A ‘seiche’ wave can outpace a tsunami, and both can be triggered by meteorites and earthquakes



File 20190403 177184 r6mkdz.jpg?ixlib=rb 1.1
Waves can be generated in lakes and other bodies of water when seismic energy travels through land.
Leo Roomets / Unsplash, CC BY

Craig O’Neill, Macquarie University

A catastrophic event occurred on Earth 66 million years ago. A huge meteorite struck our planet in what is now Mexico, triggering mass extinctions of the dinosaurs and most other living creatures.

A new paper shows the first recorded victims of this impact were fish and other marine animals, stranded by a wave that left them high and dry in an ancient river in North Dakota, at a site called Tanis.

For scientists unpacking the evidence around the event, a full picture of the cataclysm has involved looking into the details of planetary surface physics during giant impacts.

But beyond the first layer of fascinating results – little glass impact beads stuck in the gills of fish, for example – one really interesting aspect of this work is around how water behaves when it’s exposed to extreme forces.

If you’ve never heard of a form of wave called a seiche, this is your chance to catch up.

This is a seiche – a standing wave – in a swimming pool, during a large earthquake in Nepal.

Waves of damage

The Chicxulub meteorite crater in coastal Mexico is strongly associated with the mass extinction of the dinosaurs (and 75% of all species), 66 million years ago.

The first victims were right at the site. Any marine creatures close to the point of impact would have been instantly vaporised (sadly leaving no fossil record), along with much of the surrounding rock.

Around the periphery, the energy of the impact melted and ejected tonnes of molten rock, which together with condensing rock vapour, formed little glass beads (“impact spherules”) that can be found in a layer around the world at this time.

The shock wave itself pulverised the adjacent rock enough to metamorphise it, forming features like “shocked quartz” – fractured quartz indicative of enormous pressures. It carried the energy equivalent of a magnitude 11 earthquake – 1,000 times more energy than the 2004 Boxing Day quake which killed almost 230,000 people.

Vast inland sea now gone

North Dakota is more than 3,000km away from the Chicxulub crater, and was a similar distance at the time of the meteorite impact event.

Separating them back then, however, was a vast inland sea that covered much of midwest USA, from Texas up to the Dakotas. Feeding into that inland sea was a river system upon which the Tanis site in North Dakota was formed. This site has preserved the earliest recorded deaths of the Chicxulub impact.

Different views of the Tanis site. A: Tanis (starred) within a regional context (large map) and on a national map (inset). B: Photo and interpretive overlay of an oblique cross-section through Tanis. C: Simplified schematic depicting the general deposits at the site (not to scale). Most fish carcasses were found at point 3.
Robert A DePalma and colleagues

The site itself is unusual. The deposition of sediments can tell us about the flow of water in the river.

Most ripples (or flame structures) indicate a southerly flow of the river before and after the Tanis deposit. However, these flow indicators point the wrong way during the time the Tanis unit formed. Water was flowing upstream, fast.

At the site are also found the fossilised remains of species, like sharks and rays, that occupied brackish water, rather than the freshwater of the stream. These had to be brought inland from the sea by something, and left to die, smothered in sediment, on a riverbank.

Stranded in Dakota

The obvious candidate is an impact tsunami. Perhaps the impact of the meteorite hitting the ocean generated a huge wave that carried fish from the inland sea, and against the flow of fresh water, to leave the creatures stranded in Dakota?

But there are problems with this hypothesis. The tiny impact spherules that formed in Chicxulub can be found throughout the deposit (many clogging the gills of fish), and pockmarks in the sedimentary layers means rocks were still raining down. This means the surge of water occurred within around 15 minutes to two hours of the impact itself.

For a tsunami to travel the 3,000km from the point of impact, to the Tanis site across the inland sea, would have taken almost 18 hours. Something else killed these creatures.

The seismic waves from the impact would have travelled through the Earth much faster than a tsunami travelled across water – and arrived near Tanis between 6-13 minutes later. The authors of the Tanis study suggest these seismic waves may have triggered an unusual type of wave in the inland sea, called a seiche.

Standing waves

Seiches are standing waves in bodies of water, and are often found in large lake systems during strong winds. The winds themselves cause waves and water displacement, which can have a harmonic effect, causing the water to slosh side to side like an overfull bathtub.

