New research finds native forest logging did not worsen the Black Summer bushfires


Shutterstock

David Bowman, University of TasmaniaThe Black Summer bushfires shocked the world and generated enormous global media interest. Fire scientists like myself found themselves filling a role not unlike sport commentators, explaining the unfolding drama in real time.

Scientists who engaged with the media during the crisis straddled two competing imperatives. First was their duty to share their knowledge with the community while knowing their understanding is imperfect. Second was the ethical obligation to rigorously test hypotheses against data analysis and peer review – the results of which could only be known long after the fires were out.

One area where this tension emerged was around the influential idea that logging exacerbated the bushfire disaster. During the fire crisis and in the months afterwards, some scientists suggested logging profoundly affected the fires’ severity and frequency. There were associated calls to cease native forestry and shift wood production to plantations.

But there is no scientific consensus about the possible effects of logging on fire risk. In fact, research by myself and colleagues, published in Nature Ecology and Evolution today, shows logging had little if any effect on the Black Summer bushfires. Rather, the disaster’s huge extent and severity were more likely due to unprecedented drought and sustained hot, windy weather.

These findings are significant for several reasons. Getting to the bottom of the bushfires’ cause is essential for sustainable forest management. And, more importantly, our research confirms the devastating role climate change played in the Black Summer fires.

Firefighters recover after battling blazes at Kangaroo Island on 10 January 2019.
David Mariuz/AAP

Looking for patterns

Our research focused on 7 million hectares of mostly eucalyptus forests, from the subtropics to temperate zones, which burned between August 2019 and March 2020.

There is some evidence to suggest logged areas are more flammable that unlogged forests. Proponents of this view say logging regimes make the remaining forests hotter and drier, and leave debris on the ground that increases the fuel load.

In our research, we wanted to determine:

  • the relative roles logging and other factors such as climate played in fires that destroyed or completely scorched forest canopies
  • whether plantations are more vulnerable to canopy scorch than native forests.

To do so, we used landscape ecology techniques that could compare very large areas with different patterns of land use and fire severity. We sampled 32% of the area burnt in three regions spanning the geographic range of the fires.




Read more:
The government has pledged over $800m to fight natural disasters. It could be revolutionary — if done right


firefighters run past fire
The research used landscape ecology techniques to compare large areas.
Shutterstock

What we found

Fire intensity is classified according to the vertical layer of vegetation burnt. A scorched tree canopy suggests the most intense type of fire, where the heat extended from the ground to the treetops.

We found several predictors of canopy damage. First, completely scorched canopy, or canopy consumed by fire, typically occurred across connected swathes of bushland. This most likely reflected instances where the fire made a “run”, driven by localised winds.

Extreme weather fire conditions were the next most important predictor of canopy damage. The drought had created vast areas of tinder-dry forests. Temperatures during the fire season were hot and westerly winds were strong.

Southeast Australia’s climate has changed, making such extreme fire weather more frequent, prolonged and severe.

Logging activity in the last 25 years consistently ranked “low” as a driver of fire severity. This makes sense for several reasons.

As noted above, fire conditions were extraordinarily extreme. And there was mismatch between the massive area burnt and the comparatively small areas commercially logged in the last 25 years (4.5% in eastern Victoria, 5.3% in southern NSW and 7.8% in northern NSW).

Fire severity is also related to landscape features: fire on ridges is generally worse than in sheltered valleys.

Our research also found timber plantations were as prone to severe fire as native forestry areas. In NSW (the worst-affected state) one-quarter of plantations burned – than 70% severely. This counteracts the suggestion using plantations, rather than logging native forest, can avoid purported fire hazards.




Read more:
Australia, you have unfinished business. It’s time to let our ‘fire people’ care for this land


plantation forest divided by road
Plantation forests were found to be highly flammable.
Shutterstock

A challenge awaits

Our findings are deeply concerning. They signal there is no quick fix to the ongoing fire crisis afflicting Australia and other flammable landscapes.

The crisis is being driven by relentless climate change. Terrifyingly, it has the potential to turn forests from critical stores of carbon into volatile sources of carbon emissions released when vegetation burns.

Under a rapidly warming and drying climate, fuel loads are likely to become less important in determining fire extent and severity. This will make it increasingly difficult, if not impossible, to lower fuel loads in a way that will limit bushfire severity.

A massive challenge awaits. We must find socially and environmentally acceptable ways to make forests more resilient to fire while the also produce sustainable timber products, store carbon, provide water and protect biodiversity.

The next step is a real-world evaluation of management options. One idea worth exploring is whether the fire resistance of native forests can be improved in specific areas by altering tree density, vegetation structure or fuel loads, while sustaining biodiversity and amenity.

