Giant sea bass are thriving in Mexican waters – scientific research that found them to be critically endangered stopped at the US-Mexico border


Giant sea bass are listed as a critically endangered species.
Maru Brito, CC BY-ND

Arturo Ramírez-Valdez, University of California San DiegoI was looking at the seafloor, focused on identifying fish species as I normally did when diving off of the California coast, when suddenly I felt something large above me. When I turned my head I saw a giant fish – more than 6 feet (2 meters) long – calmly interested in the air bubbles coming from my SCUBA regulator. This was 2016 and was my first encounter with a giant sea bass.

I am a marine ecologist, and I study how international borders pose challenges for conservation and management efforts in the marine environment. Although there are no walls or fences in the ocean, borders still act as stark barriers for a variety of things.

Giant sea bass live off the west coast of North America in both Mexican and U.S. waters. I have found that large differences in regulation and research effort between the two countries has led to a significant misunderstanding of giant sea bass population health.

A map showing high density of giant sea bass along the west coast of the U.S. and along both sides of the Baja Peninsula.
Giant sea bass live in coastal waters from northern California all the way south to the Sea of Cortez.
Arturo Ramiréz-Valdez, CC BY-ND

Different countries, different science

The giant sea bass is the largest coastal bony fish in the Northeastern Pacific. It can grow up to 9 feet (2.7 meters) long and weigh up to 700 pounds (315 kg). It lives in coastal waters from northern California to the tip of the Baja California peninsula in Mexico, including the entire Gulf of California.

In California, commercial fishing for the species began in the late 1880s. Large fish used to be very abundant across the entire range, but the fishery collapsed in the early 1970s. As a response, in 1981 the U.S. banned both commercial and recreational fishing for giant sea bass, and there are many ongoing research and population recovery efforts today.

The collapse and subsequent protection and flurry of research in the U.S. stand in stark contrast to Mexico. In Mexico, there are minimal regulations on fishing for the species, and there is almost a complete lack of data and research on it – there are only three studies on giant sea bass with any data from Mexico.

The International Union for Conservation of Nature considers giant sea bass to be a critically endangered species due to the population being “severely fragmented, leading to a continuing decline of mature individuals.” But this decision was based on a report that had no data whatsoever from Mexico. This lack of data is concerning, considering 73% of the species’ range is in Mexican waters.

This knowledge gap made me wonder if ecologists had the wrong idea about the health of giant sea bass populations.

A man standing behind a very large black fish on a scale.
Giant sea bass are a common sight at fish markets throughout Baja.
Proyecto Mero Gigante, CC BY-ND

Healthy fish in Mexico

In 2017, I led an effort to document the giant sea bass population in Mexico and look for clues to what it was in the past. At the beginning of the project, my colleagues and I feared that the records in Mexico would confirm the precarious situation of the fish in the U.S. But the reality turned out to be the opposite.

A man in orange overalls on a small blue boat sitting behind four large black fish on the deck.
Commercial fishers don’t often target giant sea bass, but catch them as bycatch when fishing for other species.
Proyecto Mero Gigante, CC BY-ND

To our surprise, we found giant sea bass everywhere in the fish markets and fishing grounds from our very first assessments. The fishmongers were never out of the fish; instead, they would ask us, “How many kilos do you need?” It was clear that for fishers in Mexico, the species is still common in the sea, and therefore, in their nets. It is still possible to find big fish up to 450 pounds 200 kilograms, and the average catch was around 26 pounds (12 kilograms).

It was fantastic to see an abundance of these fish in markets, but I also wanted to understand the fishery trends through history and how current fishing levels compared to previous years. I looked at historical and contemporary fishing records and found that the Mexican commercial fleet has caught an average of 55 tons per year over the past 60 years, and the fishery has been relatively stable over the past 20 years, with a peak in 2015 at 112 tons.

According to U.S. and Mexican records, the largest yearly catch ever recorded for giant sea bass in Mexico was 386 tons in 1933. Biologists consider a fishery to have collapsed when total catches, under the same effort, are less than 10% of the largest catches on record. So a steady trend of 55 tons per year shows that the fishery in Mexico has not collapsed. It is clear that giant sea bass populations have faced severe declines throughout their range; however, the health of the species is not as dire as thought.

Another interesting finding from my research is that the apparent collapse of the giant sea bass fishery documented in the 1970s actually began as early as 1932.

Over the first half of the 20th century, as the U.S. commercial fleet overfished U.S. waters, they began fishing in Mexican waters too – but they continued to count all catches as from the U.S. This changed in 1968 when the two governments signed the Mexico–U.S. Fisheries Agreement, limiting how much fish each country’s fleet could take from the other country’s waters. The collapse of the U.S. fishery in the 1970s was not due to a drastic reduction in fish numbers in Mexican waters, but driven by changes in fishing regulation between the U.S. and Mexico. The California fish populations had been depressed for decades, but this was hidden by fish from Mexico.

A large dark fish swimming in a kelp forest and surrounded by smaller fish.
Giant sea bass populations in Mexico have declined, but are still much healthier than researchers thought.
Meru Brito, CC BY-ND

Better data, better management

Based on my research, I believe that the giant sea bass may not qualify as a critically endangered species. My analysis of modern catch data suggests that the population of this iconic fish is likely much larger than biologists previously thought, especially in Mexico.

I am leading the next assessment for the International Union for Conservation of Nature, and now that we have accumulated better data, we can make a more informed decision that balances responsible management of the species with human needs.

I hope that our study inspires policymakers in the U.S. and Baja to start a conversation about how to manage this incredible fish in a collaborative way. But I feel our work also has larger implications. It shows how asymmetry in research and data can create significant barriers to understanding the past and present status of a species like the giant sea bass and make it harder to implement sustainable practices for the future.

[Get the best of The Conversation, every weekend. Sign up for our weekly newsletter.]The Conversation

Arturo Ramírez-Valdez, Researcher, University of California San Diego

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Why scientists need your help to spot blue whales off Australia’s east coast


Shutterstock

Vanessa Pirotta, Macquarie UniversityBlue whales, the largest animals to ever live, are surprisingly elusive.

They’re bigger than the biggest dinosaur ever was, capable of growing over 30 metres long and can weigh over 100 tonnes — almost as long as a 737 plane and as heavy as 40 elephants. They also have one of the loudest voices, and can talk to each other hundreds of kilometres across the sea.

Why, then, are they so difficult to find in some parts off Australia?

My new research paper recorded only six verified sightings of the pygmy blue whale off Sydney in the last 18 years. Two of these occurred just last year. This blue whale subspecies is known to mostly occur along Australia’s west coast.

Rare sightings like these are important because pygmy blue whales are a “data deficient” animal. Every opportunity we have to learn about them is crucial to help us better protect them.

