New Zealand poised to introduce clean car standards and incentives to cut emissions



Australia and Russia could soon be the last remaining developed nations without fuel efficiency standards, with New Zealand proposing new rules and financial incentives to get more people driving cleaner cars.
http://www.shutterstock.com, CC BY-ND

Robert McLachlan, Massey University

The New Zealand government has proposed new fuel standards to cut greenhouse emissions, along with consumer rebates for cleaner cars – paid for by fees on high-polluting cars.

The long-awaited proposed changes would bring New Zealand in line with most other developed countries; apart from New Zealand, Russia and Australia are the last remaining OECD nations without fuel efficiency standards.

New Zealand’s long tradition of not regulating its car market, combined with substantial indirect subsidies for private cars, makes addressing emissions from the transport sector both challenging and highly significant.




Read more:
Four ways our cities can cut transport emissions in a hurry: avoid, shift, share and improve


New Zealand’s second-rate car fleet

Land transport emissions – the single largest source of fossil carbon dioxide in New Zealand – grew 93% between 1990 and 2017. There are multiple causes. The population grew 44% during this period, mostly through immigration. The car ownership rate also grew rapidly, partly due to economic growth and deficiencies in public transport in the main cities. Car ownership in New Zealand is now the highest in the OECD and there are more motor vehicles than adults.

Fuel efficiency improved only slowly over this period, before stalling in recent years: at 180g CO₂/km, the emissions of newly imported vehicles in New Zealand are 50% higher than in Europe. Because of the lack of a fuel efficiency standard, importers provide less efficient versions of their bestsellers to the New Zealand market. Of the ten bestselling new vehicles, five are utes (which also benefit from a fringe benefit tax exemption, four are SUVs and one is a regular car.

In addition, half of all vehicles are imported secondhand, mostly from Japan. They are cheap, but less efficient than newer models. Emissions, and congestion, are likely to continue rising as the national vehicle fleet is increasing by 110,000 vehicles a year.

One bright spot in the present situation is the emergence of an electric vehicle segment, mostly driven by the availability of cheap second-hand Nissan Leafs from Japan and the construction of a fast-charging network by a private company. Although sales have stalled in the past year at a market share of 2%, there are now 15,000 electric vehicles in New Zealand. (Australia has around 10,000 electric vehicles.)

New Zealand’s history of fuel taxes

New Zealand does not have a strong record of taxing “bads”. The only goods subject to excise taxes are tobacco, alcohol and fuel. The fuel tax is moderate by international standards. Over the past decade, the fuel tax has been fully allocated to road construction and maintenance.

New Zealand has an emissions trading scheme. The current carbon price of NZ$25/tonne of carbon dioxide adds five cents per litre to the price of fuel. Clearly, any likely increases in the carbon price are not going to be enough to change car buying decisions. Research shows that consumers tend to focus on upfront costs, while underestimating future fuel and maintenance costs.

Despite that, a special Auckland fuel tax of 10 cents per litre that co-funds public transport investment provoked a brief but intense backlash from the public. Plans to extend the scheme to other centres were canned.

A two-pronged plan

The proposed fuel efficiency standard would require car importers to either meet it or pay a fine. The suggested standard is 150gCO₂/km in 2021, falling to 105gCO₂/km in 2025, with further falls thereafter. There are more than 3000 car importers in New Zealand, so this could prompt a major shakeup, including possible price adjustments.

The standards are similar to those proposed by the Australian Coalition government in 2016, which have not yet been taken any further. Internationally, fuel efficiency standards cover 80% of the light vehicle market.




Read more:
Australians could have saved over $1 billion in fuel if car emissions standards were introduced 3 years ago


But the second component of the proposal, the clean car discount, has attracted more attention. Cars emitting less than the current threshold would received a discount, initially up to NZ$1800 for an efficient petrol car, up to NZ$4800 for a hybrid and up to NZ$8000 for a battery electric car. Cars costing more than NZ$80,000 would not receive a discount.

Known as a “feebate scheme”, those rebates would be paid for by increased fees for high-polluting cars, of up to NZ$3000. The amounts are designed so that the entire scheme would be revenue neutral to the government. Modelling suggests that the proposed standard and discount combined would save motorists NZ$12,000 over the life of a vehicle.

International clean car schemes and testing

There is international experience with similar schemes, and they have been broadly effective. France has been operating a “feebate” scheme since 2008 with periodic adjustments. New Zealand’s proposed scheme is similar to the French and Swedish schemes.

But there is also room to get it wrong. Tinkering with electric vehicle incentives has led to wild sales fluctuations in the Netherlands and Denmark.

