US scheme used by Australian farmers reveals the dangers of trading soil carbon to tackle climate change


Shutterstock

Aaron Simmons, University of New England; Annette Cowie, University of New England; Brian Wilson, University of New England; Mark Farrell, CSIRO; Matthew Tom Harrison, University of Tasmania; Peter Grace, Queensland University of Technology; Richard Eckard, The University of Melbourne; Vanessa Wong, Monash University, and Warwick Badgery, The University of MelbourneSoil carbon is in the spotlight in Australia. A key plank in the Morrison government’s technology-led emissions reduction policy, it involves changing farming techniques so soils store more carbon from the atmosphere.

Farmers can encourage and accelerate this process through methods that increase plant production, such as improving nutrient management or sowing permanent pastures. For each unit of atmospheric carbon they remove in this way, farmers can earn “carbon credits” to be sold in emissions trading markets.

But not all carbon credits are created equal. In one high-profile deal in January, an Australian farm sold soil carbon credits to Microsoft under a scheme based in the United States. We analysed the methodology behind the trade, and found some increases in soil carbon claimed under the scheme were far too optimistic.

It’s just one of several problems raised by the sale of carbon credits offshore. If not addressed, the credibility of carbon trading will be undermined. Ultimately the climate – and the planet – will be the loser.

sunset on farm with cattle and trees
The integrity of soil carbon trading must be assured.
Shutterstock

What is soil carbon trading?

Plants naturally remove carbon dioxide (CO₂) from the air through photosynthesis. As plants decompose, carbon-laden organic matter is added to the soil. If more organic matter is added than is lost, soil carbon levels increase.

Carbon trading schemes require the increase in soil carbon levels to be measured. The measurement methods are well-established, but can be costly and complex because they involve collecting and analysing large numbers of soil samples. And different carbon credit schemes measure the change in different ways – some more robust than others.

The Australian government’s Emissions Reduction Fund has a rigorous approach to soil sampling, laboratory analysis and calculation of credits. This ensures only genuine removals of atmospheric carbon are rewarded, in the form of “Australian Carbon Credit Units”.

Farmers can choose other schemes under which to earn carbon credits, such as the US-based carbon offset platform Regen Network.

Regen Network’s method for estimating soil carbon largely involves collecting data via satellite imagery. The extent of physical on-the-ground soil sampling is limited.

Regen Network issues “CarbonPlus credits” to farmers deemed to have increased soil carbon stores. Farmers then sell these credits on the Regen Network trading platform.

Regen Network video explaining its remote sensing methods.

‘A number of concerns’

It was Regen Network which sold Microsoft the soil carbon credits generated by an Australian farm, Wilmot Station. Wilmot is owned by the Macdoch Group, and other Macdoch properties have also claimed carbon credits under the Regen Scheme.

Regen Network should be applauded for making its methods and calculations available online. And we appreciate Regen’s open, collaborative approach to developing its methods.

However, we have reviewed their documents and have a number of concerns:

  • the dry weight of soil in a known volume, also known as “bulk density”, is a key factor in calculating soil carbon stocks. Rather than bulk density being measured from field samples, it was calculated using an equation. We examined this method and determined it was far less reliable than field sampling
  • Estimates of soil carbon were not adjusted for gravel content. Because gravel contains no carbon, carbon stock may have been overestimated
  • The remote sensing used by Regen Network involved assessment of vegetation cover via satellite imagery, from which soil carbon levels were estimated. However, vegetation cover obscures soil, and research has found predictions of soil carbon using this method are highly uncertain.



Read more:
The Morrison government wants to suck CO₂ out of the atmosphere. Here are 7 ways to do it


Wilmot increased soil carbon, or “sequestration”, through changes to grazing and pasture management. The resulting rates of carbon storage calculated by Regen Network were extremely high – 7,660 tonnes of carbon over 1,094 hectares. This amounts to 7 tonnes of carbon per hectare from 2018 to 2019.

These results are not consistent with our experience of what is possible through pasture management. For example, the CSIRO has documented soil carbon increases of 0.1 to 0.3 tonnes of carbon per hectare per year in Australia from a range of methods to increase pasture production.