Blue whales down under

Don’t let its name fool you, the pygmy blue whale can still grow shockingly large, up to 24 metres in length. It’s one of two blue whale subspecies that occur in Australian waters – the other being the Antarctic blue whale, the biggest whale of them all at around 33 metres long.

A blue whale lunging for krill.

Unfortunately, historical whaling hunted blue whales to near extinction in the Southern Ocean. The Antarctic blue whale was depleted to only a few hundred individuals and, while they’re slowly bouncing back, they’re still listed as critically endangered by the International Union for the Conservation of Nature (IUCN).

In contrast, we know little about pre- and post-whaling numbers for pygmy blue whales. Their listing as a data deficient species by the IUCN means we don’t have a full understanding of their population status.

Blue whales can grow to around 30 metres, almost the same length as a 737 plane.
Vanessa Pirotta, Author provided

One reason may be because blue whales are logistically challenging to study. For example, blue whales don’t just hang around in one area all the time. They’re capable of swimming thousands of kilometres for food and to breed.

They can also hold their breath for up to 90 minutes underwater, which can make them hard to spot unless they’re near the surface. To see them, people need to be in the right place at the right time.

This may require scientists to be on dedicated research vessels or in a plane to spot them, which can be expensive and weather-dependent.




Read more:
I measure whales with drones to find out if they’re fat enough to breed


This also makes learning about them much harder compared to other, more accessible species, such as coastal bottlenose dolphins.

To learn more about pygmy blue whales in Australia, marine scientists have developed a variety of techniques, including listening to whales talking, taking skin samples and satellite tagging.

While this work is useful, it has focused mainly in areas where pygmy blue whales are known to occur, such as southern and western Australian waters.

Pygmy blue whales are known to feed in the Perth Canyon, Western Australia, and between the Great Australian Bight and Bass Strait during summer. They most likely breed in the Indian and western Pacific Oceans during winter.

But we don’t know much about pygmy blue whale presence in other parts of Australian waters, such as the east coast.

Two bottle nose dolphins
Bottlenose dolphins are more commonly seen.
Shutterstock

How can we conserve a species we know very little about?

Well, it can be tricky. The more information we know, the better we’re placed to assess their conservation needs. But focusing our efforts on species we know nothing about may require a conservative approach until we learn more.

Some would argue it’s better to protect a species we know needs our conservation dollar before spending precious resources on something uncertain.




Read more:
Curious kids: do whales fart and sneeze?


Fortunately, Australia has some of the world’s best protection policies for marine mammals, including whales. This means a precautionary approach is already in place to protect these creatures.

Since blue whales are listed as a threatened species, they’re protected under Australia’s primary environment law, the Environmental Protection and Biodiversity Conservation (EPBC) Act.

And on an international level, Australia is a signatory to the International Whaling Commission (the global body for whale conservation) and the Convention on International Trade of Endangered Species (which ensures wildlife trade doesn’t threaten endangered species).

Two blue whales near a boat
Citizen science sightings help contribute to our understanding of blue whale distributions in Australian waters.
Shutterstock

To help uphold this international and national protection, scientists must continue to learn more about data-deficient animals like the pygmy blue whale to help safeguard against known and future threats.

This includes collisions with ships, overfishing, entanglement with fishing gear, increased human activity in the ocean, and climate change, which may affect when and where whales occur.

We need extra eyes

There are more than 14,600 animal species listed as data deficient by the IUCN.

Some, like the pygmy blue whale, are poorly studied. One reason is because they’re cryptic or boat shy, such as the Australian snubfin dolphin.

Or, they might be tricky to see, such as the false killer whale, whose sightings remain irregular in Australian coastal waters. Opportunities to learn more about them occur when they become stranded.

A false killer whale pokes its head out of the water
False killer whales are another data-deficient marine animal.
Shutterstock

So while citizen science sightings of pygmy blue whales may be rare off the Australian east coast, they do help contribute to our understanding of their distribution in Australian waters.

The two sightings of pygmy blue whales off Maroubra, Sydney, last year were within two months of each other. This was thanks to drones (flown under state rules).




Read more:
Climate change threatens Antarctic krill and the sea life that depends on it


This prompted my research review of blue whale sightings off Sydney, which found citizen scientists made similar sightings in 2002 – the first official sighting from land off Sydney — and between 2012-14.

We don’t know exactly what type of pygmy blue whales these are (three distinct groups are recognised: the Indo-Australian, New Zealand and Madagascar groups). However, whale calls detected along Australia’s east coast in previous years suggest they’re most likely New Zealand pygmy blue whales, and they could have been heading to breeding waters north of Tonga.

So, the next time you are by the sea, keep a look out and tell a scientist via social media if you see something interesting. You just never know when the world’s biggest, or shiest, animal may turn up out of the blue.




Read more:
Photos from the field: these magnificent whales are adapting to warming water, but how much can they take?


The Conversation


Vanessa Pirotta, Wildlife scientist, Macquarie University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Climate explained: how the IPCC reaches scientific consensus on climate change


Fabrice Coffrini/AFP via Getty Images

Rebecca Harris, University of Tasmania


CC BY-ND

Climate Explained is a collaboration between The Conversation, Stuff and the New Zealand Science Media Centre to answer your questions about climate change.

If you have a question you’d like an expert to answer, please send it to climate.change@stuff.co.nz


When we say there’s a scientific consensus that human-produced greenhouse gases are causing climate change, what does that mean? What is the Intergovernmental Panel on Climate Change and what do they do?

The Intergovernmental Panel on Climate Change (IPCC) provides the world’s most authoritative scientific assessments on climate change. It provides policymakers with regular assessments of the scientific basis of climate change, its impacts and risks, and options for cutting emissions and adapting to impacts we can no longer avoid.

The IPCC has already released five assessment reports and is currently completing its Sixth Assessment (AR6), with the release of the first part of the report, on the physical science of climate change, expected on August 9.

Each assessment cycle brings together scientists from around the world and many disciplines. The current cycle involves 721 scientists from 90 countries, in three working groups covering the physical science basis (WGI), impacts, adaptation and vulnerability (WGII) and mitigation of climate change (WGIII).

A group photo showing the diversity of people contributing to the Intergovernmental Panel on Climate Change
People contributing to IPCC reports come from 90 countries and different backgrounds. This image shows the Working Group II team.
Author provided

In each assessment round, the IPCC identifies where the scientific community agrees, where there are differences of opinion and where further research is needed.