The spread between tested and real-world fuel use has widened, up from 9% in 2001 to 42%. The new Worldwide Harmonised Light Vehicle Test Procedure testing cycle, currently being adopted by Japanese and European manufacturers, is believed to be more representative of real-world fuel use, as is the test already in use in the United States.

But overall, the New Zealand proposal has been received positively by car makers and across political parties.

One possible weakness is that it is entirely based on carbon dioxide. Other pollutants, including nitrous and sulphur oxides and particulate matter (soot), that are responsible for most of the immediate health impacts of vehicle pollution and are worse in diesel than in petrol vehicles, are not targeted. Nor are the underlying subsidies to the car-based transport system, which make a transition to active and public transport more difficult.

Any decisions made now will have impacts for decades to come. Switching the fleet to electric is different from just switching to more fuel-efficient cars. It involves new charging infrastructure and some behavioural changes from the public, and these challenges (rather than simply cost) are stumbling blocks worldwide to more rapid adoption.

These arguments have persuaded many countries to bring in electric vehicle incentives beyond simply targeting carbon dioxide. Norway is a famous example, where electric vehicles avoid purchase taxes and market share is already 60%. The UK has recently exempted electric company cars from fringe benefit tax.

As the global market share of electric vehicles still stands at only 2%, eight years after they became widely available, and the number of fossil-fueled vehicles is increasing by 48 million a year, stronger action on vehicle emissions is clearly needed worldwide.The Conversation

Robert McLachlan, Professor in Applied Mathematics, Massey University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australians could have saved over $1 billion in fuel if car emissions standards were introduced 3 years ago



Legislative action regarding vehicle emissions is overdue, and needs urgent attention by the federal government.
Shutterstock

Robin Smit, The University of Queensland; Jake Whitehead, The University of Queensland, and Nic Surawski, University of Technology Sydney

When it comes to road transport, Australia is at risk of becoming a climate villain as we lag behind international best practice on fuel efficiency.

Road transport is one of the main sources of greenhouse gas emissions and represented 16% of Australia’s total carbon dioxide emissions in 2000, growing to 21% in 2016. Total CO₂ emissions from road transport increased by almost 30% in the period 2000-16.

Fuel efficiency (CO₂ emission) standards have been adopted in around 80% of the global light vehicle market to cap the growth of transport emissions. This includes the United States, the European Union, Canada, Japan, China, South Korea and India – but not Australia.




Read more:
Emissions standards on cars will save Australians billions of dollars, and help meet our climate targets


If Australia had introduced internationally harmonised emissions legislation three years ago, households could have made savings on fuel costs to the tune of A$1 billion.

This shocking figure comes from our preliminary calculations looking at the effect of requiring more efficient vehicles to be sold in Australia.

A report, published yesterday by Transport Energy/Emission Research, looked at what Australia has achieved in vehicle fuel efficiency and CO₂ standards over the past 20 years. While Australia has considered and tried to impose standards a number of times, sadly these attempts were unsuccessful.

Legislative action on vehicle CO₂ emissions is long overdue and demands urgent attention by the Australian government.

Australian consumers are increasingly buying heavier vehicles with bigger emissions.
Shuterstock

How did Australia get here?

The most efficient versions of vehicle models offered in Australia are considerably less efficient than similar vehicles in other markets.

Australia could increasingly become a dumping ground for the world’s least efficient vehicles with sub-par emissions performance, given our lack of fuel efficiency standards. This leaves us on a dangerous path towards not only higher vehicle emissions, but also higher fuel costs for passenger travel and freight.

Australia has attempted to impose CO₂ or fuel efficiency standards on light vehicles several times over the past 20 years, but without success. While the federal government was committed to addressing this issue in 2015, four years later we are still yet to hear when – or even if – mandatory fuel efficiency standards will ever be introduced.

The general expectation appears to be that average CO₂ emission rates of new cars in Australia will reduce over time as technology advances overseas. In the absence of CO₂ standards locally, it is more likely that consumers will continue to not be offered more efficient cars, and pay higher fuel costs as a consequence.

Estimating the fuel savings

Available evidence suggests Australian motorists are paying on average almost 30% more for fuel than they should because of the lack of fuel efficiency standards.

The Australian vehicle fleet uses about 32 billion litres of fuel per year.

Using an Australian fleet model described in the TER report, we can make a conservative estimate that the passenger vehicle fleet uses about half of this fuel: 16 billion litres per year. New cars entering the fleet each year would represent about 5% of this: 800 million litres per year.

So assuming that mandatory CO₂ standards improve fuel efficiency by 27%, fuel savings would be 216 million litres per year.

In the last three years, the average fuel price across Australia’s five major cities is A$1.33 per litre. This equates to a total savings of A$287 million per year, although this would be about half the first year as new cars are purchased throughout the year and travel less, and would reduce as vehicles travel less when they age.