We believe inaccurate methods have led to the carbon increase being overestimated. Thus, it appears excess carbon credits may have been awarded.

Many carbon trading schemes apply rules to ensure integrity is maintained. These include:

  • an “additionality test” to ensure the extra carbon storage in the soil would not have happened anyway. It would prevent, for example, farmers claiming credits for practices they adopted in the past
  • ensuring sequestered carbon is maintained over time
  • disallowing double-counting of credits – for example, by preventing a country claiming credits that have been sold offshore.

The Emissions Reduction Fund and other well-recognised international schemes, such as Verra and Gold Standard, apply these rules stringently. Regen Network’s safeguards are less rigorous.

Responses to these claims from Regen Network and Macdoch Group can be found at the end of this article. A full response from Regen can also be found here.

diagram. showing arms, money, laptop and leaves over world map
Carbon trading is a way for farmers to make money by changing their land management practices.
Shutterstock

Not in the national interest?

Putting aside the problems noted above, the offshore sale of soil carbon credits generated by Australian farmers raises other concerns.

First, selling credits offshore means Australia loses out, by not being able to claim the abatement towards our own government and industry targets.

Second, soil carbon does not have unlimited emissions reduction potential. The quantum of carbon that can be stored in each hectare of soil is constrained, and limited by factors such as land availability and climate change. So measures to increase soil carbon should not detract from society’s efforts to reduce emissions from fossil fuel use.

And third, ensuring carbon remains in soil long after it’s deposited is a challenge because soil microbes break down organic matter. Carbon credit schemes commonly manage this by requiring a “buffer” of unsold credits. If stored carbon is lost, farmers must relinquish credits from the buffer.

If the loss is greater than the buffer, credits must be purchased to make up the difference. This exposes farmers to financial risk, especially if carbon prices rise.




Read more:
We need more carbon in our soil to help Australian farmers through the drought


farmer sits on rock
Poorly managed carbon trading schemes can put farmers at financial risk.
Shutterstock

Getting it right

Soil carbon is a promising way for Australia to substantially reduce its emissions. But methods used to measure gains in soil carbon must be accurate.

Carbon markets must be regulated to ensure credit is awarded for genuine abatement, and risks to farmers are limited. And the extent to which offshore carbon markets prevent Australia from meeting its own obligations to reduce emissions should be clarified and managed.

Improving the integrity of soil carbon trading will have benefits beyond emissions reduction. It will also improve soil health and farm productivity, helping agriculture become more resilient under climate change.


Regen Network response

Regen Network provided The Conversation with a response to concerns raised in this article. The full nine-page statement provided by Regen Network is available here.

The following is a brief summary of Regen Network’s statement:

– Limited on-ground soil sampling: Regen Network said its usual minimum number of soil samples was not reached in the case of Wilmot Station, because historical soil samples – taken before the project began – were used. To compensate for this, relevant sample data from a different farm was combined with data from Wilmot.

“We understand the use of ancillary data does not follow best practice and our team is working hard to ensure future projects are run using a sufficient number of samples,” Regen Network said.

– Bulk density: Regen Network said the historical sample data from Wilmot did not include “bulk density” measurements needed to estimate carbon stocks, which required “deviations” from its usual methodology. However the company was taking steps to ensure such estimates in future projects “can be provided with higher degrees of accuracy”.

– Gravel content: Regen Network said lab reports for soil samples included only the weight, not volume, of gravel present. “Best sampling practice should include the gravel volume as an essential parameter for accurate bulk density measurements. We will make sure to address this in our next round of upgrades and appreciate the observation!” the statement said.

– Remote sensing of vegetation: Regen Network said it did not use vegetation assessment at Wilmot station. It tested a vegetation assessment index at another property and found it ineffective at estimating soil carbon. At Wilmot station Regen used so-called individual “spectral bands” to estimate soil carbon at locations where on-ground sampling was not undertaken.

– Sequestration rates at Wilmot: Regen Network said while it was difficult to directly compare local sequestration rates across climatic and geologic zones, the sequestration rates for the projects in question “fall within the relatively wide range of sequestration rates” reported in key scientific studies.

Regen Network said its methodology “provides a conservative estimate on the final number of credits issued”. Its statement outlines the steps taken to ensure soil carbon levels are not overestimated.