However, earthquakes are also known to cause seiches. Particularly dramatic seiches are often seen in swimming pools during large quakes. The interaction of the seismic wave’s period (the time between two waves) with the timescale of waves sloshing in a pool can amplify their effect.

But seiches can affect larger bodies of water too.

During the 2011 Tohuku earthquake in Japan, seiches over 1m high were observed in Norwegian fjords more than 8,000km away. With an energy more than 1,000 times greater, the Chicxulub event could quite conceivably have generated bigger than 10 metre swells in the North American inland sea – the scale implied by the deposition of the Tanis site.

These waves in Norwegian fjords were created by seismic waves from the 2011 Tohoku earthquake in Japan.

Given a seiche can be driven by seismic waves, it’s conceivable that one drove the surge that stranded marine creatures at Tanis, resulting in the short time between the impact debris and the surge deposit.

Still lots of questions

But a lot remains unclear regarding exactly what did happen 66 million years ago.

Could the fish stranding have been driven by the first seismic activity to appear at Tanis (the P and S waves in science parlance, which travel through the interior of the Earth, arriving at Tanis 6 and 10 minutes after impact, respectively), or the more destructive but slower surface waves at the top of the Earth’s crust, which arrived 13 minutes after impact?

How might seiche waves have interacted with global hurricane-strength wind storms caused by the impact?

Would the period of sloshing of a seiche be consistent with the scale of the inland sea? (The inland sea was much larger than most lakes seiches are traditionally observed in – and may or may not have been open to the ocean). Given so little is really known about the dimensions of the inland sea, this is hard to constrain.

The Tanis site has given us an incredible window into the first few hours of a mass-extinction. But it has also highlighted how little we have probed into the fatal surface physics of these extreme events.The Conversation

Craig O’Neill, Director of the Macquarie Planetary Research Centre/Associate Professor in Geodynamics, Macquarie University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

To predict droughts, don’t look at the skies. Look in the soil… from space


Siyuan Tian, Australian National University and Albert Van Dijk, Australian National University

Another summer, another drought. Sydney’s water storages are running on empty, and desalinisation plants are being dusted off. Elsewhere, shrunken rivers, lakes and dams are swollen with rotting fish. Governments, irrigators and environmentalists blame each other for the drought, or just blame it on nature.

To be sure, Australia is large enough to usually leave some part of our country waiting for rain. So what exactly is a drought, and how do we know when we are in it?

This question matters, because declaring drought has practical implications. For example, it may entitle those affected to government assistance or insurance pay-outs.

But it is also a surprisingly difficult question. Droughts are not like other natural hazards. They are not a single extreme weather event, but the persistent lack of a quite common event: rain. What’s more, it’s not the lack of rain per se that ultimately affects us. The desert is a dry place but it cannot always be called in drought.

Ultimately, what matters are the impacts of drought: the damage to crops, pastures and environment; the uncontrollable fires that can take hold in dried-up forests and grasslands; the lack of water in dams and rivers that stops them from functioning. Each of these impacts is affected by more than just the amount of rain over an arbitrary number of months, and that makes defining drought difficult.




Read more:
Is Australia’s current drought caused by climate change? It’s complicated


Scientists and governments alike have been looking for ways to measure drought in a way that relates more closely to its impacts. Any farmer or gardener can tell you that you don’t need much rain, but you do need it at the right time. This is where the soil becomes really important, because it is where plants get their water.

Too much rain at once, and most of it is lost to runoff or disappears deep into the soil. That does not mean it is lost. Runoff helps fill our rivers and waterways. Water sinking deep into the soil can still be available to some plants. While our lawn withers, trees carry on as if there is nothing wrong. That’s because their roots dig further, reaching soil moisture that is buried deep.

A good start in defining and measuring drought would be to know how much soil moisture the vegetation can still get out of the soil. That is a very hard thing to do, because each crop, grass and tree has a different root system and grows in a different soil type, and the distribution of moisture below the surface is not easy to predict. Many dryland and irrigation farmers use soil sensors to measure how well their crops are doing, but this does not tell us much about the rest of the landscape, about the flammability of forests, or the condition of pastures.

Not knowing how drought conditions will develop, graziers face a difficult choice: sell their livestock or buy in feed?
Shutterstock

Soils and satellites

As it turns out, you need to move further away to get closer to this problem – into space, to be precise. In our new research, published in Nature Communications, we show just how much satellite instruments can tell us about drought.