The savings are accumulative because a car purchased in a particular year continues to save fuel over the following years.

The table below shows a rough calculation of savings over the three year period (2016-2018), for new cars sold in the same period (Model Years 2016, 2017 and 2018).

As a result, over a period of three years, A$1.3 billion in potential savings for car owners would have accumulated.

Policy has come close, but what are we waiting for?

The Australian government is not progressing any measures to introduce a fuel efficiency target. In fact, it recently labelled Labor’s proposed fuel efficiency standard as a “car tax”.

But Australia has come close to adopting mandatory vehicle CO₂ emission standards in the past.

In late 2007, the Labor government committed to cutting emissions to achieve Australia’s obligations under the Kyoto Protocol. The then prime minister, Kevin Rudd, instructed the Vehicle Efficiency Working Group to:

… develop jointly a package of vehicle fuel efficiency measures designed to move Australia towards international best practice.

Then, in 2010, the Labor government decided mandatory CO₂ emissions standards would apply to new light vehicles from 2015. But a change in government in 2013 meant these standards did not see the light of day.

The amount of fuel that could have been saved is A$287 million per year.
Shutterstock

Things looked promising again when the Coalition government released a Vehicle Emissions Discussion Paper in 2016, followed by a draft Regulation Impact Statement in the same year.

The targets for adopting this policy in 2025, considered in the draft statement, were marked as “strong” (105g of CO₂ per km), “medium” (119g/km) and “mild” (135g/km) standards.

Under all three targets, there would be significant net cost savings. But since 2016, the federal government has taken no further action.

It begs the question: what exactly are we waiting for?

The technical state of play

Transport Energy/Emission Research conducted preliminary modelling of Australian real-world CO₂ emissions.

This research suggests average CO₂ emission rates of the on-road car fleet in Australia are actually increasing over time and are, in reality, higher than what is officially reported in laboratory emissions tests.

In fact, the gap between mean real-world emissions and the official laboratory tests is expected to grow from 20% in 2010 to 65% in 2025.

This gap is particularly concerning when we look at the lack of support for low-emissions vehicles like electric cars.




Read more:
Why battery-powered vehicles stack up better than hydrogen


Given that fleet turnover is slow, the benefits of fuel efficiency standards would only begin to have a significant effect several years into the future.

With continuing population growth, road travel will only increase further. This will put even more pressure on the need to reduce average real-world CO₂ emission rates, given the increasing environmental and health impacts of the vehicle fleet.

Even if the need to reduce emissions doesn’t convince you, the cost benefits of emissions standards should. The sale of less efficient vehicles in Australia means higher weekly fuel costs for car owners, which could be avoided with the introduction of internationally harmonised emissions legislation.The Conversation

Robin Smit, Adjunct professor, The University of Queensland; Jake Whitehead, Research Fellow, The University of Queensland, and Nic Surawski, Lecturer in Environmental Engineering, University of Technology Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Eastern China pinpointed as source of rogue ozone-depleting emissions



Sunset at Australia’s Cape Grim observatory, one of the key global background monitoring sites for CFC-11.
Paul Krummel/CSIRO, Author provided

Paul Krummel, CSIRO; Bronwyn Dunse, CSIRO; Nada Derek, CSIRO; Paul Fraser, CSIRO, and Paul Steele, CSIRO

A mysterious rebound in the emissions of ozone-depleting chemicals – despite a global ban stretching back almost a decade – has been traced to eastern China.

Research published by an international team today in Nature used a global network of monitoring stations to pinpoint the source of the rogue emissions. According to these data, 40-60% of the increase in emissions seen since 2013 is due to possibly illegal industrial activity in the Chinese provinces of Shandong and Hebei.




Read more:
After 30 years of the Montreal Protocol, the ozone layer is gradually healing


Chlorofluorocarbon-11 (CFC-11) is a powerful ozone-depleting chemical that plays a major role in the appearance, each spring, of the ozone “hole” over Antarctica.

In the past, CFC-11 had been used primarily as a propellant in aerosol products and as a foam plastic blowing agent. The production and consumption (use) of CFC-11 are controlled by the global Montreal Protocol. CFC-11 consumption has been banned in developed countries since 1996, and worldwide since 2010.

This has resulted in a significant decline of CFC-11 in the atmosphere. Long-term CFC-11 measurements at Cape Grim, Tasmania, show the amount in the atmosphere peaked in 1994, and fell 14% by 2018.

However, this decline has not been as rapid as expected under the global zero production and consumption mandated by the Montreal Protocol since 2010.