– Integrity safeguards: Regen Network said it employs standards “based both on existing standards of reputable programs […] and inputs from project developers, in order to come up with a standard that not only is rigorous but also practical”. Regen Network takes steps to ensure additionality and permanence of carbon stores, as well as avoid double counting of carbon credits generated through their platform.

A more detailed response from Regen Network can be found here.


Wilmot Station response

Wilmot Station provided the following response from Alasdair Macleod, chairman of Macdoch Group. It has been edited for brevity:

We entered into the deals with Regen Network/Microsoft because we wanted to give a hint of the huge potential that we believe exists for farmers in Australia and globally to sequester soil carbon which can be sold through offset markets or via other methods of value creation.

Whilst we recognise that the soil carbon credits generated on the Macdoch Group properties in the Regen Network/Microsoft deal will not be included in Australia’s national carbon accounts, it is our hope that over time the regulated market will move towards including appropriately rigorous transactions such as these in some form.

At the same time we have also been working closely with the Australian government, industry organisations, academia and other interested parties on Macdoch Group properties to develop appropriate soil carbon methodologies under the government’s Climate Solutions Fund.

This is because carbon measurement methodologies are an evolving science. We have always acknowledged and will welcome improvements that will be made over the coming years to the methodologies utilised by both the voluntary and regulated markets.

In any event it has become clear that there is huge demand from the private sector for offset deals of this nature and we will continue to work towards ensuring that other farmers can take advantage of the opportunities that will become available to those that are farming in a carbon-friendly fashion.The Conversation

Aaron Simmons, Adjunct Senior Research Fellow, University of New England; Annette Cowie, Adjunct Professor, University of New England; Brian Wilson, Associate Professor, University of New England; Mark Farrell, Principal Research Scientist, CSIRO; Matthew Tom Harrison, Associate Professor of Sustainable Agriculture, University of Tasmania; Peter Grace, Professor of Global Change, Queensland University of Technology; Richard Eckard, Professor & Director, Primary Industries Climate Challenges Centre, The University of Melbourne; Vanessa Wong, Associate Professor, Monash University, and Warwick Badgery, Research Leader Pastures an Rangelands, The University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

We sliced open radioactive particles from soil in South Australia and found they may be leaking plutonium


National Archives of Australia

Barbara Etschmann, Monash University; Joel Brugger, Monash University, and Vanessa Wong, Monash UniversityAlmost 60 years after British nuclear tests ended, radioactive particles containing plutonium and uranium still contaminate the landscape around Maralinga in outback South Australia.

These “hot particles” are not as stable as we once assumed. Our research shows they are likely releasing tiny chunks of plutonium and uranium which can be easily transported in dust and water, inhaled by humans and wildlife and taken up by plants.

A British nuclear playground

After the US atomic bombings of Hiroshima and Nagasaki in 1945, other nations raced to build their own nuclear weapons. Britain was looking for locations to conduct its tests. When it approached the Australian government in the early 1950s, Australia was only too eager to agree.

Between 1952 and 1963, Britain detonated 12 nuclear bombs in Australia. There were three in the Montebello Islands off Western Australia, but most were in outback South Australia: two at Emu Field and seven at Maralinga.

British nuclear tests left behind a radioactive legacy.
National Archives of Australia

Besides the full-scale nuclear detonations, there were hundreds of “subcritical” trials designed to test the performance and safety of nuclear weapons and their components. These trials usually involved blowing up nuclear devices with conventional explosives, or setting them on fire.

The subcritical tests released radioactive materials. The Vixen B trials alone (at the Taranaki test site at Maralinga) spread 22.2 kilograms of plutonium and more than 40 kilograms of uranium across the arid landscape. For comparison, the nuclear bomb dropped on Nagasaki contained 6.4 kilograms of plutonium, while the one dropped on Hiroshima held 64 kilograms of uranium.

These tests resulted in long-lasting radioactive contamination of the environment. The full extent of the contamination was only realised in 1984, before the land was returned to its traditional owners, the Maralinga Tjarutja people.

Hot potatoes

Despite numerous cleanup efforts, residual plutonium and uranium remains at Maralinga. Most is present in the form of “hot particles”. These are tiny radioactive grains (much smaller than a millimetre) dispersed in the soil.