IPCC reports are timed to inform international policy developments such as the UN Framework Convention on Climate Change (UNFCCC) (First Assessment, 1990), the Kyoto Protocol (Second Assessment, 1995) and the Paris Agreement (Fifth Assessment, 2013-2014). The first AR6 report (WGI) will be released in August this year, and its approval meeting is set to take place virtually, for the first time in the IPCC’s 30-year history.

This will be followed by WGII and WGIII reports in February and March 2022, and the Synthesis Report in September 2022 — in time for the first UNFCCC Global Stocktake when countries will review progress towards the goal of the Paris Agreement to keep warming below 2℃.

During the AR6 cycle, the IPCC also published three special reports:

Graph of curent warming across the globe.
The IPCC’s special report on global warming at 1.5 showed present-day warming across the globe.
IPCC, CC BY-ND

How the IPCC reaches consensus

IPCC authors come from academia, industry, government and non-governmental organisations. All authors go through a rigorous selection process — they must be leading experts in their fields, with a strong publishing record and international reputation.

Author teams usually meet in person four times throughout the writing cycle. This is essential to enable (sometimes heated) discussion and exchange across cultures to build a truly global perspective. During the AR6 assessment cycle, lead author meetings (LAMs) for Working Group 1 were not disrupted by COVID-19, but the final WGII and WGIII meetings were held remotely, bringing challenges of different time zones, patchy internet access and more difficult communication.




Read more:
Top climate scientist: I put myself through hell as an IPCC convening lead author, but it was worth it


The IPCC’s reports go through an extensive peer review process. Each chapter undergoes two rounds of scientific review and revision, first by expert reviewers and then by government representatives and experts.

This review process is among the most exhaustive for any scientific document — AR6 WGI alone generated 74,849 review comments from hundreds of reviewers, representing a range of disciplines and scientific perspectives. For comparison, a paper published in a peer-reviewed journal is reviewed by only two or three experts.

The role of governments

The term intergovernmental reflects the fact that IPCC reports are created on behalf of the 193 governments in the United Nations. The processes around the review and the agreement of the wording of the Summary for Policymakers (SPM) make it difficult for governments to dismiss a report they have helped shape and approved during political negotiations.

Importantly, the involvement of governments happens at the review stage, so they are not able to dictate what goes into the reports. But they participate in the line-by-line review and revision of the SPM at a plenary session where every piece of text must be agreed on, word for word.

Acceptance in this context means that governments agree the documents are a comprehensive and balanced scientific review of the subject matter, not whether they like the content.




Read more:
IPCC 1.5℃ report: here’s what the climate science says


The role of government delegates in the plenary is to ensure their respective governments are satisfied with the assessment, and that the assessment is policy relevant without being policy prescriptive. Government representatives can try to influence the SPM wording to support their negotiating positions, but the other government representatives and experts in the session ensure the language adheres to the evidence.

Climate deniers claim IPCC reports are politically motivated and one-sided. But given the many stages at which experts from across the political and scientific spectrum are involved, this is difficult to defend. Authors are required to record all scientifically or technically valid perspectives, even if they cannot be reconciled with a consensus view, to represent each aspect of the scientific debate.

The role of the IPCC is pivotal in bringing the international science community together to assess the science, weighing up whether it is good science and should be considered as part of the body of evidence.The Conversation

Rebecca Harris, Senior Lecturer in Climatology, Director, Climate Futures Program, University of Tasmania

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Breakthrough allows scientists to determine the age of endangered native fish using DNA


Shutterstock

Benjamin Mayne, CSIROIdentifying the age of animals is fundamental to wildlife management. It helps scientists know if a species is at risk of extinction and the rate at which it reproduces, as well as determining what level of fishing is sustainable.

Determining the age of fish has been difficult in the past — primarily involving extracting the inner ear bone, also known as the “otolith”. Layers of growth in the otolith are counted like rings on a tree to reveal an individual’s age. Unless a dead specimen is available, this method requires killing a fish, making it unsuitable for use on endangered populations.

However a non-lethal DNA test developed by the CSIRO enables researchers to determine fish age for three iconic and threatened Australian freshwater species: the Australian lungfish, the Murray cod and the Mary River cod. We outline the technological breakthrough in our research just published.

Our fast, accurate and cost-effective test can be adapted for other fish species. We now hope to share this method to improve the protection of wild fish populations and help promote sustainable fisheries around the world.

gloved hands cut open fish with sciessors
Traditionally, age could only be determined on a dead fish. The new method is non-lethal.
Shutterstock

Iconic species at risk

Human activity has led to the population declines of the three Australian fish species at the centre of our research.

The threatened Australian lungfish is found in rivers and lakes in southeast Queensland. It’s often referred to as a “living fossil” because its extraordinary evolutionary history stretches back more than 100 million years, before all land animals including dinosaurs.

Man-made barriers in rivers reduce the movement of water, which lowers lungfish breeding rates.

Older lungfish do not have hard otolith structures, which makes determining their age difficult. Bomb radiocarbon, which analyses carbon levels in organic matter, has been used to age Australian lungfish, but this method is too expensive to be widely used.

Australian lungfish
In the past, determining the age of Australian lungfish has been challenging.

The threatened Murray cod is Australia’s largest freshwater fish. The Mary River cod is one of Australia’s most endangered fish, found in less than 30% of its former range in Queensland’s Mary River.

Habitat destruction and overfishing are major threats to Murray cod and Mary River cod populations.

Otoliths can be used to determine age for both these cod species, however this has only been done on a population-wide scale for the more prevalent Murray cod.




Read more:
Australia’s smallest fish among 22 at risk of extinction within two decades


Mary River cod
CSIRO estimated the age of Mary River cod.

Our DNA breakthrough

When cells divide to make new cells, DNA is replicated. This can lead to DNA methylation, which involves the addition or the loss of a “methyl group” molecule at places along the DNA strand.

Research has found the level of DNA methylation is a reliable predictor of age, particularly in mammals, including humans.

To develop our test, we first worked with zebrafish. This species is useful when studying fish biology because it has a short lifespan and high reproductive rates. We took zebrafish whose ages were known, then removed a tiny clip of their fin. We then examined DNA methylation levels in the fin sample to identify the fish’s age.

Following this successful step, we transferred the method to Australian lungfish, Murray cod and Mary River cod. Again, we used fish of known ages, as well as bomb radiocarbon dating of scales and ages determined from otoliths.

We found despite the zebrafish and the study fish species being separated by millions of years of evolution, our method worked in all four species. This suggests the test can be used to predict age in many other fish species.




Read more:
Good news from the River Murray: these 2 fish species have bounced back from the Millennium Drought in record numbers


DNA strand
The test uses co-called DNA methylation to estimate age.
Shutterstock

A conservation management boom?

In the same way human population demographers use census data to understand and model human populations, we now have the tools to do this with animals.