Background levels of CFC-11 measured at Australia’s Cape Grim Baseline Air Pollution Station, located at the north-west tip of Tasmania.
CSIRO/Bureau of Meteorology

A 2014 study was the first to deduce that global emissions of CFC-11 stopped declining in 2002. In 2015, CSIRO scientists advised the Australian government, based on measurements compiled by the Advanced Global Atmospheric Gases Experiment (AGAGE), which includes those from Cape Grim, that emissions had risen significantly since 2011. The cause of this rebound in CFC-11 emissions was a mystery.

Global CFC-11 emissions based on atmospheric measurements compared with the expected decline of this compound in the atmosphere if compliance with the Montreal Protocol was adhered to.
CSIRO/AGAGE

An initial explanation came in 2018, when researchers led by Stephen Montzka of the US National Oceanic and Atmospheric Administration analysed the CFC-11 data collected weekly at Mauna Loa, Hawaii. They deduced that the increased emissions originated largely from East Asia – likely as a result of new, illegal production.

Montzka’s team concluded that if these increased CFC-11 emissions continued, the closure of the Antarctic ozone hole could be delayed, possibly for decades. This was a remarkable piece of detective work, considering that Mauna Loa is more than 8,000km from East Asia.

Suspicions confirmed

A still more detailed explanation is published today in the journal Nature by an international research team led by Matt Rigby of the University of Bristol, UK, and Sunyoung Park of Kyungpook National University, South Korea, together with colleagues from Japan, the United States, Australia and Switzerland. The new study uses data collected every two hours by the AGAGE global monitoring network, including data from Gosan, South Korea, and from an AGAGE-affiliated station at Hateruma, Japan. Crucially, Gosan and Hateruma are just 1,000km and 2,000km, respectively, from the suspected epicentre of CFC-11 emissions in East Asia.

The Korean and Japanese data show that these new emissions of CFC-11 do indeed come from eastern China – in particular the provinces of Shandong and Hebei – and that they have increased by around 7,000 tonnes per year since 2013.

Meanwhile, the rest of the AGAGE network has detected no evidence of increasing CFC-11 emissions elsewhere around the world, including in North America, Europe, Japan, Korea or Australia.

Yet while this new study has accounted for roughly half of the recent global emissions rise, it is possible that smaller increases have also taken place in other countries, or even in other parts of China, not covered by the AGAGE network. There are large swathes of the globe for which we have very little detailed information on CFC emissions.

Map showing the region where the increased CFC-11 emissions came from, based on atmospheric measurements and modelling.
University of Bristol/CSIRO

Nevertheless, this study represents an important milestone in atmospheric scientists’ ability to tell which regions are emitting ozone-depleting substances and in what quantities. It is now vital we find out which industries are responsible for these new emissions.

If the emissions are due to the manufacture and use of products such as foams, it is possible that, so far, we have seen in the atmosphere only a fraction of the total amount of CFC-11 that was produced illegally. The remainder could be locked up in buildings and chillers, and will ultimately be released to the atmosphere over the coming decades.




Read more:
Explainer: what is the Antarctic ozone hole and how is it made?


While our new study cannot determine which industry or industries are responsible, it does provide strong evidence that substantial new emissions of CFC-11 have occurred from China. Chinese authorities have identified, and closed down, some illegal production facilities over the past several years.

This study highlights the importance of undertaking long-term measurements of trace gases like CFC-11 to verify that international treaties and protocols are working. It also identifies shortcomings in the global networks for detecting regional emissions of ozone depleting substances. This should encourage expansion of these vital measurement networks which would lead to a capability of more rapid identification of future emission transgressions.The Conversation

Paul Krummel, Research Group Leader, CSIRO; Bronwyn Dunse, Climate Science Centre, CSIRO Oceans and Atmosphere, CSIRO; Nada Derek, Centre for Australian Weather and Climate Research, CSIRO; Paul Fraser, Honorary Fellow, CSIRO, and Paul Steele, Centre for Australian Weather and Climate Research, CSIRO

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Mercury pollution from decades past may have been re-released by Tasmania’s bushfires



File 20190405 114905 1kz1fq7.jpg?ixlib=rb 1.1
Tasmania’s fires may have released mercury previously absorbed by trees.
AAP Image

Larissa Schneider, Australian National University; Kathryn Allen, University of Melbourne, and Simon Haberle, Australian National University

Tasmania’s bushfires may have resulted in the release of significant amounts of mercury from burnt trees into the atmosphere. Our research shows that industrial mercury pollution from decades past has been locked up in west Tasmanian trees.

Mercury occurs naturally in Earth’s crust. Over the past 200 years, industrial activities have mobilised mercury from the crust and released it into the atmosphere. As a consequence, atmospheric mercury concentrations are now three to four times higher than in the pre-industrialisation era.