Plutonium is a radioactive element mostly made by humans, and the weapons-grade plutonium used in the British nuclear tests has a half life of 24,100 years. This means even 24,100 years after the Vixen B trials that ended in 1963, there will still be almost two Nagasaki bombs worth of plutonium spread around the Taranaki test site.

Plutonium emits alpha radiation that can damage DNA if it enters a body through eating, drinking or breathing.




Read more:
Dig for secrets: the lesson of Maralinga’s Vixen B


In their original state, the plutonium and uranium particles are rather inactive. However, over time, when exposed to atmosphere, water, or microbes, they may weather and release plutonium and uranium in dust or rainstorms.

Until recently, we knew little about the internal makeup of these hot particles. This makes it very hard to accurately assess the environmental and health risks they pose.

Monash PhD student Megan Cook (the lead author on our new paper) took on this challenge. Her research aimed to identify how plutonium was deposited as it was carried by atmospheric currents following the nuclear tests (some of it travelled as far as Queensland!), the characteristics of the plutonium hot particles when they landed, and potential movement within the soil.

Nanotechnology to the rescue

Previous studies used the super intense X-rays generated by synchrotron light sources to map the distribution and oxidation state of plutonium inside the hot particles at the micrometre scale.

To get more detail, we used X-rays from the Diamond synchrotron near Oxford in the UK, a huge machine more than half a kilometre in circumference that produces light ten billion times brighter than the Sun in a particle accelerator.

Studying how the particles absorbed X-rays revealed they contained plutonium and uranium in several different states of oxidation – which affects how reactive and toxic they are. However, when we looked at the shadows the particles cast in X-ray light (or “X-ray diffraction”), we couldn’t interpret the results without knowing more about the different chemicals inside the particles.

To find out more, we used a machine at Monash University that can slice open tiny samples with a nanometre-wide beam of high-energy ions, then analyse the elements inside and make images of the interior. This is a bit like using a lightsaber to cut a rock, only at the tiniest of scales. This revealed in exquisite detail the complex array of materials and textures inside the particles.

Plutonium and uranium show up as bright lumps embedded in darker iron-aluminium alloy in this electron microscope image.
Cook et al (2021), Scientific Reports, Author provided

Much of the plutonium and uranium is distributed in tiny particles sized between a few micrometres and a few nanometres, or dissolved in iron-aluminium alloys. We also discovered a plutonium-uranium-carbon compound that would be destroyed quickly in the presence of air, but which was held stable by the metallic alloy.

This complex physical and chemical structure of the particles suggests the particles formed by the cooling of droplets of molten metal from the explosion cloud.

In the end, it took a multidisciplinary team across three continents — including soil scientists, mineralogists, physicists, mineral engineers, synchrotron scientists, microscopists, and radiochemists — to reveal the nature of the Maralinga hot particles.

From fire to dust

Our results suggest natural chemical and physical processes in the outback environment may cause the slow release of plutonium from the hot particles over the long term. This release of plutonium is likely to be contributing to ongoing uptake of plutonium by wildlife at Maralinga.

Even under the semi-arid conditions of Maralinga, the hot particles slowly break down, liberating their deadly cargo. The lessons from the Maralinga particles are not limited to outback Australia. They are also useful in understanding particles generated from dirty bombs or released during subcritical nuclear incidents.




Read more:
Friday essay: the silence of Ediacara, the shadow of uranium


There have been a few documented instances of such incidents. These include the B-52 accidents that resulted in the conventional detonation of thermonuclear weapons near Palomares in Spain in 1966, and Thule in Greenland in 1968, and the explosion of an armed nuclear missile and subsequent fire at the McGuire Air Force Base in the USA in 1960.

Thousands of active nuclear weapons are still held by nations around the world today. The Maralinga legacy shows the world can ill afford incidents involving nuclear particles.The Conversation

Barbara Etschmann, Research officer, Monash University; Joel Brugger, Professor of Synchrotron Geosciences, Monash University, and Vanessa Wong, Associate Professor, Monash University

This article is republished from The Conversation under a Creative Commons license. Read the original article.