Commercial forestry could potentially do this, with significant innovation and willingness to let go of current practices.

Through collective effort, I’m confident we can sustainably manage of forests and fire. Our study is but a small step in a much bigger, zig-zagging journey of discovery.




Read more:
As bushfire and holiday seasons converge, it may be time to say goodbye to the typical Australian summer holiday


The Conversation


forest regenerating after fire
Forests must become fire-resilient while performing other functions.
Shutterstock

David Bowman, Professor of Pyrogeography and Fire Science, University of Tasmania

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Scientists are more likely to study bold and beautiful blooms, but ugly flowers matter too


Myricaria germanica is a rare and endangered species hit hard by climate change, but little research is undertaken to help save it.
Martino Adamo, Author provided

Kingsley Dixon, Curtin UniversityWe all love gardens with beautiful flowers and leafy plants, choosing colourful species to plant in and around our homes. Plant scientists, however, may have fallen for the same trick in what they choose to research.

Our research, published today in Nature Plants, found there’s a clear bias among scientists toward visually striking plants. This means they’re more likely chosen for scientific study and conservation efforts, regardless of their ecological or evolutionary significance.

To our surprise, colour played a major role skewing researcher bias. White, red and pink flowers were more likely to feature in research literature than those with dull, or green and brown flowers. Blue plants — the rarest colour in nature — received most research attention.

But does this bias matter? Plants worldwide are facing mass extinction due to environmental threats such as climate change. Now, more than ever, the human-induced tide of extinction means scientists need to be more fair-handed in ensuring all species have a fighting chance at survival.

Hidden plants in carpets of wildflowers

I was part of an international team that sifted through 280 research papers from 1975 to 2020, and analysed 113 plant species found in the southwestern Alps in Europe.

The Alps is a global biodiversity hotspot and the subject of almost 200 years of intensive plant science. But climate change is now creating hotter conditions, threatening many of its rarest species.

White flower with mountains in background
Edelweiss is a charismatic plant of the Alps that heralds spring.
Shutterstock

Carpeted in snow for much of the year, the brief yet explosive flowering of Europe’s alpine flora following the thaw is a joy to behold. Who was not bewitched when Julie Andrews danced in an alpine meadow in its full spring wildflower livery in The Sound of Music? Or when she sung “edelweiss”, one of the charismatic plants of the Alps that heralds spring?




Read more:
People are ‘blind’ to plants, and that’s bad news for conservation


Hidden in these carpets of bright blue gentians and Delphiniums, vibrant daisies and orchids, are tiny or dull plants. This includes small sedges (Carex species), lady’s mantle (Alchemilla species) or the snake lily (Fritillaria) with its sanguine drooping flowers on thin stems.

Many of these “uncharismatic plants” are also rare or important ecological species, yet garner little attention from scientists and the public.

Close-up of a blue flower
Bellflowers (Campanula) are conspicuous and prominent in the Alps.
Martino Adamo, Author provided

The plants scientists prefer

The study asked if scientists were impartial to good-looking plants. We tested whether there was a relationship between research focus on plant species and characteristics, such as the colour, shape and prominence of species.

Along with a bias towards colourful flowers, we found accessible and conspicuous flowers were among those most studied (outside of plants required for human food or medicine).

Blue flowers
Bold and beautiful flowers in alpine meadows win scientific attention.
Martino Adamo, Author provided

This includes tall, prominent Delphinium and larkspurs, both well-known garden delights with well-displayed, vibrant flowers that often verge on fluorescent. Stem height also contributed to how readily a plant was researched, as it determines a plant’s ability to stand out among others. This includes tall bellflowers (Campanula species) and orchids.

But interestingly, a plant’s rarity didn’t significantly influence research attention. Charismatic orchids, for example, figured prominently despite rarer, less obvious species growing nearby, such as tiny sedges (Cypreaceae) and grass species.

The consequences of plant favouritism

This bias may steer conservation efforts away from plants that, while less visually pleasing, are more important to the health of the overall ecosystem or in need of urgent conservation.

In this time of urgent conservation, controlling our bias in plant science is critical. While the world list of threatened species (the IUCN RED List) should be the basis for guiding global plant conservation, the practice is often far from science based.

Mat rush with brown flowers
Mat rushes are home for rare native sun moths.
Shutterstock

We often don’t know how important a species is until it’s thoroughly researched, and losing an unnoticed species could mean the loss of a keystone plant.

In Australia, for example, milkweeds (Asclepiadaceae) are an important food source for butterflies and caterpillars, while grassy mat rushes (dull-flowered Lomandra species) are now known to be the home for rare native sun moths. From habitats to food, these plants provide foundational ecological services, yet many milkweed and mat rush species are rare, and largely neglected in conservation research.