Mining is the largest source of the global atmospheric mercury, accounting for 37% of mercury emissions. When Europeans first arrived in Australia, there was, of course, no Environmental Protection Act in place to limit emissions from industrial activities. In western Tasmania, where mining has occurred for more than a century, this meant mercury was being released without control into the local atmosphere until changes in technology, market conditions, and later, regulation, conspired to reduce emissions.




Read more:
Australia emits mercury at double the global average


Because mercury is also very persistent in the environment, past mining activity has generated a reservoir of mercury that could be released to the atmosphere under certain conditions. This is a concern because even small amounts of mercury may be toxic and may cause serious health problems. In particular, mercury can threaten the normal development of a child in utero and early in its life.

Tree rings can reveal past mercury contamination

How much mercury has been released into the Australian environment and when has remained largely unknown. However, in a new study we show how mercury levels in Tasmania have dramatically changed over the past 150 years due to mining practices. Long-lived Huon pine, endemic to western Tasmania, is one of the most efficient bioaccumulators of mercury in the world. This makes it a good proxy for tracking mercury emissions in western Tasmania. If concentrations of mercury in the atmosphere are high in a given year, this can be detected in the annual ring of Huon pine for that year.

Mercury pollution from past mining practices in western Tasmania has left a lasting environmental legacy. The sampled trees contained a significant reservoir of mercury that was taken up during the peak mining period in Queenstown. Changes in mercury concentrations in the annual rings of Huon pine are closely aligned with changes in mining practices in the region.

Increased concentrations coincide with the commencement of pyritic copper smelting in Queenstown in 1896. They peak between 1910 and 1920 when smelting was at its height. In 1922, concentrations begin to decline in parallel with the introduction of a new method to separate and concentrate ores. This method required only one small furnace instead of 11 large ones. In 1934, a new dust-collection apparatus was installed in the smelter’s chimney, coinciding with the further decrease in mercury concentrations in nearby Huon pine.

Temporal tree rings of Huon pine, revealing historical mercury pollution.
Author provided

Toxic elements or compounds taken up by vegetation can also be released back into the local environment. Bushfires that burn trees that have accumulated mercury may release this mercury as vapour, dust or fine ash, potentially exposing people and wildlife to the adverse effects of mercury. It is estimated that bushfires release 210,000kg of mercury into the global atmosphere each year. As these fires become more frequent and ferocious in Australia, mercury concentrations in the atmosphere are likely to increase. Mercury released by bushfires can persist in the atmosphere for a year, allowing for long-distance transportation depending on wind strength and direction. This means that mining activity from over a century ago may have regional implications in the near future. The Tasmanian fires in December-February burned almost 200,000 hectares, including areas around Queenstown.

It is not currently possible to know how much mercury has been released by these recent fires. Our results simply highlight the potential risk and the need to better understand the amount of mercury taken up by vegetation that may one day be released back to the atmosphere via bushfires.

Re-release of historical mercury emissions by bushfires.
Author provided



Read more:
Dry lightning has set Tasmania ablaze, and climate change makes it more likely to happen again


Although there is no simple way to remove bio-accumulated mercury from trees, the history of mercury contamination recorded in tree rings provides important lessons. Decreased uptake of mercury after upgrades to the Queenstown copper smelter operations demonstrates the positive impact that good management decisions can have on the amount of mercury released into the environment.

To control mercury emissions globally, the United Nations Environment Programme (UNEP) has developed the Minamata Convention on Mercury. Its primary goal is to protect human health and the environment from the negative effects of mercury. Australia has signed the convention and but has yet to ratify it. Once ratified, Australia would be required to record sources of mercury and quantify emissions, including those from bushfires.

But to do this, the government must first be able to identify environmental reservoirs of mercury. Our study, the first of its kind in the Southern Hemisphere, shows that the long-lived Huon pine can be used to for this purpose. Further work to determine what other tree species record atmospheric emissions of mercury and other toxic elements in other regions of Australia is required.The Conversation

Larissa Schneider, DECRA fellow, Australian National University; Kathryn Allen, Academic, Ecosystem and Forest Sciences, University of Melbourne, and Simon Haberle, Professor, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Logging burns conceal industrial pollution in the name of ‘community safety’



File 20180516 104311 1sl5vdo.jpg?ixlib=rb 1.1
High intensity logging burns and the resulting smoke plume near Mount Baw Baw, April 2018
Photo Chris Taylor., Author provided

Chris Taylor, University of Melbourne and David Lindenmayer, Australian National University

Earlier this year, Melbourne and large areas of Central Victoria, experienced days of smoke haze and poor air quality warnings as a result of planned burns. It’s a regular event occurring every autumn.

This smoke has been reported by both government and media outlets as largely the result of planned burns to reduce bushfire risk, along with agricultural burn-offs and increased use of wood heaters.




