Wetlands have saved Australia $27 billion in storm damage over the past five decades



Shutterstock

Obadiah Mulder, University of Southern California and Ida Kubiszewski, Crawford School of Public Policy, Australian National University

Australia is in the midst of tropical cyclone season. As we write, a cyclone is forming off Western Australia’s Pilbara coast, and earlier in the week Queenslanders were bracing for a cyclone in the state’s far north (which thankfully, didn’t hit).

Australia has always experienced cyclones. But here and around the world, climate change means the cyclone threat is growing – and so too is the potential damage bill. Disadvantaged populations are often most at risk.

Our recent research shows 54 cyclones struck Australia in the 50 years between 1967 and 2016, causing about A$3 billion in damage. We found the damages would have totalled approximately A$30 billion, if not for coastal wetlands.

Wetlands such as mangroves, swamps, lakes and lagoons bear the brunt of much storm damage to coast, helping protect us and our infrastructure. But over the past 300 years, 85% of the world’s wetland area has been destroyed. It’s clear we must urgently preserve the precious little wetland area we have left.

A wetland close to coastal development.
Wetland areas provide important protection from cyclones.
Shutterstock

A critical buffer

National disasters cost Australia as much as A$18 billion each year on average. About one-quarter of this is due to cyclone damage.

Wetlands can mitigate cyclone and hurricane damage, by absorbing storm surges and slowing winds. For example in August 2020, Hurricane Laura hit the United States’ midwest. Massive damage was predicted, including a 6.5-metre storm surge extending 65 kilometres inland.

However the surge was one metre at most – largely because the storm drove straight into a massive wetland that absorbed most of the predicted flood.

In Australia, wetlands are lost through intentional infilling or drainage for mosquito control, or to create land for infrastructure and agriculture. They’re also lost due to pollution and upstream changes to water flows.

Caley Valley Wetlands,  next to Adani's Abbot Point coal terminal.
Australia’s wetlands are at risk. Pictured is the Caley Valley Wetlands, next to Adani’s Abbot Point coal terminal. Adani was fined for releasing polluted water into the wetland.
Gary Farr/ACF

Putting a price on cyclone protection

Our research set out to determine the financial value of the storm protection provided by Australia’s wetlands.

We examined the 54 cyclones that struck Australia in the five decades to 2016. We gathered data including:

  • physical damage wrought in each storm swath (or storm path)
  • gross domestic product (GDP) in the storm’s path
  • maximum windspeed during each storm, which helps predict damage
  • total area of wetlands in each swath.

Using a powerful type of statistics called Bayesian analysis, we estimated the extent to which GDP, windspeed and wetland area affected total damage. This allowed us to estimate damage caused in the absence of wetlands.

We found for every hectare of wetland, about A$4,200 per year in cyclone damage was avoided. This means the A$3 billion in cyclone damage over the past 50 years would have totalled approximately A$30 billion, if not for coastal wetlands.




Read more:
Restoring a gem in the Murray-Darling Basin: the success story of the Winton Wetlands


Importantly, the percentage of damage averted falls rapidly as wetland area decreases. And the protection afforded by a single hectare of wetland increases drastically if there are fewer other wetlands in the path of the storm. This makes protecting remaining wetland even more critical.

If the average cyclone path in Australia were to contain around 30,000 hectares of wetlands, it would avert about 90% of potential storm damage. If the wetland area dropped to 3,000 hectares, only about 30% of damage would be averted.

Climate change is making cyclones worse. By 2050, Australia’s annual damage bill could be as high as A$39 billion, assuming current levels of wetlands are maintained.

Seawalls and other artificial structures can be built along the coast to protect from storms. However, research in China has found wetlands are more cost-effective and efficient than man-made structures at preventing cyclone damage.

Unlike man-made structures, wetlands maintain themselves. Their only “cost” is the opportunity cost of not being able to use the land for something else.

People inspect cyclone damage
Wetlands can help prevent cyclone damage, such as this wrought in Queensland during Cyclone Debbie in 2017.
Dan Peled/AAP

Keeping wetlands safe

According to recent analysis by the authors, which is currently under peer review, global wetlands provide US$447 billion (A$657 billion) worth of protection from storms each year.

Of course, wetlands provide benefits beyond storm protection. They store carbon, regulate our climate and control flooding. They also absorb waste including pollutants and carbon, provide animal habitat and places for human recreation.

Wetlands are an incredibly important resource. It’s critical we protect them from development and keep them healthy, so they can continue to provide vital services.




Read more:
Our new model shows Australia can expect 11 tropical cyclones this season


This story is part of a series The Conversation is running on the nexus between disaster, disadvantage and resilience. You can read the rest of the stories here.The Conversation

Obadiah Mulder, PhD Candidate in Computational Biology, University of Southern California and Ida Kubiszewski, Associate Professor, Crawford School of Public Policy, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Open data shows lightning, not arson, was the likely cause of most Victorian bushfires last summer



Tracy Nearmy/AAP

Dianne Cook, Monash University

As last summer’s horrific bushfires raged, so too did debate about what caused them. Despite the prolonged drought and ever worsening climate change, some people sought to blame the fires largely on arson.

Federal Coalition MPs were among those pushing the arsonist claim. And on Twitter, a fierce hashtag war broke out: “#ClimateEmergency” vs “#ArsonEmergency”.

Fire authorities rejected the arson claims, saying most fires were thought to be caused by lightning.