We are looking to expand this DNA-based method to determine the age of the endangered eastern freshwater cod and trout cod. We will also continue to test the method across other species including reptiles and crustaceans.

This work is part of CSIRO’s ongoing efforts to use DNA to measure and monitor the environment. This includes estimating the lifespan of vertebrate species such as long-lived fish and surveying biodiversity in seawater using DNA extracted from the environment.

We envisage that in the not too distant future, these methods may be used by other researchers to better understand and manage wild animal populations.




Read more:
A new study shows an animal’s lifespan is written in the DNA. For humans, it’s 38 years


The Conversation


Benjamin Mayne, Molecular biologist and bioinformatician, CSIRO

This article is republished from The Conversation under a Creative Commons license. Read the original article.

New research finds native forest logging did not worsen the Black Summer bushfires


Shutterstock

David Bowman, University of TasmaniaThe Black Summer bushfires shocked the world and generated enormous global media interest. Fire scientists like myself found themselves filling a role not unlike sport commentators, explaining the unfolding drama in real time.

Scientists who engaged with the media during the crisis straddled two competing imperatives. First was their duty to share their knowledge with the community while knowing their understanding is imperfect. Second was the ethical obligation to rigorously test hypotheses against data analysis and peer review – the results of which could only be known long after the fires were out.

One area where this tension emerged was around the influential idea that logging exacerbated the bushfire disaster. During the fire crisis and in the months afterwards, some scientists suggested logging profoundly affected the fires’ severity and frequency. There were associated calls to cease native forestry and shift wood production to plantations.

But there is no scientific consensus about the possible effects of logging on fire risk. In fact, research by myself and colleagues, published in Nature Ecology and Evolution today, shows logging had little if any effect on the Black Summer bushfires. Rather, the disaster’s huge extent and severity were more likely due to unprecedented drought and sustained hot, windy weather.

These findings are significant for several reasons. Getting to the bottom of the bushfires’ cause is essential for sustainable forest management. And, more importantly, our research confirms the devastating role climate change played in the Black Summer fires.

Firefighters recover after battling blazes at Kangaroo Island on 10 January 2019.
David Mariuz/AAP

Looking for patterns

Our research focused on 7 million hectares of mostly eucalyptus forests, from the subtropics to temperate zones, which burned between August 2019 and March 2020.

There is some evidence to suggest logged areas are more flammable that unlogged forests. Proponents of this view say logging regimes make the remaining forests hotter and drier, and leave debris on the ground that increases the fuel load.

In our research, we wanted to determine:

  • the relative roles logging and other factors such as climate played in fires that destroyed or completely scorched forest canopies
  • whether plantations are more vulnerable to canopy scorch than native forests.

To do so, we used landscape ecology techniques that could compare very large areas with different patterns of land use and fire severity. We sampled 32% of the area burnt in three regions spanning the geographic range of the fires.




Read more:
The government has pledged over $800m to fight natural disasters. It could be revolutionary — if done right


firefighters run past fire
The research used landscape ecology techniques to compare large areas.
Shutterstock

What we found

Fire intensity is classified according to the vertical layer of vegetation burnt. A scorched tree canopy suggests the most intense type of fire, where the heat extended from the ground to the treetops.

We found several predictors of canopy damage. First, completely scorched canopy, or canopy consumed by fire, typically occurred across connected swathes of bushland. This most likely reflected instances where the fire made a “run”, driven by localised winds.

Extreme weather fire conditions were the next most important predictor of canopy damage. The drought had created vast areas of tinder-dry forests. Temperatures during the fire season were hot and westerly winds were strong.

Southeast Australia’s climate has changed, making such extreme fire weather more frequent, prolonged and severe.

Logging activity in the last 25 years consistently ranked “low” as a driver of fire severity. This makes sense for several reasons.

As noted above, fire conditions were extraordinarily extreme. And there was mismatch between the massive area burnt and the comparatively small areas commercially logged in the last 25 years (4.5% in eastern Victoria, 5.3% in southern NSW and 7.8% in northern NSW).

Fire severity is also related to landscape features: fire on ridges is generally worse than in sheltered valleys.

Our research also found timber plantations were as prone to severe fire as native forestry areas. In NSW (the worst-affected state) one-quarter of plantations burned – than 70% severely. This counteracts the suggestion using plantations, rather than logging native forest, can avoid purported fire hazards.




Read more:
Australia, you have unfinished business. It’s time to let our ‘fire people’ care for this land


plantation forest divided by road
Plantation forests were found to be highly flammable.
Shutterstock

A challenge awaits

Our findings are deeply concerning. They signal there is no quick fix to the ongoing fire crisis afflicting Australia and other flammable landscapes.

The crisis is being driven by relentless climate change. Terrifyingly, it has the potential to turn forests from critical stores of carbon into volatile sources of carbon emissions released when vegetation burns.

Under a rapidly warming and drying climate, fuel loads are likely to become less important in determining fire extent and severity. This will make it increasingly difficult, if not impossible, to lower fuel loads in a way that will limit bushfire severity.

A massive challenge awaits. We must find socially and environmentally acceptable ways to make forests more resilient to fire while the also produce sustainable timber products, store carbon, provide water and protect biodiversity.

The next step is a real-world evaluation of management options. One idea worth exploring is whether the fire resistance of native forests can be improved in specific areas by altering tree density, vegetation structure or fuel loads, while sustaining biodiversity and amenity.

Commercial forestry could potentially do this, with significant innovation and willingness to let go of current practices.

Through collective effort, I’m confident we can sustainably manage of forests and fire. Our study is but a small step in a much bigger, zig-zagging journey of discovery.




Read more:
As bushfire and holiday seasons converge, it may be time to say goodbye to the typical Australian summer holiday


The Conversation


forest regenerating after fire
Forests must become fire-resilient while performing other functions.
Shutterstock

David Bowman, Professor of Pyrogeography and Fire Science, University of Tasmania

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Scientists are more likely to study bold and beautiful blooms, but ugly flowers matter too


Myricaria germanica is a rare and endangered species hit hard by climate change, but little research is undertaken to help save it.
Martino Adamo, Author provided

Kingsley Dixon, Curtin UniversityWe all love gardens with beautiful flowers and leafy plants, choosing colourful species to plant in and around our homes. Plant scientists, however, may have fallen for the same trick in what they choose to research.

Our research, published today in Nature Plants, found there’s a clear bias among scientists toward visually striking plants. This means they’re more likely chosen for scientific study and conservation efforts, regardless of their ecological or evolutionary significance.

To our surprise, colour played a major role skewing researcher bias. White, red and pink flowers were more likely to feature in research literature than those with dull, or green and brown flowers. Blue plants — the rarest colour in nature — received most research attention.