Read more:
Firestorms: the bushfire/thunderstorm hybrids we urgently need to understand


But this is only part of the story. A good proportion of the smoke this autumn has actually come from the intensive burning of debris left behind after clearfell logging. This is essentially industrial pollution.

Smoke Haze over Mooroolbark and Melbourne’s eastern suburbs on Tuesday 1 May 2018, shortly after the time when the Poor Air Quality Index reached 901.
Photo: Chris Taylor, Author provided

Industrial clearfell logging vs fuel reduction

To understand why clearfell logging burns are different compared with planned burns to reduce bushfire risk, we need to understand clearfell logging, which involves cutting most or all of the commercially valued trees in one single operation across a designated area (called a “coupe”).

Large volumes of forest biomass are left on the ground following clearfell logging in the Mount Disappointment State Forest with the Melbourne City Skyline in the background, August 2010.
Photo. Chris Taylor., Author provided

In the process of clearfell logging, understorey vegetation is usually pushed over. Along with tree heads and branches left behind after logging, large volumes of debris – known as “slash” – are created. This is partially removed by applying a high intensity burn across the coupe, which in turn establishes an ash seed bed for the next crop of trees to be established. Generally, around 90-100% of the coupe is burnt.

In contrast, planned burns to reduce bushfire risk (otherwise referred to as fuel reduction burns) are less intense. They mostly target “fine fuels” (vegetation less than 6mm in diameter) on the forest floor and in the understorey, which may average around 15 tonnes per hectare (t/ha). Burn coverage is usually 50-70% of the site.

Surface and understorey ‘fine fuels’ targeted in a recent low intensity burn near Mt Dandenong in April 2018.
Photo: Chris Taylor, Author provided

Clearfell logging burns consume much larger volumes of vegetation biomass in the form of tree heads, branches, bark and downed understorey vegetation. According to a report completed for the National Carbon Accounting System, clearfell logging burns consume, on average, 130 t/ha of slash in mixed-species forest and 140 t/ha of slash in Mountain Ash forests. This means that, while clearfell logging burns cover much less ground than fuel reduction burns, they burn far more biomass per hectare – generating far more smoke.

The list of planned burns on Forest Fire Management Victoria’s website showed that, at the beginning of May, 77 of the 119 burns either lit or planned to be lit across the Central Highlands of Victoria and surrounding areas were on logging coupes.




Read more:
After the firestorm: the health implications of returning to a bushfire zone


These burns were individually lit over a period of weeks, with some days predominantly logging burns, others fuel reduction burns. An example when logging burns were prominent occurred on April 20 this year, where 10 out of 12 planned burns were observed as occurring on logging coupes. Using a simple calculation based on average biomass consumption, fuel loads and burn coverage for logging and fuel reduction burns, we estimate that up to 99% of biomass burnt most likely occurred on logging coupes. The following day, the Environmental Protection Authority observed “poor” air quality at multiple air monitoring stations across Melbourne due to smoke.

MODIS Rapid Response Terra Satellite image taken 20 April 2018 showing the smoke intensity of the logging burns.
NASA 2018

Even on days when the majority of burns lit were for fuel reduction, planned logging burns still contributed a proportion of biomass burned. For example, on April 30, only three out of 12 planned burns were observed as occurring on logging coupes, but they may have contributed to around one-third of the total biomass burned.




Read more:
Future bushfires will be worse: we need to adapt now


Likewise, on the following day, the Environmental Protection Authority observed “very poor” air quality across multiple air monitoring stations. While multiple planned burns contributed to this pollution event, we contend that logging burns increased the levels of pollution in addition to the smoke originating from fuel reduction burns.

MODIS Rapid Response Terra Satellite image taken 30 April 2018 showing the smoke intensity of the planned burns.
NASA 2018

The key issue here is that not all “planned burns” are equivalent. Fuel reduction burns are intended to reduce the bushfire risk to lives and property. Indeed, work led by The Australian National University shows that regular fuel reduction burns can reduce risk to properties if carried out within close proximity.

In contrast, clearfell logging burns are part of an industrial process that extracts pulp logs and sawlogs for commercial sale to private enterprise. They play no part in reducing bushfire risk to life and property. Actually, the reverse is true: logging makes forests more prone to subsequent high-severity crown-consuming fires with associated risks to communities.




Read more:
Victoria’s logged landscapes are at increased risk of bushfire


Given that a substantial proportion of the recent smoke over Melbourne and surrounding regional Victoria likely originated from logging burns, could that smoke be deemed industrial pollution? This is a valid question, given the serious health impacts associated with smoke pollution.

The ConversationLogging burns would not be needed (and a substantial amount of associated smoke not generated) if the forest had not been logged in the first place. It is imperative that government departments inform the public about the smoke pollution coming from logging operations, whose purpose is for private commercial gain.