Read more:
‘Majestic, stunning, intriguing and bizarre’: New Guinea has 13,634 species of plants, and these are some of our favourites


Likewise, we can count on one hand the number of scientists who work on creepy fungal-like organisms called “slime molds”, compared to the platoons of scientists who work on the most glamorous of plants: the orchids.

Yet, slime molds, with their extraordinary ability to live without cell walls and to float their nuclei in a pulsating jelly of cytoplasm, could hold keys to all sorts of remarkable scientific discoveries.

Yellow slime on tree trunk
Slime molds could hold the key to many scientific discoveries, but the organisms are understudied.
Shutterstock

We need to love our boring plants

Our study shows the need to take aesthetic biases more explicitly into consideration in science and in the choice of species studied, for the best conservation and ecological outcomes.

While our study didn’t venture into Australia, the principle holds true: we should be more vigilant in all parts of the conservation process, from the science to listing species for protection under the law. (Attractiveness bias may affect public interest here, too.)

So next time you go for a bushwalk, think about the plants you may have trodden on because they weren’t worth a second glance. They may be important to native insects, improve soil health or critical for a healthy bushland.




Read more:
These 3 tips will help you create a thriving pollinator-friendly garden this winter


The Conversation


Kingsley Dixon, John Curtin Distinguished Professor, Curtin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Like the ocean’s ‘gut flora’: we sailed from Antarctica to the equator to learn how bacteria affect ocean health


Shutterstock

Eric Jorden Raes, Dalhousie UniversityAboard an Australian research vessel, the RV Investigator, we sailed for 63 days from Antarctica’s ice edge to the warm equator in the South Pacific and collected 387 water samples.

Our goal? To determine how the genetic code of thousands of different micro-organisms can provide insights into the ocean’s functional diversity — the range of tasks performed by bacteria in the ocean.

Our research was published yesterday in Nature Communications. It showed how bacteria can help us measure shifts in energy production at the base of the food web. These results are important, as they highlight an emerging opportunity to use genetic data for large-scale ecosystem assessments in different marine environments.

In light of our rapidly changing climate, this kind of information is critical, as it will allow us to unpack the complexity of nature step by step. Ultimately, it will help us mitigate human pressures to protect and restore our precious marine ecosystems.

Why should we care about marine bacteria?

The oceans cover 71% of our planet and sustain life on Earth. In the upper 100 meters, the sunlit part of the oceans, microscopic life is abundant. In fact, it’s responsible for producing up to 50% of all the oxygen in the world.

A whale breaches the ocean
Marine bacteria provide the energy and food for the entire marine food web, from tiny crustaceans to whales.
Shutterstock

Much like the link recently established between human health and the human microbiome (“gut flora”), ocean health is largely controlled by its bacterial inhabitants.

But the role of bacteria go beyond oxygen production. Bacteria sustain, inject and control the fluxes of energy, nutrients and organic matter in our oceans. They provide the energy and food for the entire marine food web, from tiny crustaceans to fish larvae, whales and the fish we eat.

These micro-organisms also execute key roles in numerous biogeochemical cycles (the carbon, nitrogen, phosphorus, sulphur and iron cycles, to name a few).

So, it’s important to quantify their various tasks and understand how the different bacterial species and their functions respond to environmental changes.

Fundamental questions

Global ocean research initiatives — such as GO-SHIP and GEOTRACES — have been measuring the state of oceans in expeditions like ours for decades. They survey temperature, salinity, nutrients, trace metals (iron, cobalt and more) and other essential ocean variables.

Only recently, however, have these programs begun measuring biological variables, such as bacterial gene data, in their global sampling expeditions.

The author smiles in front of a blue and white ship, with 'Investigator' written on the side.
On board the RV Investigator, we departed Hobart in 2016, beginning our 63-day journey to sample microbes in the South Pacific.
Eric Raes, Author provided

Including bacterial gene data to measure the state of the ocean means we can try to fill critical knowledge gaps about how the diversity of bacteria impacts their various tasks. One hypothesis is whether a greater diversity of bacteria leads to a better resilience in an ecosystem, allowing it to withstand the effects of climate change.

In our paper, we addressed a fundamental question in this global field of marine microbial ecology: what is the relationship between bacterial identity and function? In other words, who is doing what?

What we found

We showed it’s possible to link the genetic code of marine bacteria to the various functions and tasks they execute, and to quantify how these functions changed from Antarctica to the equator.

