources, both man-made and natural. In urban areas, VOCs have historically been blamed largely on vehicle fuels (both gasoline and diesel) and natural gas.

Fuel emissions are dropping

Thanks in part to more stringent environmental regulations and in part to technological advances, VOCs released into the air by vehicles have dropped dramatically.

In this new study, the researchers used detailed energy and chemical production records to figure out what fraction of the VOCs from oil and natural gas are released by vehicle fuels versus other sources. They found that the decline in vehicle emissions means that – in a relative sense – nearly twice as much comes from chemical products as comes from vehicle fuel, at least in the US. Those chemicals include cleaning products, paints, fragrances and printer ink – all things found in modern homes.

The VOCs from these products get into the air because they evaporate easily. In fact, in many cases, this is exactly what they are designed to do. Without evaporating VOCs, we wouldn’t be able to smell the scents wafting by from perfumes, scented candles, or air fresheners.

Overall, this is a good news story: VOCs from fuel use have decreased, so the air is cleaner. Since the contribution from fuels has dropped, it is not surprising that chemical products, which have not been as tightly regulated, are now responsible for a larger share of the VOCs.

Predicting air quality

An important finding from this work is that these chemical products have largely been ignored when constructing the models that we use to predict air pollution – which impacts how we respond to and regulate pollutants.

The researchers found that ignoring the VOCs from chemical products had significant impacts on predictions of air quality. In outdoor environments, they found that these products could be responsible for as much as 60% of the particles that formed chemically in the air above Los Angeles.

The effects were even larger indoors – a major concern as we spend most of our time indoors. Without accounting for chemical products, a model of indoor air pollutants under-predicted measurements by a whopping 87%. Including the consumer products really helped to fix this problem.

Read more:
We can’t afford to ignore indoor air quality – our lives depend on it

What does this mean for Australia?

In Australia we do a stocktake of our VOC emissions to the air every few years. Our vehicle-related VOC emissions have also been dropping and are now only about a quarter as large as they were in 1990.

Historical and projected trends in Australia’s road transport emissions of VOCs.
Author provided, adapted from Australia State of the Environment 2016: atmosphere

Nonetheless, the most recent check suggests most of our VOCs still come from cars and trucks, factories and fires. Still, consumer products can’t be ignored – especially as our urban population continues to grow. Because these sources are spread out across the city, their contributions can be difficult to estimate accurately.

We need to make sure our future VOC stocktakes include sources from consumer products such as cleaning fluids, indoor fragrances and home office items like printing ink. The stocktakes are used as the basis for our models, and comparing models to measurements helps us understand what affects our air quality and how best to improve it. It was a lack of model-to-measurement agreement that helped to uncover the VW vehicle emissions scandal, where the manufacturer was deliberately under-estimating how much nitrogen gas was being released through the exhaust.

If we can’t get our predictions to agree with the indoor measurements, we’ll need to work harder to identify all the emission sources correctly. This means going into typical Australian homes, making air quality measurements, and noting what activities are happening at the same time (like cooking, cleaning or decorating).

Read more:
Heading back to the office? Bring these plants with you to fight formaldehyde (and other nasties)

What should we do now?

If we want to keep air pollution to a minimum, it will become increasingly important to take into account the VOCs from chemical products, both in our models of air pollution and in our regulatory actions.

In the meantime, as we spend so much of our time indoors, it makes sense to try to limit our personal exposure to these VOCs. There are several things we can do, such as choosing fragrance-free cleaning products and keeping our use of scented candles and air fresheners to a minimum. Research from NASA has also shown that growing house plants like weeping figs and spider plants can help to remove some of the VOCs from indoor air.

The ConversationAnd of course, we can always open a window (as long as we keep the outdoor air clean, too).

Jenny Fisher, Senior Lecturer in Atmospheric Chemistry, University of Wollongong and Kathryn Emmerson, , CSIRO

This article was originally published on The Conversation. Read the original article.


Sustainable shopping: take the ‘litter’ out of glitter

Jennifer Lavers, University of Tasmania

Shopping can be confusing at the best of times, and trying to find environmentally friendly options makes it even more difficult. Welcome to our Sustainable Shopping series, in which we ask experts to provide easy eco-friendly guides to purchases big and small. Send us your suggestions for future articles here.