We dug into open data resources to learn more about the causes of last summer’s bushfires in Victoria, and further test the arson claim. Our analysis suggests 82% of the fires can be attributed to lightning, 14% to accidents and 1% to burning off. Only 4% can be attributed to arson.

Lightning in the sky
Lightning, not arson, caused most Victorian bushfires last summer.
Twitter

What we did

We started with hotspots data taken from the Himawari-8 satellite, which shows heat source locations over time and space, in almost real time. We omitted hotspots unlikely to be bushfires, and used a type of data mining called “spatiotemporal clustering” – where time dimension is introduced to geographic data – to estimate ignition time and location.

We supplemented this with data from other sources: temperature, moisture, rainfall, wind, sun exposure, fuel load, as well as distance to camp sites, roads and Country Fire Authority (CFA) stations.




Read more:
Bushfires, bots and arson claims: Australia flung in the global disinformation spotlight


Victoria’s Department of Environment, Land, Water and Planning (DELWP) holds historical data on bushfire ignition from 2000 to the 2018-19 summer. The forensic research required to determine fire cause is laborious, and remotely sensed data from satellites may be useful and more immediate.

By training our model on the historical data, we can more immediately predict causes of last summer’s fires detected from satellite data. (Note: even though we were analysing events in the past, we use the term “predict” because authorities have not released official data.)

DELWP’s data attributes 41% of fires to lightning, 17% to arson, 34% to accidents and 7% to hazard reduction or back burning which escaped containment lines (which our analysis refers to as burning off).

Causes of fires from 2000-2019. Lightning is most common cause. The number of fires is increasing, and this is mostly due to accidents.
Own work

To make predictions for the 2019-20 bushfires, we needed an accurate model for causes in the historical data. We trained the model to predict one of four causes – lightning, accident, arson, burning off – using a machine learning algorithm.

The model performed well on the historical data: 75% overall accuracy, 90% accurate on lightning, 78% for accidents, and 54% for arson (which was mostly confused with accident, as would make sense).

The most important contributors to distinguishing between lightning and arson (or accident) ignition were distance to CFA stations, roads and camp sites, and average wind speed.

As might be expected, smaller distances to CFA stations, roads and camp sites, and higher than average winds, meant the fire was most likely the result of arson or accident. In the case of longer distances, where bush would have been largely inaccessible to the public, lightning was predicted to be the cause.

Spatial distribution of causes of fires from 2000-2019, and predictions for 2019-2020 season.
Own work

What we found

Our model predicted that 82% of Victoria’s fires in the summer of 2019-2020 were due to lightning. Most fires were located in densely vegetated areas inaccessible by road – similar to the historical locations. (The percentage is double that in the historical data, though, probably because the satellite hotspot data can see fire ignitions in locations inaccessible to fire experts).

All fires in February 2020 were predicted to be due to lightning. Accident and arson were commonly predicted causes in March, and early in the season. Reassuringly, ignition due to burning off was predicted primarily in October 2019, prior to the fire restrictions.

Spatio-temporal distribution of cause predictions for 2019-2020 season. Reassuringly, fires due to burning off primarily occurred in October, prior to fire restrictions. February fires were all predicted to be due to lightning.
Own work

Quicker fire ignition information

Our analysis used open-data and open-source software, and could be applied to fires elsewhere in Australia.

This analysis shows how we can quickly predict causes of bushfires, using satellite data combined with other information. It could reduce the work of fire forensics teams, and provide more complete fire ignition data in future.

The code used for the analysis can be found here. Explore the historical fire data, predictions for 2019-2020 fires, and a fire risk map for Victoria using this app.


This analysis is based on thesis research by Monash University Honours student Weihao Li. She was supervised by the author, and former Principal Inventive Scientist at AT&T Labs Research, Emily Dodwell. The Australian Centre of Excellence for Mathematical and Statistical Frontiers supported Emily’s travel to Australia to start this project. The full analysis is available here.

The Conversation

Dianne Cook, Professor of Business Analytics, Monash University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Good news from the River Murray: these 2 fish species have bounced back from the Millennium Drought in record numbers



Shutterstock

Brenton Zampatti, CSIRO and Chris Bice

This year marks a decade since the end of the Millennium Drought, when flood waters reached the mouth of the River Murray in 2010. For 1,200 days prior, Australia’s most iconic river had ceased flowing to the sea, causing populations of fish and other aquatic animals to plummet.

In particular, native migratory fish, including congolli (Pseudaphritis urvilli) and pouched lamprey (Geotria australis), were severely impacted by barriers to migration — such as barrages and weirs — and a lack of river flow.

However, our research has shown some clever engineering and increasing volumes of water for the environment are helping congolli and pouched lamprey to bounce back in record numbers.

With native fish in the Murray-Darling Basin just a fraction of what they were before European colonisation, rebuilding populations will be a long process. But learning from successes like this along the way will aid in the journey toward a healthier river.

An adult female congolli
An adult female congolli. These fish will spend 3-4 years in the River Murray before returning to the ocean to spawn.
Brenton Zampatti, Author provided

What happened to fish in the Millennium Drought?

From 2001 to 2009, south-eastern Australia experienced the most severe drought in recorded history.

Unprecedented low rainfall and water extraction for irrigation and human consumption reduced water flows in the lower Murray by around 70%. Water levels in the Lower Lakes at the terminus of the river system fell to more than one metre below sea level.