The functions that changed include taking in carbon dioxide from the atmosphere, bacterial growth, strategies to cope with limited nutrients, and breaking down organic matter.




Read more:
Marine life is fleeing the equator to cooler waters. History tells us this could trigger a mass extinction event


Another key finding is that “oceanographic fronts” can act as boundaries within a seemingly uniform ocean, resulting in unique assemblages of bacteria with specific tasks. Oceanographic fronts are distinct water masses defined by, for instance, sharp changes in temperature and salinity. Where the waters meet and mix, there’s high turbulence.

The change we recorded in energy production across the subtropical front, which separates the colder waters from the Southern Ocean from the warmer waters in the tropics, was a clear example of how oceanographic fronts influenced bacterial functions in the ocean.

Dark blue water meets light blue water under a cloudy sky.
An oceanographic front, where it looks like two oceans meet.
Shutterstock

Tracking changes in our ecosystems

As a result of our research, scientists may start using the functional diversity of bacteria as an indicator to track changes in our ecosystems, like canaries in a coal mine.




Read more:
Half of global methane emissions come from aquatic ecosystems – much of this is human-made


So the functional diversity of bacteria can be used to measure how human growth and urbanisation impact coastal areas and estuaries.

For example, we can more accurately and holistically measure the environmental footprint of aquaculture pens, which are known to affect water quality by increasing concentrations of nutrients such as carbon, nitrogen and phosphorus – all favourite elements utilised by bacteria.

Likewise, we can track changes in the environmental services rendered by estuaries, such as their important role in removing excessive nitrogen that enters the waterways due to agriculture run-off and urban waste.

With 44% of the world’s population living along coastlines, the input of nitrogen to marine ecosystems, including estuaries, is predicted to increase, putting a strain on the marine life there.

Ultimately, interrogating the bacterial diversity using gene data, along with the opportunity to predict what this microscopic life is or will be doing in future, will help us better understand nature’s complex interactions that sustain life in our oceans.




Read more:
Humans are polluting the environment with antibiotic-resistant bacteria, and I’m finding them everywhere


The Conversation


Eric Jorden Raes, Postdoctoral researcher Ocean Frontier Institute, Dalhousie University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Pacific killer whales are dying — new research shows why



A female killer whale leaps from the water in Puget Sound near Seattle.
(AP Photo/Elaine Thompson)

Stephen Raverty, University of British Columbia and Joseph K. Gaydos, University of California, Davis

Killer whales are icons of the northeastern Pacific Ocean. They are intimately associated with the region’s natural history and First Nations communities. They are apex predators, with females living as long as 100 years old, and recognized a sentinels of ecosystem health — and some populations are currently threatened with extinction.

There are three major types of killer whales in the region: the “resident” populations that feed mainly on salmon, the “transients” that prey on other marine mammals like seals and sea lions, and the “offshores” that transit along the continental shelf, eating fish and sharks.

In the 1990s, an abrupt decline in the fish-eating southern resident population dropped to 75 whales from 98, prompting both Canada and the United States to list them as endangered.

A dead killer whale lies on her side in shallow water.
Emaciated female killer whale from Hawaii.
(NOAA/NMFS/PIRO), CC BY

Since then, southern resident killer whales, whose range extends from the waters off the southeast Alaska and the coast of British Columbia to California, have not recovered — only 74 remain today. Because killer whale strandings are rare, scientists have been uncertain about the causes of killer whale mortality and how additional deaths might be prevented in the future.

As a pathologist and wildlife veterinarian, and with the help of countless biologists and veterinarians, we have carried out in-depth investigations into why killer whales in this region strand and died. If we don’t know what is causing killer whale deaths, we are not able to prevent the ones that are human-caused.

We can do better

Human activities have been implicated in the decline and lack of recovery of the southern resident killer whale population, including ship noise and strikes, contaminants, reduced prey abundance and past capture of these animals for aquariums.

Only three per cent and 20 per cent of the northern and southern resident killer whales, respectively, that died between 1925 and 2011 were even found and available for a post-mortem exam. And in most cases, only cursory or incomplete post-mortem exams can be done, generating a limited amount of information.

To figure out why these killer whales are dying — and what it means for the health of individual animals and the population as a whole — we reviewed the post-mortem records of 53 animals that became stranded in the eastern Pacific Ocean and Hawaii between 2004 and 2013. We identified the cause of death in 22 animals, and gained important insight from nine other animals where the cause of death could not be determined.

Human-caused injuries were found in nearly every age group of whales, including adults, sub-adults and calves. Some had ingested fishing hooks, but evidence of blunt-force trauma, consistent with ship and propeller strikes, was more common.