But does this bias matter? Plants worldwide are facing mass extinction due to environmental threats such as climate change. Now, more than ever, the human-induced tide of extinction means scientists need to be more fair-handed in ensuring all species have a fighting chance at survival.

Hidden plants in carpets of wildflowers

I was part of an international team that sifted through 280 research papers from 1975 to 2020, and analysed 113 plant species found in the southwestern Alps in Europe.

The Alps is a global biodiversity hotspot and the subject of almost 200 years of intensive plant science. But climate change is now creating hotter conditions, threatening many of its rarest species.

White flower with mountains in background
Edelweiss is a charismatic plant of the Alps that heralds spring.
Shutterstock

Carpeted in snow for much of the year, the brief yet explosive flowering of Europe’s alpine flora following the thaw is a joy to behold. Who was not bewitched when Julie Andrews danced in an alpine meadow in its full spring wildflower livery in The Sound of Music? Or when she sung “edelweiss”, one of the charismatic plants of the Alps that heralds spring?




Read more:
People are ‘blind’ to plants, and that’s bad news for conservation


Hidden in these carpets of bright blue gentians and Delphiniums, vibrant daisies and orchids, are tiny or dull plants. This includes small sedges (Carex species), lady’s mantle (Alchemilla species) or the snake lily (Fritillaria) with its sanguine drooping flowers on thin stems.

Many of these “uncharismatic plants” are also rare or important ecological species, yet garner little attention from scientists and the public.

Close-up of a blue flower
Bellflowers (Campanula) are conspicuous and prominent in the Alps.
Martino Adamo, Author provided

The plants scientists prefer

The study asked if scientists were impartial to good-looking plants. We tested whether there was a relationship between research focus on plant species and characteristics, such as the colour, shape and prominence of species.

Along with a bias towards colourful flowers, we found accessible and conspicuous flowers were among those most studied (outside of plants required for human food or medicine).

Blue flowers
Bold and beautiful flowers in alpine meadows win scientific attention.
Martino Adamo, Author provided

This includes tall, prominent Delphinium and larkspurs, both well-known garden delights with well-displayed, vibrant flowers that often verge on fluorescent. Stem height also contributed to how readily a plant was researched, as it determines a plant’s ability to stand out among others. This includes tall bellflowers (Campanula species) and orchids.

But interestingly, a plant’s rarity didn’t significantly influence research attention. Charismatic orchids, for example, figured prominently despite rarer, less obvious species growing nearby, such as tiny sedges (Cypreaceae) and grass species.

The consequences of plant favouritism

This bias may steer conservation efforts away from plants that, while less visually pleasing, are more important to the health of the overall ecosystem or in need of urgent conservation.

In this time of urgent conservation, controlling our bias in plant science is critical. While the world list of threatened species (the IUCN RED List) should be the basis for guiding global plant conservation, the practice is often far from science based.

Mat rush with brown flowers
Mat rushes are home for rare native sun moths.
Shutterstock

We often don’t know how important a species is until it’s thoroughly researched, and losing an unnoticed species could mean the loss of a keystone plant.

In Australia, for example, milkweeds (Asclepiadaceae) are an important food source for butterflies and caterpillars, while grassy mat rushes (dull-flowered Lomandra species) are now known to be the home for rare native sun moths. From habitats to food, these plants provide foundational ecological services, yet many milkweed and mat rush species are rare, and largely neglected in conservation research.




Read more:
‘Majestic, stunning, intriguing and bizarre’: New Guinea has 13,634 species of plants, and these are some of our favourites


Likewise, we can count on one hand the number of scientists who work on creepy fungal-like organisms called “slime molds”, compared to the platoons of scientists who work on the most glamorous of plants: the orchids.

Yet, slime molds, with their extraordinary ability to live without cell walls and to float their nuclei in a pulsating jelly of cytoplasm, could hold keys to all sorts of remarkable scientific discoveries.

Yellow slime on tree trunk
Slime molds could hold the key to many scientific discoveries, but the organisms are understudied.
Shutterstock

We need to love our boring plants

Our study shows the need to take aesthetic biases more explicitly into consideration in science and in the choice of species studied, for the best conservation and ecological outcomes.

While our study didn’t venture into Australia, the principle holds true: we should be more vigilant in all parts of the conservation process, from the science to listing species for protection under the law. (Attractiveness bias may affect public interest here, too.)

So next time you go for a bushwalk, think about the plants you may have trodden on because they weren’t worth a second glance. They may be important to native insects, improve soil health or critical for a healthy bushland.




Read more:
These 3 tips will help you create a thriving pollinator-friendly garden this winter


The Conversation


Kingsley Dixon, John Curtin Distinguished Professor, Curtin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Like the ocean’s ‘gut flora’: we sailed from Antarctica to the equator to learn how bacteria affect ocean health


Shutterstock

Eric Jorden Raes, Dalhousie UniversityAboard an Australian research vessel, the RV Investigator, we sailed for 63 days from Antarctica’s ice edge to the warm equator in the South Pacific and collected 387 water samples.

Our goal? To determine how the genetic code of thousands of different micro-organisms can provide insights into the ocean’s functional diversity — the range of tasks performed by bacteria in the ocean.

Our research was published yesterday in Nature Communications. It showed how bacteria can help us measure shifts in energy production at the base of the food web. These results are important, as they highlight an emerging opportunity to use genetic data for large-scale ecosystem assessments in different marine environments.

In light of our rapidly changing climate, this kind of information is critical, as it will allow us to unpack the complexity of nature step by step. Ultimately, it will help us mitigate human pressures to protect and restore our precious marine ecosystems.

Why should we care about marine bacteria?

The oceans cover 71% of our planet and sustain life on Earth. In the upper 100 meters, the sunlit part of the oceans, microscopic life is abundant. In fact, it’s responsible for producing up to 50% of all the oxygen in the world.

A whale breaches the ocean
Marine bacteria provide the energy and food for the entire marine food web, from tiny crustaceans to whales.
Shutterstock

Much like the link recently established between human health and the human microbiome (“gut flora”), ocean health is largely controlled by its bacterial inhabitants.

But the role of bacteria go beyond oxygen production. Bacteria sustain, inject and control the fluxes of energy, nutrients and organic matter in our oceans. They provide the energy and food for the entire marine food web, from tiny crustaceans to fish larvae, whales and the fish we eat.

These micro-organisms also execute key roles in numerous biogeochemical cycles (the carbon, nitrogen, phosphorus, sulphur and iron cycles, to name a few).

So, it’s important to quantify their various tasks and understand how the different bacterial species and their functions respond to environmental changes.