To prevent saltwater from the ocean mixing with critical storages of freshwater, tidal barrages (dam-like structures) were closed, and the River Murray was disconnected from the sea.




Read more:
What California can learn from Australia’s 15-year millennium drought


This was a big problem for a number of migratory species, including pouched lamprey and congolli, which need to migrate between freshwater and saltwater to complete their lifecycles.

During the Millennium Drought, no lamprey were seen in the Lower Lakes and Coorong, while numbers of juvenile congolli declined. After more than three years of barrage closure, local populations were threatened with extinction.

But in late 2010, both species were saved by major flooding, when the Murray once again flowed to the sea, and abundances have continued to steadily improve over the past decade.

Several management initiatives were also critical in supporting recovery, even through the most recent drought. Notably, the installation of fish ladders and better water management. Fish ladders are water-filled channels with a series of steps that enable fish to swim around or over dams and weirs.

A fish ladder on the Murray Barrages. Fish swim through this structure to move from the estuary.
into the freshwater lakes and River Murray. Without fish ladders, fish are seldom able to move past the barrages.

Brenton Zampatti, Author provided

Supporting fish migrations

Native fish populations in the Murray-Darling Basin are estimated to be approximately 10% of those pre-European settlement. Barriers to fish movement and altered river flows are two principal causes of decline.

The Murray Barrages were constructed in the 1930s, without consideration of fish passage, and it was 70 years before the first fish ladder was constructed in 2003.




Read more:
A good plan to help Darling River fish recover exists, so let’s get on with it


In 2020, there are now 11 fish ladders spread across the Murray Barrages, and our research has shown they effectively support vital migrations.

More fish ladders have been built on upstream weirs, together opening more than 2,000 kilometres of the River Murray to fish migration.

However, water must be available to operate the fish ladders, and this is where environmental water plays a role.

In 2009-10, approximately 120 gigalitres of environmental water were delivered across the Basin. By 2017-18, this volume was greater than 1,200 gigalitres and included substantial volumes across the Murray Barrages.




Read more:
The Darling River is simply not supposed to dry out, even in drought


This increase has enabled the River Murray to continuously flow to the sea, restoring its natural characteristics, albeit at a significantly reduced volume.

What’s more, water for the environment has supported constant operation of the barrage fish ladders since 2010 — a huge win for lamprey and congolli.

The bounce back

From the lows of the Millennium Drought we have so far this year caught a record 101 individual pouched lamprey moving through the barrage fish ladders and proceeding upstream. This is up from last year’s catch of 61 fish.

Pouched lamprey
Pouched lamprey has been found in record numbers.
Brenton Zampatti, Author provided

Congolli populuations are also booming. From 2007 to 2010, we sampled a combined total of just over 1,000 congolli. Compare this to the summer of 2014-15, when we sampled more than 200,000 passing through the fishways.

Congolli is now one of the most abundant fish in the Coorong and upstream of the barrages in the Lower Lakes.

What the rest of the basin can learn from this

Fish ladders and environmental water have been successful in supporting fish migration at the Murray Barrages, yet across the Murray-Darling Basin, thousands of barriers remain and more are being considered, particularly in the northern Basin.

These barriers can impede the movements of fish that migrate wholly within freshwater, such as golden perch (Macquaria ambigua) and the threatened silver perch (Bidyanus bidyanus). This includes the spawning migrations of adults and downstream dispersal of juveniles.

Mitigating the impacts of existing and new structures on the movement of fish is crucial to restoring native fish populations in the Murray-Darling Basin.

To help restore migratory fish throughout the basin, there must be greater understanding of the movement requirements of all fish life stages, the construction of effective fish ladders, and river flows must be sufficient to facilitate downstream movement, including of eggs and larval fish. The removal of barriers may also be a feasible option.

In any case, after 15 years of experience in the lower River Murray we’ve learnt protecting migratory fish is best achieved when researchers, the community, water managers and river operators collaborate closely. Such partnerships are the bedrock to establishing a healthier river.




Read more:
Last summer’s fish carnage sparked public outrage. Here’s what has happened since


The Conversation


Brenton Zampatti, Principal Research Scientist, CSIRO and Chris Bice, Research scientist at SARDI

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Scientists at work: Sloshing through marshes to see how birds survive hurricanes



A clapper rail with a fiddler crab in its bill.
Michael Gray, CC BY-ND

Scott Rush, Mississippi State University and Mark Woodrey, Mississippi State University

When storms like Huricane Zeta menace the Gulf Coast, residents know the drill: Board up windows, clear storm drains, gas up the car and stock up on water, batteries and canned goods.

But how does wildlife ride out a hurricane? Animals that live along coastlines have evolved to deal with a world where conditions can change radically. This year, however, the places they inhabit have borne the brunt of 10 named storms, some just a few weeks apart.

As wildlife ecologists, we are interested in how species respond to stresses in their environment. We are currently studying how marsh birds such as clapper rails (Rallus crepitans) have adapted to tropical storms along the Alabama and Mississippi Gulf coast. Understanding how they do this entails wading into marshes and thinking like a small, secretive bird.

Least bittern in marsh grass
A least bittern, one of the smallest species of heron.
Michael Gray, CC BY-ND

Mucky and full of life

Coastal wetlands are critically important ecosystems. They harbor fish, shellfish and wading birds, filter water as it flows through and buffer coastlines against flooding.