The satellite instruments have prosaic names such as SMOS and GRACE, but the way they measure water is mind-boggling. For example, the SMOS satellite unfurled a huge radio antenna in space to measure very specific radio waves emitted by the ground, and from it scientists can determine how much moisture is available in the topsoil.

Even more amazingly, GRACE (now replaced by GRACE Follow-On) was a pair of laser-guided satellites in a continuous high-speed chase around the Earth. By measuring the distance between each other with barely imaginable accuracy, they could measure miniscule changes in the Earth’s gravitational field caused by local increases or decreases in the amount of water below the surface.

By combining these data with a computer model that simulates the water cycle and plant growth, we created a detailed picture of the distribution of water below the surface.

It is a great example showing that space science is not just about galaxies and astronauts, but offers real insights and solutions by looking down at Earth. It also shows why having a strong Australian Space Agency is so important.




Read more:
The lessons we need to learn to deal with the ‘creeping disaster’ of drought


Taking it a step further, we discovered that the satellite measurements even allowed us to predict how much longer the vegetation in a given region could continue growing before the soils run dry. In this way, we can predict drought impacts before they happen, sometimes more than four months in advance.

Map showing how many months ahead, on average, drought impacts can be predicted with good accuracy.
author provided

This offers us a new way to look at drought prediction. Traditionally, we have looked up at the sky to predict droughts, but the weather has a short memory. Thanks to the influence of ocean currents, the Bureau of Meteorology can sometimes give us better-than-evens odds for the months ahead (for example, the next three months are not looking promising), but these predictions are often very uncertain.

Our results show there is at least as much value in knowing how much water is left for plants to use as there is in guessing how much rain is on the way. By combining the two information sources we should be able to improve our predictions still further.

Many practical decisions hinge on an accurate assessment of drought risk. How many firefighters should be on call? Should I sow a crop in this paddock? Should we prepare for water restrictions? Should we budget for drought assistance? In future years, satellites keeping an eye on Earth will help us make these decisions with much more confidence.The Conversation

Siyuan Tian, Postdoctoral fellow, Australian National University and Albert Van Dijk, Professor, Water and Landscape Dynamics, Fenner School of Environment & Society, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Earthrise, a photo that changed the world



File 20181218 27764 1lb5nwr.jpg?ixlib=rb 1.1
Earthrise: astronauts aboard Apollo 8 captured this spectacular photo of Earth rising above the lunar horizon as they emerged from behind the dark side of the Moon.
Image Credit: NASA

Simon Torok, University of Melbourne; Colleen Boyle, RMIT University; Jenny Gray, University of Melbourne; Julie Arblaster, Monash University; Lynette Bettio, Australian Bureau of Meteorology; Rachel Webster, University of Melbourne, and Ruth Morgan, Monash University

December 24 is the 50th anniversary of Earthrise, arguably one of the most profound images in the history of human culture. When astronaut William Anders photographed a fragile blue sphere set in dark space peeking over the Moon, it changed our perception of our place in space and fuelled environmental awareness around the world.

The photo let us see our planet from a great distance for the first time. The living Earth, surrounded by the darkness of space, appears fragile and vulnerable, with finite resources.




Read more:
50 years ago: Australia and the Apollo 8 mission that sent a Christmas message from the Moon


Viewing a small blue Earth against the black backdrop of space, with the barren moonscape in the foreground, evokes feelings of vastness: we are a small planet, orbiting an ordinary star, in an unremarkable galaxy among the billions we can observe. The image prompts emotions of insignificance – Earth is only special because it’s the planet we live on.

As astronaut Jim Lovell said during the live broadcast from Apollo 8, “The vast loneliness is awe-inspiring, and it makes you realise just what you have back there on Earth.”

The Apollo 8 Christmas Eve broadcast.

Earthrise is a testament to the extraordinary capacity of human perception. Although, in 1968, the photograph seemed revelatory and unexpected, it belongs to an extraordinary history of representing the Earth from above. Anders may have produced an image that radically shifted our view of ourselves, but we were ready to see it.

A history of flight

People have always dreamed of flying. As we grew from hot-air balloons to space shuttles, the camera has been there for much of the ride.