Scientists often get a bad rap as party poopers. As a case in point, my colleagues and I have provided data on the impacts of balloon releases on marine wildlife.

So when glitter – a highly visible and easily obtained microplastic – comes under the microscope, you might be tempted to groan. The good news is that we’re not out to ruin the fun: with Mardi Gras around the corner (bringing a ubiquity of sparkling Instagrams), here’s how to find ecologically friendly glitter.

Read more:
Mixing glitter and protest to support LGBTQ rights

All glitter goes to the ocean

When something fun or common is revealed to be destructive it should be a point of pride in our society that we adjust, adapt and move on to safer alternatives.

It therefore makes sense to investigate what data exist for glitter, and to consider whether it’s time for a change in attitude. So, what is glitter?

Glitter is typically made from polyethylene, the same plastic found in plastic bags and a host of other products. Despite glitter’s popularity in everything from cosmetics and toothpaste to crafts and clothes, remarkably little is known about the distribution or impacts of glitter on our environment. As a scientist, that worries me. Glitter is incorporated into consumer products without any real knowledge of its safety.

Read more:
Ten ‘stealth microplastics’ to avoid if you want to save the oceans

In contrast, there are dozens of scientific papers on micro-bead scrubbers (tiny plastic beads), which originate from many of the same products (such as cosmetics and toothpaste).

Research on micro-beads suggests that around 8 trillion beads are released into aquatic habitats every day in the United States alone.

Data for glitter are not available, but given its widespread use the situation is likely to be similarly alarming. It’s far too small for waste treatment facilities to capture, so glitter goes straight into your local river and out into the ocean. Because glitter particles are typically 1 millimetre in size or smaller, they can be ingested by a range of creatures, including mussels.

Again, data on micro-beads can tell us why we should be worried about this: a recent study from Australia showed that toxic chemicals associated with micro-beads can “leach” into the tissues of marine creatures, contaminating their bodies. If mussels, fish and other animals are ingesting glitter and micro-beads, these contaminants likely also pose a risk to humans that consume them.

Read more:
Eight million tonnes of plastic are going into the ocean each year

Thankfully, science is here to help. A range of compostable, vegan, 100% plastic-free “bio-glitters” have been created and are readily available online. So, at your next event, you can celebrate in glorious, sparkly style while also educating passers-by about ocean conservation. (I assure you, this is very popular; I do it all the time and I’m the life of the party.)

What to look for

Mica, a naturally occurring sparkling mineral, is often offered as a non-plastic alternative to glitter. However, some brands, such as Lush, are now using “synthetic mica” (made in a lab) because mica mining has been associated with child labour, especially in India.

Some plastics labelled “bio-degradable” will only break down in industrial composting units, at temperatures over 50℃. This is very unlikely to happen in the ocean, so look for terms like “compostable” and “organic” instead. (For more information on the difference between bio-degradable, compostable and everything in between, this United Nations report is very comprehensive – just read the summary if you’re in a hurry).

Fortunately, eco-friendly glitter is becoming much easier to find around the world, and more suppliers are turning to cellulose and other plant-derived bases for their product. Wild Glitter‘s founder, like many in the industry, cites “watching a weekend’s worth of plastic glitter wash down the plughole after a festival” as the impetus to sell an “ethical, eco-friendly, cruelty-free way to sparkle”.

Eco Glitter Fun is a member of the Plastics Ocean Foundation, a global non-profit; Glo Tatts makes beautiful temporary glitter tattoos; and, for an Australian twist, Eco Glitter make their product from Eucalyptus cellulose.

Read more:
Film review: A Plastic Ocean shows us a world awash with rubbish

Bio-glitter can be incorporated into any product. Tasmanian soap maker Veronica Foale switched to bio-glitter last year and hasn’t looked back – if a small business in a rural area can do it, you can too!

The ConversationThis is the key to success in the battle against litter: not all changes are difficult and affordable alternatives do exist. Once you’ve mastered bio-glitter, embrace the next challenge – a bamboo toothbrush perhaps, or reusable Onya produce bags? Never stop learning. Go forth and sparkle responsibly.