You wouldn’t choose a Gulf Coast salt marsh for a casual stroll. There are sharp-pointed plants, such as black needlerush​, and sucking mud. In summer and early fall the marshes are oppressively hot and humid. Bacteria and fungi in the mud break down dead material, generating sulfurous-smelling gases. But once you get used to the conditions, you realize how productive these places are, with a myriad of organisms moving about.

Marsh birds are adept at hiding in dense grasses, so it’s more common to hear them than to see them. That’s why we use a process known as a callback survey to monitor for them.

First we play a prerecorded set of calls to elicit responses from birds in the marsh. Then we determine where we think the birds are calling from and visually estimate the distance from the observer to that spot, often using tools such as laser range finders. We also note the type of ecosystem where we detect the birds – for example, whether they’re in a tidal marsh with emergent vegetation or out in the open on mud flats.

Adult clapper rail calling.

Through this process we’ve been able to estimate the distributions of several species in tidal marshes, including clapper rails, least bitterns (Ixobrychus exilis) and seaside sparrows (Ammospiza maritima). We’ve also plotted trends in their abundance and identified how their numbers can change with characteristics of the marsh.

We’ve walked hundreds of miles through marshes to locate nests and to record data such as nest height, density of surrounding vegetation and proximity to standing water, which provides increased foraging opportunities for rails. Then we revisit the nests to document whether they produce young that hatch and eventually leave. Success isn’t guaranteed: Predators may eat the eggs, or flooding could wash them out of the nest and kill the developing embryos inside.

Salt marshes shelter many types of plants, birds, animals, fish and shellfish.

Rails in the grass

Our research currently focuses on clapper rails, which look like slender chickens with grayish-brown feathers and short tails. Like many other marsh birds, they have longish legs and toes for walking across soft mud, and long bills for probing the marsh surface in search of food. They are found year-round along the Atlantic and Gulf coasts.

Clapper rails typically live in tidal marshes where there is vegetation to hide in and plenty of fiddler crabs, among their frequent foods. Because they are generally common and rely on coastal marshes, they are a good indicator of the health of these coastal areas.

Scientist in marsh holding live Clapper Rail
Ecologist Scott Rush with clapper rail, Pascagoula River Marshes, Mississippi.
Mark Woodrey, CC BY-ND

Water levels in tidal marshes change daily, and clapper rails have some adaptations that help them thrive there. They often build nests in areas with particularly tall vegetation to hide them from predators. And they can raise the height of the nest bowl to protect it against flooding during extra-high or “king” tides and storms. The embryos inside their eggs can survive even if the eggs are submerged for several hours.

When a tropical storm strikes, many factors – including wind speed, flooding and the storm’s position – influence how severely it will affect marsh birds. Typically birds ride out storms by moving to higher areas of the marsh. However, if a storm generates extensive flooding, birds in affected areas may swim or be blown to other locations. We saw this in early June when Hurricane Cristobal blew hundreds of clapper rails onto beaches in parts of coastal Mississippi.

Clapper rails hiding under a breakwater
Clapper rails on a Mississippi beach after Hurricane Cristobal in June 2020.
Mark Woodrey, CC BY-ND

In coastal areas immediately to the east of the eye of a tropical cyclone we typically see a drop in clapper rail populations in the following spring and summer. This happens because the counterclockwise rotation of the storms results in the highest winds and storm surge to the north and east of the eye of the storm.

But typically there’s a strong bout of breeding and a population rebound within a year or so – evidence that these birds are quick to adapt. After Hurricane Katrina devastated the Mississippi Gulf Coast in 2005, however, depending on the type of marsh, it took several years for rail populations to return to their pre-Katrina levels.

Now we’re radio-tagging clapper rails and collecting data that allow us to determine the birds’ life spans. This information helps us estimate when large numbers of birds have died – information that we can correlate with events like coastal hurricanes.

2020 Atlantic hurricane paths
Summary map of the 2020 Atlantic hurricane season, updated Oct. 27.
Master0Garfield/Wikipedia

Losing parts

Tropical storms have shaped coastal ecosystems since long before recorded history. But over the past 150 years humans have complicated the picture. Coastal development – draining marshes, building roads and reinforcing shorelines – is altering natural places that support marsh birds.

Clapper rails and other species have evolved traits that help them offset population losses due to natural disasters. But they can do so only if the ecosystems where they live keep providing them with food, breeding habitat and protection from predators. Coastal development, in combination with rising sea levels and larger tropical storms, can act like a one-two punch, making it increasingly hard for marshes and the species that live in them to recover.

[Deep knowledge, daily. Sign up for The Conversation’s newsletter.]

Biologist Paul Ehrlich has compared species at risk to rivets on an airplane. You might not need every rivet in place for the airplane to fly, but would you fly it through a cyclone if you knew that 10% of its rivets were missing? What about 20%, or 30%? At some point, Ehrlich asserts, nature could lose so many species that it becomes unable to provide valuable services that humans take for granted.

We see coastal marshes as an airplane that humans are piloting through storms. As species and ecosystem services are pummeled, rivets are failing. No one knows where or how the aircraft will land. But we believe that preserving marshes instead of weakening them can improve the chance of a smooth landing.The Conversation

Scott Rush, Assistant Professor of Wildlife Ecology and Management, Mississippi State University and Mark Woodrey, Assistant Research Professor, Mississippi State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

La Niña will give us a wet summer. That’s great weather for mozzies



Geoff Whalan/Flickr, CC BY-NC-ND

Cameron Webb, University of Sydney

The return of the La Niña weather pattern will see a wetter spring and summer in many parts of Australia.