After WWII, the US military used captured V-2 rockets to launch motion-picture cameras out of the atmosphere, producing the first images of Earth from space.

Russia’s Sputnik spurred the United States to launch a series of satellites — watching the enemy and the weather — and then NASA turned its attention to the Moon, launching a series of exploratory probes. One (Lunar Orbiter I, 1966) turned its camera across a sliver of the Moon’s surface and found the Earth, rising above it.

The non-human version of Earthrise from Lunar Orbiter in 1966.
NASA

Despite not being the “first” image of the Earth from our Moon, Earthrise is special. It was directly witnessed by the astronauts as well as being captured by the camera. It elegantly illustrates how human perception is something that is constantly evolving, often hand in hand with technology.

Earthrise showed us that Earth is a connected system, and any changes made to this system potentially affect the whole of the planet. Although the Apollo missions sought to reveal the Moon, they also powerfully revealed the limits of our own planet. The idea of a Spaceship Earth, with its interdependent ecologies and finite resources, became an icon of a growing environmental movement concerned with the ecological impacts of industrialisation and population growth.

‘Spaceship Earth’ became a powerful rallying cry for environmental groups.
Flickr, CC BY-SA

From space, we observe the thin shield provided by our atmosphere, allowing life to flourish on the surface of our planet. Lifeforms created Earth’s atmosphere by removing carbon dioxide and generating free oxygen. They created an unusual mix of gases compared to other planets – an atmosphere with a protective ozone layer and a mix of gases that trap heat and moderate extremes of temperature. Over millions of years, this special mix has allowed a huge diversity of life forms to evolve, including (relatively recently on this time scale) Homo sapiens.

The field of meteorology has benefited enormously from the technology foreshadowed by the Earthrise photo. Our knowledge is no longer limited to Earth-based weather-observing stations.

Satellites can now bring us an Earthrise-type image every ten minutes, allowing us to observe extremes such as tropical cyclones as they form over the ocean, potentially affecting life and land. Importantly, we now possess a long enough record of satellite information so that in many instances we can begin to examine long-term changes of such events.

The human population has doubled in the 50 years since the Earthrise image, resulting in habitat destruction, the spread of pest species and wildfires spurred by climate warming. Every year, our actions endanger more species.

Earth’s climate has undergone enormous changes in the five decades since the Earthrise photo was taken. Much of the increase in Australian and global temperatures has happened in the past 50 years. This warming is affecting us now, with an increase in the frequency of extreme events such as heatwaves, and vast changes across the oceans and polar caps.




Read more:
Space research pays for itself, but inspires fewer people


With further warming projected, it is important that we take this chance to look back at the Earthrise photo of our little planet, so starkly presented against the vastness of space. The perspective that it offers us can help us choose the path for our planet for the next 50 years.

It reminds us of the wonders of the Earth system, its beauty and its fragility. It encourages us to continue to seek understanding of its weather systems, blue ocean and ice caps through scientific endeavour and sustained monitoring.

The beauty of our planet as seen from afar – and up close – can inspire us to make changes to secure the amazing and diverse animals that share our Earth.

Zoos become conservation organisations, holding, breeding and releasing critically endangered animals. Scientists teach us about the capacities of animals and the threats to their survival.

Communities rise to the challenge and people in their thousands take actions to help wildlife, from buying toilet paper made from recycled paper to not releasing balloons outdoors. If we stand together we can secure a future for all nature on this remarkable planet.




Read more:
In defence of zoos: how captivity helps conservation


But is a 50-year-old photo enough to reignite the environmental awareness and action required to tackle today’s threats to nature? What will be this generation’s Earthrise moment?


The authors would like to acknowledge the significant contribution of Alicia Sometimes to this article.The Conversation

Simon Torok, Honorary Fellow, School of Earth Sciences, University of Melbourne; Colleen Boyle, Senior Advisor, Learning and Teaching, RMIT University; Jenny Gray, Chief Executive Officer – Zoos Victoria, University of Melbourne; Julie Arblaster, Associate Professor, Monash University; Lynette Bettio, , Australian Bureau of Meteorology; Rachel Webster, Professor of Physics, University of Melbourne, and Ruth Morgan, Senior Research Fellow, Monash University

This article is republished from The Conversation under a Creative Commons license. Read the original article.