Jennifer Lavers, Research Scientist, Institute for Marine and Antarctic Studies, University of Tasmania

This article was originally published on The Conversation. Read the original article.


11 billion pieces of plastic bring disease threat to coral reefs

File 20180125 107967 k398f2.jpg?ixlib=rb 1.1
A plastic bottle trapped on a coral reef.
Tane Sinclair-Taylor, Author provided

Joleah Lamb, Cornell University

There are more than 11 billion pieces of plastic debris on coral reefs across the Asia-Pacific, according to our new research, which also found that contact with plastic can make corals more than 20 times more susceptible to disease.

In our study, published today in Science, we examined more than 124,000 reef-building corals and found that 89% of corals with trapped plastic had visual signs of disease – a marked increase from the 4% chance of a coral having disease without plastic.

Globally, more than 275 million people live within 30km of coral reefs, relying on them for food, coastal protection, tourism income, and cultural value.

With coral reefs already under pressure from climate change and mass bleaching events, our findings reveal another significant threat to the world’s corals and the ecosystems and livelihoods they support.

Read more:
This South Pacific island of rubbish shows why we need to quit our plastic habit

In collaboration with numerous experts and underwater surveyors across Indonesia, Myanmar, Thailand and Australia, we collected data from 159 coral reefs between 2010 and 2014. In so doing, we collected one of the most extensive datasets of coral health in this region and plastic waste levels on coral reefs globally.

There is a huge disparity between global estimates of plastic waste entering the oceans and the amount that washes up on beaches or is found floating on the surface.

Our research provides one of the most comprehensive estimates of plastic waste on the seafloor, and its impact on one of the world’s most important ecosystems.

Plastic litter in a fishing village in Myanmar.
Kathryn Berry

The number of plastic items entangled on the reefs varied immensely among the different regions we surveyed – with the lowest levels found in Australia and the highest in Indonesia.

An estimated 80% of marine plastic debris originates from land. The variation of plastic we observed on reefs during our surveys corresponded to the estimated levels of plastic litter entering the ocean from the nearest coast. One-third of the reefs we surveyed had no derelict plastic waste, however others had up 26 pieces of plastic debris per 100 square metres.

We estimate that there are roughly 11.1 billion plastic items on coral reefs across the Asia-Pacific. What’s more, we forecast that this will increase 40% in the next seven years – equating to an estimated 15.7 billion plastic items by 2025.

This increase is set to happen much faster in developing countries than industrialised ones. According to our projections, between 2010 and 2025 the amount of plastic debris on Australian coral reefs will increase by only about 1%, whereas for Myanmar it will almost double.

How can plastic waste cause disease?

Although the mechanisms are not yet clear, the influence of plastic debris on disease development may differ among the three main global diseases we observed to increase when plastic was present.

Plastic debris can open wounds in coral tissues, potentially letting in pathogens such as Halofolliculina corallasia, the microbe that causes skeletal eroding band disease.

Plastic debris could also introduce pathogens directly. Polyvinyl chloride (PVC) – a very common plastic used in children’s toys, building materials like pipes, and many other products – have been found carrying a family of bacteria called Rhodobacterales, which are associated with a suite of coral diseases.

Similarly, polypropylene – which is used to make bottle caps and toothbrushes – can be colonised by Vibrio, a potential pathogen linked to a globally devastating group of coral diseases known as white syndromes.

Finally, plastic debris overtopping corals can block out light and create low-oxygen conditions that favour the growth of microorganisms linked to black band disease.

Plastic debris floating over corals.
Kathryn Berry

Structurally complex corals are eight times more likely to be affected by plastic, particularly branching and tabular species. This has potentially dire implications for the numerous marine species that shelter under or within these corals, and in turn the fisheries that depend on them.

Read more:
Eight million tonnes of plastic are going into the ocean each year

Our study shows that reducing the amount of plastic debris entering the ocean can directly prevent disease and death among corals.

The ConversationOnce corals are already infected, it is logistically difficult to treat the resulting diseases. By far the easiest way to tackle the problem is by reducing the amount of mismanaged plastic on land that finds its way into the ocean.

Joleah Lamb, Research fellow, Cornell University

This article was originally published on The Conversation. Read the original article.