We know mosquitoes need water to complete their life cycle. So does this mean Australia can expect a bumper mozzie season? How about a rise in mosquito-borne disease?

While we’ve seen more mosquitoes during past La Niña events, and we may well see more mosquitoes this year, this doesn’t necessarily mean we’ll see more related disease.

This depends on a range of other factors, including local wildlife, essential to the life cycle of disease-transmitting mosquitoes.

What is La Niña?

La Niña is a phase of the El Niño-Southern Oscillation, a pattern of ocean and atmospheric circulations over the Pacific Ocean.

While El Niño is generally associated with hot and dry conditions, La Niña is the opposite. La Niña brings slightly cooler but wetter conditions to many parts of Australia. During this phase, northern and eastern Australia are particularly likely to have a wetter spring and summer.

Australia’s most recent significant La Niña events were in 2010-11 and 2011-12.




Read more:
Explainer: El Niño and La Niña


Why is wet weather important for mosquitoes?

Mosquitoes lay their eggs on or around stagnant or still water. This could be water in ponds, backyard plant containers, clogged gutters, floodplains or wetlands. Mosquito larvae (or “wrigglers”) hatch and spend the next week or so in the water before emerging as adults and buzzing off to look for blood.

If the water dries up, they die. But the more rain we get, the more opportunities for mosquitoes to multiply.

Mosquito biting a person's hand
Mosquito populations often increase after wet weather.
Cameron Webb/Author provided

Mosquitoes are more than just a nuisance. When they bite, they can transmit viruses or bacteria into our blood to make us sick.

While Australia is free of major outbreaks of internationally significant diseases such as dengue or malaria, every year mosquitoes still cause debilitating diseases.

These include transmission of Ross River virus, Barmah Forest virus and the potentially fatal Murray Valley encephalitis virus.




Read more:
Explainer: what is Murray Valley encephalitis virus?


What happens when we get more rain?

We’ve know for a long time floods provide plenty of water to boost the abundance of mosquitoes. With more mosquitoes about, there is a higher risk of mosquito-borne disease.

The amount of rainfall each summer is also a key predictor for seasonal outbreaks of mosquito-borne disease, especially Ross River virus.




Read more:
Explainer: what is Ross River virus and how is it treated?


Inland regions of Queensland, New South Wales and Victoria, especially within the Murray Darling Basin, are particularly prone to “boom and bust” cycles of mosquitoes and mosquito-borne disease.

In these regions, the El Niño-Southern Oscillation is thought to play an important role in driving the risks of mosquito-borne disease.

The hot and dry conditions of El Niño aren’t typically ideal for mosquitoes.

But historically, major outbreaks of mosquito-borne disease have been associated with extensive inland flooding. This flooding is typically associated with prevailing La Niña conditions.

For instance, outbreaks of Murray Valley encephalitis in the 1950s and 1970s had significant impacts on human health and occurred at a time of moderate-to-strong La Niña events.




Read more:
Our new model shows Australia can expect 11 tropical cyclones this season


Over the past decade, when La Niña has brought above average rainfall and flooding, there have also been outbreaks of mosquito-borne disease.

These have included:

  • Victoria’s record breaking epidemic of Ross River virus in 2016-17 after extensive inland flooding

  • southeast Queensland’s outbreak of Ross River virus in 2014-15, partly attributed to an increase in mosquitoes associated with freshwater habitats after seasonal rainfall

  • eastern Australia’s major outbreaks of mosquito-borne disease associated with extensive flooding during two record breaking La Niñas between 2010 and 2012. These included Murray Valley encaphalitis and mosquito-borne illness in horses caused by the closely related West Nile virus (Kunjin strain).

We can’t say for certain there will be more disease

History and our understanding of mosquito biology means that with the prospect of more rain, we should expect more mosquitoes. But even when there are floods, predicting outbreaks of mosquito-borne disease isn’t always simple.

This is because of the role wildlife plays in the transmission cycles of Ross River virus and Murray Valley encephalitis virus.




Read more:
After the floods come the mosquitoes – but the disease risk is more difficult to predict


In these cases, mosquitoes don’t hatch out of the floodwaters carrying viruses, ready to bite humans. These mosquitoes first have to bite wildlife, which is where they pick up the virus. Then, they bite humans.

So how local animals, such as kangaroos, wallabies and water birds, respond to rainfall and flooding will play a role in determining the risk of mosquito-borne disease. In some cases, flooding of inland wetlands can see an explosion in local water bird populations.

How can we reduce the risks?

There isn’t much we can do to change the weather but we can take steps to reduce the impacts of mosquitoes.

Wearing insect repellent when outdoors will help reduce your chance of mosquito bites. But it’s also important to tip out, cover up, or throw away any water-holding containers in our backyard, at least once a week.

Local authorities in many parts of Australia also undertake surveillance of mosquitoes and mosquito-borne pathogens. This provides an early warning of the risk of mosquito-borne disease.




Read more:
The worst year for mosquitoes ever? Here’s how we find out


The Conversation


Cameron Webb, Clinical Associate Professor and Principal Hospital Scientist, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

We looked at 35 years of rainfall and learnt how droughts start in the Murray-Darling Basin


Chiara Holgate, Australian National University; Albert Van Dijk, Australian National University, and Jason Evans, UNSW

The extreme, recent drought has devastated many communities around the Murray-Darling Basin, but the processes driving drought are still not well understood.