Fundamental questions

Global ocean research initiatives — such as GO-SHIP and GEOTRACES — have been measuring the state of oceans in expeditions like ours for decades. They survey temperature, salinity, nutrients, trace metals (iron, cobalt and more) and other essential ocean variables.

Only recently, however, have these programs begun measuring biological variables, such as bacterial gene data, in their global sampling expeditions.

The author smiles in front of a blue and white ship, with 'Investigator' written on the side.
On board the RV Investigator, we departed Hobart in 2016, beginning our 63-day journey to sample microbes in the South Pacific.
Eric Raes, Author provided

Including bacterial gene data to measure the state of the ocean means we can try to fill critical knowledge gaps about how the diversity of bacteria impacts their various tasks. One hypothesis is whether a greater diversity of bacteria leads to a better resilience in an ecosystem, allowing it to withstand the effects of climate change.

In our paper, we addressed a fundamental question in this global field of marine microbial ecology: what is the relationship between bacterial identity and function? In other words, who is doing what?

What we found

We showed it’s possible to link the genetic code of marine bacteria to the various functions and tasks they execute, and to quantify how these functions changed from Antarctica to the equator.

The functions that changed include taking in carbon dioxide from the atmosphere, bacterial growth, strategies to cope with limited nutrients, and breaking down organic matter.




Read more:
Marine life is fleeing the equator to cooler waters. History tells us this could trigger a mass extinction event


Another key finding is that “oceanographic fronts” can act as boundaries within a seemingly uniform ocean, resulting in unique assemblages of bacteria with specific tasks. Oceanographic fronts are distinct water masses defined by, for instance, sharp changes in temperature and salinity. Where the waters meet and mix, there’s high turbulence.

The change we recorded in energy production across the subtropical front, which separates the colder waters from the Southern Ocean from the warmer waters in the tropics, was a clear example of how oceanographic fronts influenced bacterial functions in the ocean.

Dark blue water meets light blue water under a cloudy sky.
An oceanographic front, where it looks like two oceans meet.
Shutterstock

Tracking changes in our ecosystems

As a result of our research, scientists may start using the functional diversity of bacteria as an indicator to track changes in our ecosystems, like canaries in a coal mine.




Read more:
Half of global methane emissions come from aquatic ecosystems – much of this is human-made


So the functional diversity of bacteria can be used to measure how human growth and urbanisation impact coastal areas and estuaries.

For example, we can more accurately and holistically measure the environmental footprint of aquaculture pens, which are known to affect water quality by increasing concentrations of nutrients such as carbon, nitrogen and phosphorus – all favourite elements utilised by bacteria.

Likewise, we can track changes in the environmental services rendered by estuaries, such as their important role in removing excessive nitrogen that enters the waterways due to agriculture run-off and urban waste.

With 44% of the world’s population living along coastlines, the input of nitrogen to marine ecosystems, including estuaries, is predicted to increase, putting a strain on the marine life there.

Ultimately, interrogating the bacterial diversity using gene data, along with the opportunity to predict what this microscopic life is or will be doing in future, will help us better understand nature’s complex interactions that sustain life in our oceans.




Read more:
Humans are polluting the environment with antibiotic-resistant bacteria, and I’m finding them everywhere


The Conversation


Eric Jorden Raes, Postdoctoral researcher Ocean Frontier Institute, Dalhousie University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Pacific killer whales are dying — new research shows why



A female killer whale leaps from the water in Puget Sound near Seattle.
(AP Photo/Elaine Thompson)

Stephen Raverty, University of British Columbia and Joseph K. Gaydos, University of California, Davis

Killer whales are icons of the northeastern Pacific Ocean. They are intimately associated with the region’s natural history and First Nations communities. They are apex predators, with females living as long as 100 years old, and recognized a sentinels of ecosystem health — and some populations are currently threatened with extinction.

There are three major types of killer whales in the region: the “resident” populations that feed mainly on salmon, the “transients” that prey on other marine mammals like seals and sea lions, and the “offshores” that transit along the continental shelf, eating fish and sharks.

In the 1990s, an abrupt decline in the fish-eating southern resident population dropped to 75 whales from 98, prompting both Canada and the United States to list them as endangered.

A dead killer whale lies on her side in shallow water.
Emaciated female killer whale from Hawaii.
(NOAA/NMFS/PIRO), CC BY

Since then, southern resident killer whales, whose range extends from the waters off the southeast Alaska and the coast of British Columbia to California, have not recovered — only 74 remain today. Because killer whale strandings are rare, scientists have been uncertain about the causes of killer whale mortality and how additional deaths might be prevented in the future.

As a pathologist and wildlife veterinarian, and with the help of countless biologists and veterinarians, we have carried out in-depth investigations into why killer whales in this region strand and died. If we don’t know what is causing killer whale deaths, we are not able to prevent the ones that are human-caused.

We can do better

Human activities have been implicated in the decline and lack of recovery of the southern resident killer whale population, including ship noise and strikes, contaminants, reduced prey abundance and past capture of these animals for aquariums.

Only three per cent and 20 per cent of the northern and southern resident killer whales, respectively, that died between 1925 and 2011 were even found and available for a post-mortem exam. And in most cases, only cursory or incomplete post-mortem exams can be done, generating a limited amount of information.

To figure out why these killer whales are dying — and what it means for the health of individual animals and the population as a whole — we reviewed the post-mortem records of 53 animals that became stranded in the eastern Pacific Ocean and Hawaii between 2004 and 2013. We identified the cause of death in 22 animals, and gained important insight from nine other animals where the cause of death could not be determined.

Human-caused injuries were found in nearly every age group of whales, including adults, sub-adults and calves. Some had ingested fishing hooks, but evidence of blunt-force trauma, consistent with ship and propeller strikes, was more common.

A dead killer whale lies on a beach
The 18-year-old male southern resident killer whale, J34, stranded near Sechelt, B.C., on Dec. 21, 2016. Post-mortem examination suggested he died from trauma consistent with vessel strike.
(Paul Cottrell/Fisheries and Oceans Canada), Author provided

This is the first study to document the lesions and forensic evidence of lethal trauma from ship and propeller strikes.

In recent years governments have focused on limiting vessel noise and disturbance. This study reinforces the need for this, showing that in addition to noise and disturbance, vessel strikes are an important cause of death in killer whales.

Direct human impact

We also developed a body condition index to evaluate the animals’ nutritional health — were they eating enough salmon, for example — to see what role food might play in the sickness and death of stranded animals. Observations of free-ranging killer whales from boats and by unmanned aerial drones have documented sub-optimal body condition or generalized emaciation in many southern resident killer whales.

In this study, we found that longer and therefore older animals tend to have thicker blubber. Our study also found that those animals that died from blunt-force trauma had a better body condition — they were in good health before death. Those that died from infections or nutritional causes were more likely to be in worse body condition.