A dead killer whale lies on a beach
The 18-year-old male southern resident killer whale, J34, stranded near Sechelt, B.C., on Dec. 21, 2016. Post-mortem examination suggested he died from trauma consistent with vessel strike.
(Paul Cottrell/Fisheries and Oceans Canada), Author provided

This is the first study to document the lesions and forensic evidence of lethal trauma from ship and propeller strikes.

In recent years governments have focused on limiting vessel noise and disturbance. This study reinforces the need for this, showing that in addition to noise and disturbance, vessel strikes are an important cause of death in killer whales.

Direct human impact

We also developed a body condition index to evaluate the animals’ nutritional health — were they eating enough salmon, for example — to see what role food might play in the sickness and death of stranded animals. Observations of free-ranging killer whales from boats and by unmanned aerial drones have documented sub-optimal body condition or generalized emaciation in many southern resident killer whales.

In this study, we found that longer and therefore older animals tend to have thicker blubber. Our study also found that those animals that died from blunt-force trauma had a better body condition — they were in good health before death. Those that died from infections or nutritional causes were more likely to be in worse body condition.

This new body condition index can help scientists better understand the health of killer whales, and gives us a tool to evaluate their health regardless of their age, reproductive status and health condition.

Our team, working with numerous collaborators including the National Marine Mammal Foundation, is building a health database of the killer whales living in the northeastern Pacific Ocean so that their health can be tracked over time. This centralized database will let stranding response programs, regional and national government agencies and First Nations communities collaborate with field biologists, research scientists and veterinarians.

Ultimately, the information about the health of these killer whales must be conveyed to the public and policy-makers to ensure that the appropriate legislation is enacted to reverse the downward trend in the health and survival of these killer whales. We should now be able to assess future efforts and gain a better understanding of the impact of ongoing human activities, such as fishing, boating and shipping.The Conversation

Stephen Raverty, Adjunct professor, Veterinary Pathology, University of British Columbia and Joseph K. Gaydos, Wildlife Veterinarian and Science Director, The SeaDoc Society, University of California, Davis

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Research reveals shocking detail on how Australia’s environmental scientists are being silenced



Authors provided

Don Driscoll, Deakin University; Bob Pressey, James Cook University; Euan Ritchie, Deakin University, and Noel D Preece, James Cook University

Ecologists and conservation experts in government, industry and universities are routinely constrained in communicating scientific evidence on threatened species, mining, logging and other threats to the environment, our new research has found.

Our study, just published, shows how important scientific information about environmental threats often does not reach the public or decision-makers, including government ministers.

In some cases, scientists self-censor information for fear of damaging their careers, losing funding or being misrepresented in the media. In others, senior managers or ministers’ officers prevented researchers from speaking truthfully on scientific matters.

This information blackout, termed “science suppression”, can hide environmentally damaging practices and policies from public scrutiny. The practice is detrimental to both nature and democracy.

A scientist kneels by a stream
When scientists are free to communicate their knowledge, the public is kept informed.
University of Queensland/AAP

Code of silence

Our online survey ran from October 25, 2018, to February 11, 2019. Through advertising and other means, we targeted Australian ecologists, conservation scientists, conservation policy makers and environmental consultants. This included academics, government employees and scientists working for industry such as consultants and non-government organisations.

Some 220 people responded to the survey, comprising:

  • 88 working in universities
  • 79 working in local, state or federal government
  • 47 working in industry, such as environmental consulting and environmental NGOs
  • 6 who could not be classified.

In a series of multiple-choice and open-ended questions, we asked respondents about the prevalence and consequences of suppressing science communication.




Read more:
Let there be no doubt: blame for our failing environment laws lies squarely at the feet of government


About half (52%) of government respondents, 38% from industry and 9% from universities had been prohibited from communicating scientific information.

Communications via traditional (40%) and social (25%) media were most commonly prohibited across all workplaces. There were also instances of internal communications (15%), conference presentations (11%) and journal papers (5%) being prohibited.

A video explaining the research findings.

‘Ministers are not receiving full information’

Some 75% of respondents reported having refrained from making a contribution to public discussion when given the opportunity – most commonly in traditional media or social media. A small number of respondents self-censored conference presentations (9%) and peer-reviewed papers (7%).

Factors constraining commentary from government respondents included senior management (82%), workplace policy (72%), a minister’s office (63%) and middle management (62%).

Fear of barriers to advancement (49%) and concern about media misrepresentation (49%) also discouraged public communication by government respondents.

Almost 60% of government respondents and 36% of industry respondents reported unduly modified internal communications.

One government respondent said:

Due to ‘risk management’ in the public sector […] ministers are not receiving full information and advice and/or this is being ‘massaged’ by advisors (sic).