Our new study helps to change this. We threw a weather model into reverse and ran it back for 35 years to study the natural processes leading to low rainfall during drought.




Read more:
Morrison government plan to scrap water buybacks will hurt taxpayers and the environment


And we found the leading cause for drought in the Murray-Darling Basin was that moisture from oceans didn’t reach the basin as often as normal, and produced less rain when it did. In fact, when moisture from the ocean did reach the basin during drought, the parched land surface actually made it harder for the moisture to fall as rain, worsening the already dry conditions.

These findings can help resolve why climate models struggle to simulate drought well, and ultimately help improve our ability to predict drought. This is crucial for our communities, farmers and bushfire emergency services.

There’s still a lot to learn about rain

The most recent drought was relentless. It saw the lowest rainfall on record in the Murray-Darling Basin, reduced agricultural output, led to increased food prices, and created tinder dry conditions before the Black Summer fires.

Drought in the Murray-Darling Basin is associated with global climate phenomena that drive changes in ocean and atmospheric circulation. These climate drivers include the El Niño and La Niña cycle, the Indian Ocean Dipole and the Southern Annular Mode.

Each influences the probability of rainfall over Australia. But drivers like El Niño can only explain around 20% of Australian rainfall — they only tell part of the story.




Read more:
Yes, it’s been raining a lot – but that doesn’t mean Australia’s drought has broken


To fully understand the physical processes causing droughts to begin, persist and end, we need to answer the question: where does Australia’s rainfall come from? It may seem basic, but the answer isn’t so simple.

Where does Australia’s rainfall come from?

Broadly, scientists know rainfall derives from evaporation from two main sources: the ocean and the land. But we don’t know exactly where the moisture supplying Australia’s rainfall originally evaporates from, how the moisture supply changes between the seasons nor how it might have changed in the past.

To find out, we used a sophisticated model of Australia’s climate that gave data on atmospheric pressure, temperature, humidity, winds, rainfall and evaporation.




Read more:
Aren’t we in a drought? The Australian black coal industry uses enough water for over 5 million people


We put this data into a “back-trajectory model”. This traced the path of water from where it fell as rain, backwards in time through the atmosphere, to uncover where the water originally evaporated from. We did this for every day it rained over Australia between 1979 and 2013.

Not surprisingly, we found more than three-quarters of rain falling in Australia comes from evaporation from the surrounding oceans. So what does this mean for the Murray-Darling Basin?

Up to 18% of rain in the basin starts from the land

During the Millennium Drought and other big drought years (such as in 1982), the Murray-Darling Basin heavily relied on moisture transported from the Tasman and Coral seas for rain. Moisture evaporated off the east coast needs easterly winds to transport it over the Great Dividing Range and into the Murray-Darling Basin, where it can form rain.

This means low rainfall during these droughts was a result of anomalies in atmospheric circulation, which prevented the easterly flow of ocean moisture. The droughts broke when moisture could once again be transported into the basin.

A lack of vegetation on the land can exacerbate drought.
Shutterstock

The Murray-Darling Basin was also one of the regions in Australia where most “rainfall recycling” happens. This is when, following rainfall, high levels of evaporation from soils and plants return to the atmosphere, sometimes leading to more rain – particularly in spring and summer.

This means if we change the way we use the land or the vegetation, there is a risk we could impact rainfall. For example, when a forest of tall trees is replaced with short grass or crops, humidity can go down and wind patterns change in the atmosphere above. Both of these affect the likelihood of rain.




Read more:
6,000 years of climate history: an ancient lake in the Murray-Darling has yielded its secrets


In the northern part of the basin, less evaporation from the dry land surface exacerbated the low rainfall.

On the other hand, when the drought broke, more moisture evaporated from the damp land surface, adding to the already high levels of moisture coming from the ocean. This meant the region got a surplus of moisture, promoting even more rain.

This relationship was weaker in the southern part of the basin. But interestingly, rainfall there relied on moisture originating from evaporation in the northern basin, particularly during drought breaks. This is a result we need to explore further.

Summer rain not so good for farmers

Rainfall and moisture sources for Australia and the Murray-Darling Basin are changing. In the past 35 years, the southeast of the country has been receiving less moisture in winter, and more in summer.

This is likely due to increased easterly wind flows of moisture from the Tasman Sea in summer, and reduced westerly flows of moisture from the Southern Ocean in winter.

This has important implications, particularly for agriculture and water resource management.

For example, more rainfall in summer can be a problem for horticultural farms, as it can make crops more susceptible to fungal diseases, decreases the quality of wine grape crops and affects harvest scheduling.

Less winter rain also means less runoff into creeks and rivers — a vital process for mitigating drought risk. And this creates uncertainty for dam operators and water resource managers.




Read more:
Need a mood lift? We’ve tracked 4 ways Australia’s environment has repaired itself in 2020


Understanding where our rainfall comes from matters, because it can improve weather forecasts, seasonal streamflow forecasts and long-term rainfall impacts of climate change. For a drought-prone country like Australia — set to worsen under a changing climate — this is more crucial than ever.The Conversation

Chiara Holgate, Hydrologist & PhD Candidate, Australian National University; Albert Van Dijk, Professor, Water and Landscape Dynamics, Fenner School of Environment & Society, Australian National University, and Jason Evans, Professor, UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Our new model shows Australia can expect 11 tropical cyclones this season


Andrew Magee, University of Newcastle and Anthony Kiem, University of Newcastle

Tropical cyclones are considered one of the most devastating weather events in Australia. But they’re erratic — where, when and how many tropical cyclones form each year is highly variable, which makes them difficult to predict.