Flying home for Christmas? Carbon offsets are important, but they won’t fix plane pollution

File 20171214 27572 a8rrj.jpg?ixlib=rb 1.1

Roey Ahram/Flickr, CC BY-NC-SA

Susanne Becken, Griffith University and Brendan Mackey, Griffith University

Australia is an important player in the global tourism business. In 2016, 8.7 million visitors arrived in Australia and 8.8 million Australians went overseas. A further 33.5 million overnight trips were made domestically.

But all this travel comes at a cost. According to the Global Sustainable Tourism Dashboard, all Australian domestic trips and one-way international journeys (the other half is attributed to the end point of travel) amount to 15 million tonnes of carbon dioxide for 2016. That is 2.7% of global aviation emissions, despite a population of only 0.3% of the global total.

Read more: Life in a post-flying Australia, and why it might actually be ok

The peak month of air travel in and out of Australia is December. Christmas is the time where people travel to see friends and family, or to go on holiday. More and more people are aware of the carbon implications of their travel and want to know whether, for example, they should purchase carbon offsets or not.

Our recent study in the Journal of Air Transport Management showed that about one third of airlines globally offer some form of carbon offsetting to their customers. However, the research also concluded that the information provided to customers is often insufficient, dated and possibly misleading. Whilst local airlines Qantas, Virgin Australia and Air New Zealand have relatively advanced and well-articulated carbon offset programs, others fail to offer scientifically robust explanations and accredited mechanisms that ensure that the money spent on an offset generates some real climate benefits.

The notion of carbon compensation is actually more difficult than people might think. To help explain why carbon offsetting does make an important climate contribution, but at the same time still adds to atmospheric carbon, we created an animated video clip.

Jack’s journey.

The video features Jack, a concerned business traveller who begins purchasing carbon credits. However, he comes to the realisation that the carbon emissions from his flights are still released into the atmosphere, despite the credit.

The concept of “carbon neutral” promoted by airline offsets means that an equal amount of emissions is avoided elsewhere, but it does not mean there is no carbon being emitted at all – just relatively less compared with the scenario of not offsetting (where someone else continues to emit, in addition to the flight).

This means that, contrary to many promotional and educational materials (see
here for instance), carbon offsetting will not reduce overall carbon emissions. Trading emissions means that we are merely maintaining status quo.

A steep reduction, however, is what’s required by every sector if we were to reach the net-zero emissions goal by 2050, agreed on in the Paris Agreement.

Read more: It’s time to wake up to the devastating impact flying has on the environment

Carbon offsetting is already an important “polluter pays” mechanism for travellers who wish to contribute to climate mitigation. But it is also about to be institutionalised at large scale through the new UN-run Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA).

CORSIA will come into force in 2021, when participating airlines will have to purchase carbon credits for emissions above 2020 levels on certain routes.

The availability of carbon credits and their integrity is of major concern, as well as how they align with national obligations and mechanisms agreed in the Paris Agreement. Of particular interest is Article 6, which allows countries to cooperate in meeting their climate commitments, including by “trading” emissions reductions to count towards a national target.

The recent COP23 in Bonn highlighted that CORSIA is widely seen as a potential source of billions of dollars for offset schemes, supporting important climate action. Air travel may provide an important intermediate source of funds, but
ultimately the aviation sector, just like anyone else, will have to reduce their own emissions. This will mean major advances in technology – and most likely a contraction in the fast expanding global aviation market.

Read more: Friday essay: smile and stay thin – life as a 60s air hostess

Travelling right this Christmas

In the meantime, and if you have booked your flights for Christmas travel, you can do the following:

  • pack light (every kilogram will cost additional fuel)

  • minimise carbon emissions whilst on holiday (for instance by biking or walking once you’re there), and

  • support a credible offsetting program.

The ConversationAnd it’s worth thinking about what else you can do during the year to minimise emissions – this is your own “carbon budget”.

Susanne Becken, Professor of Sustainable Tourism and Director, Griffith Institute for Tourism, Griffith University and Brendan Mackey, Director of the Griffith Climate Change Response Program, Griffith University

This article was originally published on The Conversation. Read the original article.