This new body condition index can help scientists better understand the health of killer whales, and gives us a tool to evaluate their health regardless of their age, reproductive status and health condition.

Our team, working with numerous collaborators including the National Marine Mammal Foundation, is building a health database of the killer whales living in the northeastern Pacific Ocean so that their health can be tracked over time. This centralized database will let stranding response programs, regional and national government agencies and First Nations communities collaborate with field biologists, research scientists and veterinarians.

Ultimately, the information about the health of these killer whales must be conveyed to the public and policy-makers to ensure that the appropriate legislation is enacted to reverse the downward trend in the health and survival of these killer whales. We should now be able to assess future efforts and gain a better understanding of the impact of ongoing human activities, such as fishing, boating and shipping.The Conversation

Stephen Raverty, Adjunct professor, Veterinary Pathology, University of British Columbia and Joseph K. Gaydos, Wildlife Veterinarian and Science Director, The SeaDoc Society, University of California, Davis

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Research reveals shocking detail on how Australia’s environmental scientists are being silenced



Authors provided

Don Driscoll, Deakin University; Bob Pressey, James Cook University; Euan Ritchie, Deakin University, and Noel D Preece, James Cook University

Ecologists and conservation experts in government, industry and universities are routinely constrained in communicating scientific evidence on threatened species, mining, logging and other threats to the environment, our new research has found.

Our study, just published, shows how important scientific information about environmental threats often does not reach the public or decision-makers, including government ministers.

In some cases, scientists self-censor information for fear of damaging their careers, losing funding or being misrepresented in the media. In others, senior managers or ministers’ officers prevented researchers from speaking truthfully on scientific matters.

This information blackout, termed “science suppression”, can hide environmentally damaging practices and policies from public scrutiny. The practice is detrimental to both nature and democracy.

A scientist kneels by a stream
When scientists are free to communicate their knowledge, the public is kept informed.
University of Queensland/AAP

Code of silence

Our online survey ran from October 25, 2018, to February 11, 2019. Through advertising and other means, we targeted Australian ecologists, conservation scientists, conservation policy makers and environmental consultants. This included academics, government employees and scientists working for industry such as consultants and non-government organisations.

Some 220 people responded to the survey, comprising:

  • 88 working in universities
  • 79 working in local, state or federal government
  • 47 working in industry, such as environmental consulting and environmental NGOs
  • 6 who could not be classified.

In a series of multiple-choice and open-ended questions, we asked respondents about the prevalence and consequences of suppressing science communication.




Read more:
Let there be no doubt: blame for our failing environment laws lies squarely at the feet of government


About half (52%) of government respondents, 38% from industry and 9% from universities had been prohibited from communicating scientific information.

Communications via traditional (40%) and social (25%) media were most commonly prohibited across all workplaces. There were also instances of internal communications (15%), conference presentations (11%) and journal papers (5%) being prohibited.

A video explaining the research findings.

‘Ministers are not receiving full information’

Some 75% of respondents reported having refrained from making a contribution to public discussion when given the opportunity – most commonly in traditional media or social media. A small number of respondents self-censored conference presentations (9%) and peer-reviewed papers (7%).

Factors constraining commentary from government respondents included senior management (82%), workplace policy (72%), a minister’s office (63%) and middle management (62%).

Fear of barriers to advancement (49%) and concern about media misrepresentation (49%) also discouraged public communication by government respondents.

Almost 60% of government respondents and 36% of industry respondents reported unduly modified internal communications.

One government respondent said:

Due to ‘risk management’ in the public sector […] ministers are not receiving full information and advice and/or this is being ‘massaged’ by advisors (sic).

University respondents, more than other workplaces, avoided public commentary out of fear of how they would be represented by the media (76%), fear of being drawn beyond their expertise (73%), stress (55%), fear that funding might be affected (53%) and uncertainty about their area of expertise (52%).

One university respondent said:

I proposed an article in The Conversation about the impacts of mining […] The uni I worked at didn’t like the idea as they received funding from (the mining company).

vehicle operating at a coal mine
A university researcher was dissuaded from writing an article for The Conversation on mining.
Dave Hunt/AAP

Critical conservation issues suppressed

Information suppression was most common on the issue of threatened species. Around half of industry and government respondents, and 28% of university respondents, said their commentary on the topic was constrained.

Government respondents also reported being constrained in commenting on logging and climate change.

One government respondent said:

We are often forbidden (from) talking about the true impacts of, say, a threatening process […] especially if the government is doing little to mitigate the threat […] In this way the public often remains ‘in the dark’ about the true state and trends of many species.

University respondents were most commonly constrained in talking about feral animals. A university respondent said:

By being blocked from reporting on the dodgy dealings of my university with regards to my research and its outcomes I feel like I’m not doing my job properly. The university actively avoids any mention of my study species or project due to vested financial interests in some key habitat.

Industry respondents, more than those from other sectors, were constrained in commenting on the impacts of mining, urban development and native vegetation clearing. One industry respondent said:

A project […] clearly had unacceptable impacts on a critically endangered species […] the approvals process ignored these impacts […] Not being able to speak out meant that no one in the process was willing or able to advocate for conservation or make the public aware of the problem.

a dead koala in front of trees
Information suppression on threatened species was common.

The system is broken

Of those respondents who had communicated information publicly, 42% had been harassed or criticised for doing so. Of those, 83% believed the harassers were motivated by political or economic interests.

Some 77 respondents answered a question on whether they had suffered personal consequences as a result of suppressing information. Of these, 18% said they had suffered mental health effects. And 21% reported increased job insecurity, damage to their career, job loss, or had left the field.

One respondent said:

I declared the (action) unsafe to proceed. I was overruled and properties and assets were impacted. I was told to be silent or never have a job again.

Another said:

As a consultant working for companies that damage the environment, you have to believe you are having a positive impact, but after years of observing how broken the system is, not being legally able to speak out becomes harder to deal with.

a scientist tests water
Scientists want to have a positive impact on environmental outcomes.
Elaine Thompson/AP

Change is needed

We acknowledge that we receive grants involving contracts that restrict our academic freedom. And some of us self-censor to avoid risks to grants from government, resulting in personal moral conflict and a less informed public. When starting this research project, one of our colleagues declined to contribute for fear of losing funding and risking employment.

But Australia faces many complex and demanding environmental problems. It’s essential that scientists are free to communicate their knowledge on these issues.




Read more:
Conservation scientists are grieving after the bushfires — but we must not give up


Public servant codes of conduct should be revised to allow government scientists to speak freely about their research in both a public and private capacity. And government scientists and other staff should report to new, independent state and federal environment authorities, to minimise political and industry interference.