In our new research published today, we created a statistical model that predicts the number of tropical cyclones up to four months before the start of the tropical cyclone season from November to April.




Read more:
Storm warning: a new long-range tropical cyclone outlook is set to reduce disaster risk for Pacific Island communities


The model, the Long-Range Tropical Cyclone Outlook for Australia (TCO-AU), indicates normal to above normal tropical cyclone activity with 11 cyclones expected in total, Australia-wide. Though not all make landfall.

This is above Australia’s average of ten tropical cyclones per season, thanks to a climate phenomenon brewing in the Pacific that brings conditions favourable for tropical cyclone activity closer to Australia.

La Niña and tropical cyclones

As we’ve seen most recently with Tropical Storm Sally in the US, tropical cyclones can cause massive damage over vast areas. This includes extreme and damaging winds, intense rainfall and flooding, storm surges, large waves and coastal erosion.

Australian tropical cyclone behaviour is largely driven by the El Niño-Southern Oscillation (ENSO) — a global climate phenomenon that changes ocean and atmospheric circulation.

“La Niña” is one phase of ENSO. It’s typically associated with higher than normal tropical cyclone numbers in the Australian region. And the Bureau of Meteorology’s weather and climate model indicates there’s a 95% chance a La Niña will be established by October this year.




Read more:
Explainer: El Niño and La Niña


Around ten tropical cyclones occur in the Australian region every season, and about four of those usually make landfall.

Historically, La Niña has resulted in double the number of landfalling tropical cyclones in Australia, compared to El Niño phases. An “El Niño” event is associated with warmer and drier conditions for eastern Australia.

During La Niña events, the first tropical cyclone to make landfall also tends to occur earlier in the season. In fact, in Queensland, the only tropical cyclone seasons with multiple severe tropical cyclone landfalls have been during La Niña events.

Severe Tropical Cyclone Yasi, one of the most intense tropical cyclones to have hit Queensland, occurred during a La Niña in 2011. So did the infamous Severe Tropical Cyclone Tracy, which made landfall around Darwin in 1974, killing 71 people and leaving more than 80% of all buildings destroyed or damaged.

While naturally occurring climate drivers, such as La Niña, influence the characteristics of tropical cyclone activity, climate change is also expected to cause changes to future tropical cyclone risk, including frequency and intensity.

Australian tropical cyclone outlooks

Tropical cyclone outlooks provide important information about how many tropical cyclones may pass within the Australian region and subregions, before the start of the cyclone season. Decision-makers, government, industry and people living in tropical cyclone regions use them to prepare for the coming cyclone season.




Read more:
I’ve always wondered: how do cyclones get their names?


The Australian Bureau of Meteorology has led the way in producing tropical cyclone outlooks for Australia, usually a couple of weeks before the official start of the tropical cyclone season.

But with monthly guidance up to four months before the start of the season, our new model, TCO-AU, is unmatched in lead time. It considers the most recent changes in ENSO and other climate drivers to predict how many tropical cyclones may occur in Australia and its sub-regions.

As a statistical model, TCO-AU is trained on historical relationships between ocean-atmosphere processes and the number of tropical cyclones per season.

For each region, hundreds of potential model combinations are tested, and the one that performs best in predicting historical tropical cyclone counts is selected to make the prediction for the coming season.

So what can we expect this season?

September’s TCO-AU guidance suggests normal to above normal risk for Australia for the coming tropical cyclone season (November 2020 – April 2021).

With an emerging La Niña and warmer than normal sea surface temperatures in the eastern Indian Ocean, 11 tropical cyclones are expected for Australia. There’s a 47% chance of 12 or more cyclones, and a probable range of between nine and 15.

For the Australian sub-regions, TCO-AU suggests the following:

  • above normal activity is expected for the Eastern region (eastern Australia) with four cyclones expected. Probable range between three and six cyclones; with a 55% chance of four or more cyclones

  • normal activity is expected for the Western region (west/northwest Western Australia) with six cyclones expected. Probable range between five and eight cyclones; 39% chance of seven or more cyclones

  • below normal activity is expected for the Northern region (northwest Queensland and Northern Territory) with three cyclones expected. Probable range between two and five cyclones; 37% chance of four cyclones or more

  • below normal activity is also expected for the Northwestern region (northwest Western Australia) with four cyclones expected. Probable range between three and six cyclones; 45% chance of five cyclones or more.


TCO-SP – Long-range Tropical Cyclone Outlook for the Southwest Pacific/The Conversation, CC BY-ND

Guidance from TCO-AU does not and should not replace advice provided by the Australian Bureau of Meteorology. Instead, it should be used to provide a complementary perspective to regional outlooks and provide a “heads-up” in the months leading up to the start of and within the cyclone season.

Regardless of what’s expected for the coming cyclone season, people living in tropical cyclone regions should always prepare for the cyclone season and follow the advice provided by emergency services.




Read more:
Advanced cyclone forecasting is leading to early action – and it’s saving thousands of lives


The Conversation


Andrew Magee, Postdoctoral Researcher, University of Newcastle and Anthony Kiem, Associate Professor – Hydroclimatology, University of Newcastle

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Climate explained: Sunspots do affect our weather, a bit, but not as much as other things



NASA

Robert McLachlan, Massey University


CC BY-ND

Climate Explained is a collaboration between The Conversation, Stuff and the New Zealand Science Media Centre to answer your questions about climate change.