Chris Taylor, Researcher, University of Melbourne and David Lindenmayer, Professor, The Fenner School of Environment and Society, Australian National University

This article was originally published on The Conversation. Read the original article.

Common products, like perfume, paint and printer ink, are polluting the atmosphere



File 20180215 131000 1ie7l5j.jpg?ixlib=rb 1.1
We need to measure the volatile compounds that waft off the products in our homes and offices.

Jenny Fisher, University of Wollongong and Kathryn Emmerson, CSIRO

Picture the causes of air pollution in a major city and you are likely to visualise pollutants spewing out of cars, trucks and buses.

For some types of air pollutants, however, transportation is only half as important as the chemicals in everyday consumer products like cleaning agents, printer ink, and fragrances, according to a study published today in Science.

Air pollution: a chemical soup

Air pollution is a serious health concern, responsible for millions of premature deaths each year, with even more anticipated due to climate change.




Read more:
Climate change set to increase air pollution deaths by hundreds of thousands by 2100


Although we typically picture pollution as coming directly from cars or power plants, a large fraction of air pollution actually comes from chemical reactions that happen in the atmosphere. One necessary starting point for that chemistry is a group of hundreds of molecules collectively known as “volatile organic compounds” (VOCs).

VOCs in the atmosphere can come from many different sources, both man-made and natural. In urban areas, VOCs have historically been blamed largely on vehicle fuels (both gasoline and diesel) and natural gas.

Fuel emissions are dropping

Thanks in part to more stringent environmental regulations and in part to technological advances, VOCs released into the air by vehicles have dropped dramatically.

In this new study, the researchers used detailed energy and chemical production records to figure out what fraction of the VOCs from oil and natural gas are released by vehicle fuels versus other sources. They found that the decline in vehicle emissions means that – in a relative sense – nearly twice as much comes from chemical products as comes from vehicle fuel, at least in the US. Those chemicals include cleaning products, paints, fragrances and printer ink – all things found in modern homes.

The VOCs from these products get into the air because they evaporate easily. In fact, in many cases, this is exactly what they are designed to do. Without evaporating VOCs, we wouldn’t be able to smell the scents wafting by from perfumes, scented candles, or air fresheners.

Overall, this is a good news story: VOCs from fuel use have decreased, so the air is cleaner. Since the contribution from fuels has dropped, it is not surprising that chemical products, which have not been as tightly regulated, are now responsible for a larger share of the VOCs.

Predicting air quality

An important finding from this work is that these chemical products have largely been ignored when constructing the models that we use to predict air pollution – which impacts how we respond to and regulate pollutants.

The researchers found that ignoring the VOCs from chemical products had significant impacts on predictions of air quality. In outdoor environments, they found that these products could be responsible for as much as 60% of the particles that formed chemically in the air above Los Angeles.

The effects were even larger indoors – a major concern as we spend most of our time indoors. Without accounting for chemical products, a model of indoor air pollutants under-predicted measurements by a whopping 87%. Including the consumer products really helped to fix this problem.




Read more:
We can’t afford to ignore indoor air quality – our lives depend on it


What does this mean for Australia?

In Australia we do a stocktake of our VOC emissions to the air every few years. Our vehicle-related VOC emissions have also been dropping and are now only about a quarter as large as they were in 1990.

Historical and projected trends in Australia’s road transport emissions of VOCs.
Author provided, adapted from Australia State of the Environment 2016: atmosphere

Nonetheless, the most recent check suggests most of our VOCs still come from cars and trucks, factories and fires. Still, consumer products can’t be ignored – especially as our urban population continues to grow. Because these sources are spread out across the city, their contributions can be difficult to estimate accurately.

We need to make sure our future VOC stocktakes include sources from consumer products such as cleaning fluids, indoor fragrances and home office items like printing ink. The stocktakes are used as the basis for our models, and comparing models to measurements helps us understand what affects our air quality and how best to improve it. It was a lack of model-to-measurement agreement that helped to uncover the VW vehicle emissions scandal, where the manufacturer was deliberately under-estimating how much nitrogen gas was being released through the exhaust.

If we can’t get our predictions to agree with the indoor measurements, we’ll need to work harder to identify all the emission sources correctly. This means going into typical Australian homes, making air quality measurements, and noting what activities are happening at the same time (like cooking, cleaning or decorating).




Read more:
Heading back to the office? Bring these plants with you to fight formaldehyde (and other nasties)


What should we do now?

If we want to keep air pollution to a minimum, it will become increasingly important to take into account the VOCs from chemical products, both in our models of air pollution and in our regulatory actions.