University respondents, more than other workplaces, avoided public commentary out of fear of how they would be represented by the media (76%), fear of being drawn beyond their expertise (73%), stress (55%), fear that funding might be affected (53%) and uncertainty about their area of expertise (52%).

One university respondent said:

I proposed an article in The Conversation about the impacts of mining […] The uni I worked at didn’t like the idea as they received funding from (the mining company).

vehicle operating at a coal mine
A university researcher was dissuaded from writing an article for The Conversation on mining.
Dave Hunt/AAP

Critical conservation issues suppressed

Information suppression was most common on the issue of threatened species. Around half of industry and government respondents, and 28% of university respondents, said their commentary on the topic was constrained.

Government respondents also reported being constrained in commenting on logging and climate change.

One government respondent said:

We are often forbidden (from) talking about the true impacts of, say, a threatening process […] especially if the government is doing little to mitigate the threat […] In this way the public often remains ‘in the dark’ about the true state and trends of many species.

University respondents were most commonly constrained in talking about feral animals. A university respondent said:

By being blocked from reporting on the dodgy dealings of my university with regards to my research and its outcomes I feel like I’m not doing my job properly. The university actively avoids any mention of my study species or project due to vested financial interests in some key habitat.

Industry respondents, more than those from other sectors, were constrained in commenting on the impacts of mining, urban development and native vegetation clearing. One industry respondent said:

A project […] clearly had unacceptable impacts on a critically endangered species […] the approvals process ignored these impacts […] Not being able to speak out meant that no one in the process was willing or able to advocate for conservation or make the public aware of the problem.

a dead koala in front of trees
Information suppression on threatened species was common.

The system is broken

Of those respondents who had communicated information publicly, 42% had been harassed or criticised for doing so. Of those, 83% believed the harassers were motivated by political or economic interests.

Some 77 respondents answered a question on whether they had suffered personal consequences as a result of suppressing information. Of these, 18% said they had suffered mental health effects. And 21% reported increased job insecurity, damage to their career, job loss, or had left the field.

One respondent said:

I declared the (action) unsafe to proceed. I was overruled and properties and assets were impacted. I was told to be silent or never have a job again.

Another said:

As a consultant working for companies that damage the environment, you have to believe you are having a positive impact, but after years of observing how broken the system is, not being legally able to speak out becomes harder to deal with.

a scientist tests water
Scientists want to have a positive impact on environmental outcomes.
Elaine Thompson/AP

Change is needed

We acknowledge that we receive grants involving contracts that restrict our academic freedom. And some of us self-censor to avoid risks to grants from government, resulting in personal moral conflict and a less informed public. When starting this research project, one of our colleagues declined to contribute for fear of losing funding and risking employment.

But Australia faces many complex and demanding environmental problems. It’s essential that scientists are free to communicate their knowledge on these issues.




Read more:
Conservation scientists are grieving after the bushfires — but we must not give up


Public servant codes of conduct should be revised to allow government scientists to speak freely about their research in both a public and private capacity. And government scientists and other staff should report to new, independent state and federal environment authorities, to minimise political and industry interference.

A free flow of information ensures government policy is backed by the best science. Conservation dollars would be more wisely invested, costly mistakes avoided and interventions more effectively targeted.

And importantly, it would help ensure the public is properly informed – a fundamental tenet of a flourishing democracy.The Conversation

Don Driscoll, Professor in Terrestrial Ecology, Deakin University; Bob Pressey, Professor and Program Leader, Conservation Planning, ARC Centre of Excellence for Coral Reef Studies, James Cook University; Euan Ritchie, Associate Professor in Wildlife Ecology and Conservation, Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, and Noel D Preece, Adjunct Asssociate Professor, James Cook University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

How a scientific spat over how to name species turned into a big plus for nature



Shutterstock

Stephen Garnett, Charles Darwin University; Les Christidis, Southern Cross University; Richard L. Pyle, University of Hawaii, and Scott Thomson, Universidade de São Paulo

Taxonomy, or the naming of species, is the foundation of modern biology. It might sound like a fairly straightforward exercise, but in fact it’s complicated and often controversial.

Why? Because there’s no one agreed list of all the world’s species. Competing lists exist for organisms such as mammals and birds, while other less well-known groups have none. And there are more than 30 definitions of what constitutes a species. This can make life difficult for biodiversity researchers and those working in areas such as conservation, biosecurity and regulation of the wildlife trade.

In the past few years, a public debate erupted among global taxonomists, including those who authored and contributed to this article, about whether the rules of taxonomy should be changed. Strongly worded ripostes were exchanged. A comparison to Stalin was floated.