A free flow of information ensures government policy is backed by the best science. Conservation dollars would be more wisely invested, costly mistakes avoided and interventions more effectively targeted.

And importantly, it would help ensure the public is properly informed – a fundamental tenet of a flourishing democracy.The Conversation

Don Driscoll, Professor in Terrestrial Ecology, Deakin University; Bob Pressey, Professor and Program Leader, Conservation Planning, ARC Centre of Excellence for Coral Reef Studies, James Cook University; Euan Ritchie, Associate Professor in Wildlife Ecology and Conservation, Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, and Noel D Preece, Adjunct Asssociate Professor, James Cook University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

How a scientific spat over how to name species turned into a big plus for nature



Shutterstock

Stephen Garnett, Charles Darwin University; Les Christidis, Southern Cross University; Richard L. Pyle, University of Hawaii, and Scott Thomson, Universidade de São Paulo

Taxonomy, or the naming of species, is the foundation of modern biology. It might sound like a fairly straightforward exercise, but in fact it’s complicated and often controversial.

Why? Because there’s no one agreed list of all the world’s species. Competing lists exist for organisms such as mammals and birds, while other less well-known groups have none. And there are more than 30 definitions of what constitutes a species. This can make life difficult for biodiversity researchers and those working in areas such as conservation, biosecurity and regulation of the wildlife trade.

In the past few years, a public debate erupted among global taxonomists, including those who authored and contributed to this article, about whether the rules of taxonomy should be changed. Strongly worded ripostes were exchanged. A comparison to Stalin was floated.

But eventually, we all came together to resolve the dispute amicably. In a paper published this month, we proposed a new set of principles to guide what one day, we hope, will be a single authoritative list of the world’s species. This would help manage and conserve them for future generations.

In the process, we’ve shown how a scientific stoush can be overcome when those involved try to find common ground.

Baby crocodile emerging from egg.
Scientists worked out a few differences over how to name species.
Laurent Gillieron/EPA

How it all began

In May 2017 two of the authors, Stephen Garnett and Les Christidis, published an article in Nature. They argued taxonomy needed rules around what should be called a species, because currently there are none. They wrote:

for a discipline aiming to impose order on the natural world, taxonomy (the classification of complex organisms) is remarkably anarchic […] There is reasonable agreement among taxonomists that a species should represent a distinct evolutionary lineage. But there is none about how a lineage should be defined.

‘Species’ are often created or dismissed arbitrarily, according to the individual taxonomist’s adherence to one of at least 30 definitions. Crucially, there is no global oversight of taxonomic decisions — researchers can ‘split or lump’ species with no consideration of the consequences.

Garnett and Christidis proposed that any changes to the taxonomy of complex organisms be overseen by the highest body in the global governance of biology, the International Union of Biological Sciences (IUBS), which would “restrict […] freedom of taxonomic action.”




Read more:
Taxonomy, the science of naming things, is under threat


An animated response

Garnett and Christidis’ article raised hackles in some corners of the taxonomy world – including coauthors of this article.

These critics rejected the description of taxonomy as “anarchic”. In fact, they argued there are detailed rules around the naming of species administered by groups such as the International Commission on Zoological Nomenclature and the International Code of Nomenclature for algae, fungi, and plants. For 125 years, the codes have been almost universally adopted by scientists.

So in March 2018, 183 researchers – led by Scott Thomson and Richard Pyle – wrote an animated response to the Nature article, published in PLoS Biology.

They wrote that Garnett and Christidis’ IUBS proposal was “flawed in terms of scientific integrity […] but is also untenable in practice”. They argued:

Through taxonomic research, our understanding of biodiversity and classifications of living organisms will continue to progress. Any system that restricts such progress runs counter to basic scientific principles, which rely on peer review and subsequent acceptance or rejection by the community, rather than third-party regulation.

In a separate paper, another group of taxonomists accused Garnett and Christidis of trying to suppress freedom of scientific thought, likening them to Stalin’s science advisor Trofim Lysenko.

Sea sponge under a microscope
Taxonomy can influence how conservation funding is allocated.
Queensland Museum

Finding common ground

This might have been the end of it. But the editor at PLoS Biology, Roli Roberts, wanted to turn consternation into constructive debate, and invited a response from Garnett and Christidis. In the to and fro of articles, we all found common ground.

We recognised the powerful need for a global list of species – representing a consensus view of the world’s taxonomists at a particular time.




Read more:
Summer bushfires: how are the plant and animal survivors 6 months on? We mapped their recovery


Such lists do exist. The Catalogue of Life, for example, has done a remarkable job in assembling lists of almost all the world’s species. But there are no rules on how to choose between competing lists of validly named species. What was needed, we agreed, was principles governing what can be included on lists.

As it stands now, anyone can name a species, or decide which to recognise as valid and which not. This creates chaos. It means international agreements on biodiversity conservation, such as the Convention on International Trade in Endangered Species (CITES) and the Convention on the Conservation of Migratory Species of Wild Animals (CMS), take different taxonomic approaches to species they aim to protect.

We decided to work together. With funding from the IUBS, we held a workshop in February this year at Charles Darwin University to determine principles for devising a single, agreed global list of species.

Pengiuns embracing each other.
The sparring scientists came together to develop agreed principles.
Shutterstock

Participants came from around the world. They included taxonomists, science governance experts, science philosophers, administrators of the nomenclatural (naming) codes, and taxonomic users such as the creators of national species lists.

The result is a draft set of ten principles that to us, represent the ideals of global science governance. They include that:

  • the species list be based on science and free from “non-taxonomic” interference
  • all decisions about composition of the list be transparent
  • governance of the list aim for community support and use
  • the listing process encompasses global diversity while accommodating local knowledge.

The principles will now be discussed at international workshops of taxonomists and the users of taxonomy. We’ve also formed a working group to discuss how a global list might come together and the type of institution needed to look after it.

We hope by 2030, a scientific debate that began with claims of anarchy might lead to a clear governance system – and finally, the world’s first endorsed global list of species.


The following people provided editorial comment for this article: Aaron M Lien, Frank Zachos, John Buckeridge, Kevin Thiele, Svetlana Nikolaeva, Zhi-Qiang Zhang, Donald Hobern, Olaf Banki, Peter Paul van Dijk, Saroj Kanta Barik and Stijn Conix.

The Conversation

Stephen Garnett, Professor of Conservation and Sustainable Livelihoods, Charles Darwin University; Les Christidis, Professor, Southern Cross University; Richard L. Pyle, Associate lecturer, University of Hawaii, and Scott Thomson, Research associate, Universidade de São Paulo

This article is republished from The Conversation under a Creative Commons license. Read the original article.