In the meantime, as we spend so much of our time indoors, it makes sense to try to limit our personal exposure to these VOCs. There are several things we can do, such as choosing fragrance-free cleaning products and keeping our use of scented candles and air fresheners to a minimum. Research from NASA has also shown that growing house plants like weeping figs and spider plants can help to remove some of the VOCs from indoor air.

The ConversationAnd of course, we can always open a window (as long as we keep the outdoor air clean, too).

Jenny Fisher, Senior Lecturer in Atmospheric Chemistry, University of Wollongong and Kathryn Emmerson, , CSIRO

This article was originally published on The Conversation. Read the original article.

Flying home for Christmas? Carbon offsets are important, but they won’t fix plane pollution



File 20171214 27572 a8rrj.jpg?ixlib=rb 1.1

Roey Ahram/Flickr, CC BY-NC-SA

Susanne Becken, Griffith University and Brendan Mackey, Griffith University

Australia is an important player in the global tourism business. In 2016, 8.7 million visitors arrived in Australia and 8.8 million Australians went overseas. A further 33.5 million overnight trips were made domestically.

But all this travel comes at a cost. According to the Global Sustainable Tourism Dashboard, all Australian domestic trips and one-way international journeys (the other half is attributed to the end point of travel) amount to 15 million tonnes of carbon dioxide for 2016. That is 2.7% of global aviation emissions, despite a population of only 0.3% of the global total.


Read more: Life in a post-flying Australia, and why it might actually be ok


The peak month of air travel in and out of Australia is December. Christmas is the time where people travel to see friends and family, or to go on holiday. More and more people are aware of the carbon implications of their travel and want to know whether, for example, they should purchase carbon offsets or not.

Our recent study in the Journal of Air Transport Management showed that about one third of airlines globally offer some form of carbon offsetting to their customers. However, the research also concluded that the information provided to customers is often insufficient, dated and possibly misleading. Whilst local airlines Qantas, Virgin Australia and Air New Zealand have relatively advanced and well-articulated carbon offset programs, others fail to offer scientifically robust explanations and accredited mechanisms that ensure that the money spent on an offset generates some real climate benefits.

The notion of carbon compensation is actually more difficult than people might think. To help explain why carbon offsetting does make an important climate contribution, but at the same time still adds to atmospheric carbon, we created an animated video clip.

Jack’s journey.

The video features Jack, a concerned business traveller who begins purchasing carbon credits. However, he comes to the realisation that the carbon emissions from his flights are still released into the atmosphere, despite the credit.

The concept of “carbon neutral” promoted by airline offsets means that an equal amount of emissions is avoided elsewhere, but it does not mean there is no carbon being emitted at all – just relatively less compared with the scenario of not offsetting (where someone else continues to emit, in addition to the flight).

This means that, contrary to many promotional and educational materials (see
here for instance), carbon offsetting will not reduce overall carbon emissions. Trading emissions means that we are merely maintaining status quo.

A steep reduction, however, is what’s required by every sector if we were to reach the net-zero emissions goal by 2050, agreed on in the Paris Agreement.


Read more: It’s time to wake up to the devastating impact flying has on the environment


Carbon offsetting is already an important “polluter pays” mechanism for travellers who wish to contribute to climate mitigation. But it is also about to be institutionalised at large scale through the new UN-run Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA).

CORSIA will come into force in 2021, when participating airlines will have to purchase carbon credits for emissions above 2020 levels on certain routes.

The availability of carbon credits and their integrity is of major concern, as well as how they align with national obligations and mechanisms agreed in the Paris Agreement. Of particular interest is Article 6, which allows countries to cooperate in meeting their climate commitments, including by “trading” emissions reductions to count towards a national target.

The recent COP23 in Bonn highlighted that CORSIA is widely seen as a potential source of billions of dollars for offset schemes, supporting important climate action. Air travel may provide an important intermediate source of funds, but
ultimately the aviation sector, just like anyone else, will have to reduce their own emissions. This will mean major advances in technology – and most likely a contraction in the fast expanding global aviation market.


Read more: Friday essay: smile and stay thin – life as a 60s air hostess


Travelling right this Christmas

In the meantime, and if you have booked your flights for Christmas travel, you can do the following:

  • pack light (every kilogram will cost additional fuel)

  • minimise carbon emissions whilst on holiday (for instance by biking or walking once you’re there), and

  • support a credible offsetting program.

The ConversationAnd it’s worth thinking about what else you can do during the year to minimise emissions – this is your own “carbon budget”.

Susanne Becken, Professor of Sustainable Tourism and Director, Griffith Institute for Tourism, Griffith University and Brendan Mackey, Director of the Griffith Climate Change Response Program, Griffith University

This article was originally published on The Conversation. Read the original article.