But eventually, we all came together to resolve the dispute amicably. In a paper published this month, we proposed a new set of principles to guide what one day, we hope, will be a single authoritative list of the world’s species. This would help manage and conserve them for future generations.

In the process, we’ve shown how a scientific stoush can be overcome when those involved try to find common ground.

Baby crocodile emerging from egg.
Scientists worked out a few differences over how to name species.
Laurent Gillieron/EPA

How it all began

In May 2017 two of the authors, Stephen Garnett and Les Christidis, published an article in Nature. They argued taxonomy needed rules around what should be called a species, because currently there are none. They wrote:

for a discipline aiming to impose order on the natural world, taxonomy (the classification of complex organisms) is remarkably anarchic […] There is reasonable agreement among taxonomists that a species should represent a distinct evolutionary lineage. But there is none about how a lineage should be defined.

‘Species’ are often created or dismissed arbitrarily, according to the individual taxonomist’s adherence to one of at least 30 definitions. Crucially, there is no global oversight of taxonomic decisions — researchers can ‘split or lump’ species with no consideration of the consequences.

Garnett and Christidis proposed that any changes to the taxonomy of complex organisms be overseen by the highest body in the global governance of biology, the International Union of Biological Sciences (IUBS), which would “restrict […] freedom of taxonomic action.”




Read more:
Taxonomy, the science of naming things, is under threat


An animated response

Garnett and Christidis’ article raised hackles in some corners of the taxonomy world – including coauthors of this article.

These critics rejected the description of taxonomy as “anarchic”. In fact, they argued there are detailed rules around the naming of species administered by groups such as the International Commission on Zoological Nomenclature and the International Code of Nomenclature for algae, fungi, and plants. For 125 years, the codes have been almost universally adopted by scientists.

So in March 2018, 183 researchers – led by Scott Thomson and Richard Pyle – wrote an animated response to the Nature article, published in PLoS Biology.

They wrote that Garnett and Christidis’ IUBS proposal was “flawed in terms of scientific integrity […] but is also untenable in practice”. They argued:

Through taxonomic research, our understanding of biodiversity and classifications of living organisms will continue to progress. Any system that restricts such progress runs counter to basic scientific principles, which rely on peer review and subsequent acceptance or rejection by the community, rather than third-party regulation.

In a separate paper, another group of taxonomists accused Garnett and Christidis of trying to suppress freedom of scientific thought, likening them to Stalin’s science advisor Trofim Lysenko.

Sea sponge under a microscope
Taxonomy can influence how conservation funding is allocated.
Queensland Museum

Finding common ground

This might have been the end of it. But the editor at PLoS Biology, Roli Roberts, wanted to turn consternation into constructive debate, and invited a response from Garnett and Christidis. In the to and fro of articles, we all found common ground.

We recognised the powerful need for a global list of species – representing a consensus view of the world’s taxonomists at a particular time.




Read more:
Summer bushfires: how are the plant and animal survivors 6 months on? We mapped their recovery


Such lists do exist. The Catalogue of Life, for example, has done a remarkable job in assembling lists of almost all the world’s species. But there are no rules on how to choose between competing lists of validly named species. What was needed, we agreed, was principles governing what can be included on lists.

As it stands now, anyone can name a species, or decide which to recognise as valid and which not. This creates chaos. It means international agreements on biodiversity conservation, such as the Convention on International Trade in Endangered Species (CITES) and the Convention on the Conservation of Migratory Species of Wild Animals (CMS), take different taxonomic approaches to species they aim to protect.

We decided to work together. With funding from the IUBS, we held a workshop in February this year at Charles Darwin University to determine principles for devising a single, agreed global list of species.

Pengiuns embracing each other.
The sparring scientists came together to develop agreed principles.
Shutterstock

Participants came from around the world. They included taxonomists, science governance experts, science philosophers, administrators of the nomenclatural (naming) codes, and taxonomic users such as the creators of national species lists.

The result is a draft set of ten principles that to us, represent the ideals of global science governance. They include that:

  • the species list be based on science and free from “non-taxonomic” interference
  • all decisions about composition of the list be transparent
  • governance of the list aim for community support and use
  • the listing process encompasses global diversity while accommodating local knowledge.

The principles will now be discussed at international workshops of taxonomists and the users of taxonomy. We’ve also formed a working group to discuss how a global list might come together and the type of institution needed to look after it.

We hope by 2030, a scientific debate that began with claims of anarchy might lead to a clear governance system – and finally, the world’s first endorsed global list of species.


The following people provided editorial comment for this article: Aaron M Lien, Frank Zachos, John Buckeridge, Kevin Thiele, Svetlana Nikolaeva, Zhi-Qiang Zhang, Donald Hobern, Olaf Banki, Peter Paul van Dijk, Saroj Kanta Barik and Stijn Conix.

The Conversation

Stephen Garnett, Professor of Conservation and Sustainable Livelihoods, Charles Darwin University; Les Christidis, Professor, Southern Cross University; Richard L. Pyle, Associate lecturer, University of Hawaii, and Scott Thomson, Research associate, Universidade de São Paulo

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Taxonomy, the science of naming things, is under threat



File 20181112 83564 1tqrdu4.png?ixlib=rb 1.1
Museum collections are repositories of specimens and data, including specimens, tissue samples and vocal recordings.
from Wikimedia Commons, CC BY-ND

Nic Rawlence

Museums are cathedrals of science, but they are under threat worldwide as part of a malaise of undervaluing museum collections and the field of taxonomy, the science of naming biodiversity.

The Museum of New Zealand Te Papa Tongarewa is the latest example. Te Papa confirmed a restructure in July, following leaked reports. Facing sustained backlash and disquiet in the science community, the museum announced an international review of its collections and has since scaled back its restructure plans.

But jobs remain on the line even though the review panel found the museum didn’t have enough staff to look after all of its collections.




Read more:
From Joseph Banks to big data, herbaria bring centuries-old science into the digital age


Taxonomy a keystone of natural history

Taxonomy underpins everything from health to conservation, and biosecurity to the economy.

The international review shows Te Papa is doing a good job in most areas, but needs to improve on several aspects, including access to collections, cataloguing a backlog of specimens and digitisation.

Museum of New Zealand Te Papa Tongarewa, in Wellington.
from Wikimedia Commons, CC BY-ND

These areas of concern were seriously exacerbated by the panel’s finding that Te Papa is understaffed.

The review panel was not asked to comment on the restructure. At that stage, the proposal was to cut 25 positions, 10 of which were in the collections team. This has now been scaled back to at least five jobs in the collections team.

Staff whose positions may be affected were told only a day before the review recommendations were made public.




Read more:
Museum or not? The changing face of curated science, tech, art and culture


Museum collections more than sum of parts

Te Papa’s latest leaked restructure document remains a cause for concern. Curators are no longer in the firing line. However, the five natural history collections managers are gone, to be replaced by three assistant curators and two general technical positions. All of this would appear to fall at a lower pay scale.

I congratulate Te Papa on listening to internal and external feedback and increasing their curatorial expertise in neglected strengths, such as marine mammals and seaweeds. Ironically, in the case of marine mammals, this seems to rectify a mistake in making the previous marine mammal expert redundant in 2013.

A member of the international review panel, Tim White at the Yale Peabody Museum of Natural History, told the public broadcaster RNZ:

Te Papa could use more professional collections staff. If they are going to promote the use of their collections … then they need
to think creatively about how they could get more staff.

Taking into account the recently published Decadal Plan for Taxonomy and Biosystematics and the 2015 Royal Society Te Apārangi report on National Taxonomic Collections in New Zealand, this is a good opportunity to increase collections staff rather than, at best, approximate the status quo.

It is my hope that the filling of positions in the proposed structure will not result in a loss of areas of taxonomic expertise. Many of Te Papa’s scientists are leaders in their fields, including in areas where Te Papa leads the way internationally. One should not boost the curatorial team at the expense of collections management.

The bigger picture

As an isolated archipelago with unique flora and fauna, New Zealand needs diverse taxonomic expertise to appropriately handle biosecurity and conservation crises. If Te Papa, or museums in general, shed their taxonomic expertise like an unwanted sloughed-off snake skin, it will be up to other institutions to pick up the slack. If not, our biodiversity will suffer.

The greyling is New Zealand’s only extinct freshwater fish.
from Wikimedia Commons, CC BY-ND

There has already been a 10% decline in the taxonomic workforce in Australia in the past 25 years, with declines of around 22% in New Zealand over a similar time period. In both countries, a steadily increasing proportion (currently around a quarter) of taxonomists are unpaid or retired. Let’s not make it any worse.

Undervaluing museum collections and taxonomic expertise is not just limited to New Zealand. The scientific world does not want to see another museum disaster, like the preventable fire that destroyed Brazil’s National Museum.

Whether it is collections under threat or museum libraries being lost in the digital age, or even false assumptions resulting in the closure of a museum, if chief executives and museum boards listen to their scientists and the scientific community, hope remains.The Conversation

Nic Rawlence, Lecturer in Ancient DNA

This article is republished from The Conversation under a Creative Commons license. Read the original article.