If you have a question you’d like an expert to answer, please send it to climate.change@stuff.co.nz


Are we headed for a period with lower Solar activity, i.e. sunspots? How long will it last? What happens to our world when global warming and the end of this period converge?

When climate change comes up in conversation, the question of a possible link with the Sun is often raised.

The Sun is a highly active and complicated body. Its behaviour does change over time and this can affect our climate. But these impacts are much smaller than those caused by our burning of fossil fuels and, crucially, they do not build up over time.

The main change in the Sun is an 11-year Solar cycle of high and low activity, which initially revealed itself in a count of sunspots.

One decade of solar activity in one hour.

Sunspots have been observed continuously since 1609, although their cyclical variation was not noticed until much later. At the peak of the cycle, about 0.1% more Solar energy reaches the Earth, which can increase global average temperatures by 0.05-0.1℃.

This is small, but it can be detected in the climate record.

It’s smaller than other known sources of temperature variation, such as volcanoes (for example, the large eruption of Mt Pinatubo, in the Philippines in 1991, cooled Earth by up to 0.4℃ for several years) and the El Niño Southern Oscillation, which causes variations of up to 0.4℃.




Read more:
Climate explained: how volcanoes influence climate and how their emissions compare to what we produce


And it’s small compared to human-induced global warming, which has been accumulating at 0.2℃ per decade since 1980.

Although each 11-year Solar cycle is different, and the processes underlying them are not fully understood, overall the cycle has been stable for hundreds of millions of years.

A little ice age

A famous period of low Solar activity, known as the Maunder Minimum, ran from 1645 to 1715. It happened at a similar time as the Little Ice Age in Europe.

But the fall in Solar activity was too small to account for the temperature drop, which has since been attributed to volcanic eruptions.

Solar activity picked up during the 20th century, reaching a peak in the cycle that ran from 1954 to 1964, before falling away to a very weak cycle in 2009-19.

Bear in mind, though, that the climatic difference between a strong and a weak cycle is small.

Forecasting the Solar cycle

Because changes in Solar activity are important to spacecraft and to radio communications, there is a Solar Cycle Prediction Panel who meet to pool the available evidence.

Experts there are currently predicting the next cycle, which will run to 2030, will be similar to the last one. Beyond that, they’re not saying.

If activity picks up again, and its peak happened to coincide with a strong El Niño, we could see a boost in temperatures of 0.3℃ for a year or two. That would be similar to what happened during the El Niño of 2016, which featured record air and sea temperatures, wildfires, rainfall events and bleaching of the Great Barrier Reef.

The extreme weather events of that year provided a glimpse into the future. They gave examples of what even average years will look like after another decade of steadily worsening global warming.

A journey to the Sun

Solar physics is an active area of research. Apart from its importance to us, the Sun is a playground for the high-energy physics of plasmas governed by powerful magnetic, nuclear and fluid-dynamical forces.

The Solar cycle is driven by a dynamo coupling kinetic, magnetic and electrical energy.




Read more:
Explainer: how does our sun shine?


That’s pretty hard to study in the lab, so research proceeds by a combination of observation, mathematical analysis and computer simulation.

Two spacecraft are currently directly observing the Sun: NASA’s Parker Solar Probe (which will eventually approach to just 5% of the Earth-Sun distance), and ESA’s Solar Orbiter, which is en route to observe the Sun’s poles.

Hopefully one day we will have a better picture of the processes involved in sunspots and the Solar cycle.The Conversation

Exploring the 11-year Solar cycle.

Robert McLachlan, Professor in Applied Mathematics, Massey University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

What is a derecho? An atmospheric scientist explains these rare but dangerous storm systems



A derecho moves across central Kansas on July 3, 2005.
Jim Reed/Corbis via Getty Images

Russ Schumacher, Colorado State University

Thunderstorms are common across North America, especially in warm weather months. About 10% of them become severe, meaning they produce hail 1 inch or greater in diameter, winds gusting in excess of 50 knots (57.5 miles per hour), or a tornado.

The U.S. recently has experienced three rarer events: organized lines of thunderstorms with widespread damaging winds, known as derechos.

Derechos occur fairly regularly over large parts of the U.S. each year, most commonly from April through August.
Dennis Cain/NOAA

Derechos occur mainly across the central and eastern U.S., where many locations are affected one to two times per year on average. They can produce significant damage to structures and sometimes cause “blowdowns” of millions of trees. Pennsylvania and New Jersey received the brunt of a derecho on June 3, 2020, that killed four people and left nearly a million without power across the mid-Atlantic region.

In the West, derechos are less common, but Colorado – where I serve as state climatologist and director of the Colorado Climate Center – experienced a rare and powerful derecho on June 6 that generated winds exceeding 100 miles per hour in some locations. And on August 10, a derecho rolled across Iowa, Wisconsin, Illinois and Indiana, generating rare “particularly dangerous situation” warnings from forecasters and registering wind gusts as high as 130 miles per hour.

Derechos have also been observed and analyzed in many other parts of the world, including Europe, Asia and South America. They are an important and active research area in meteorology. Here’s what we know about these unusual storms.

A massive derecho in June 2012 developed in northern Illinois and traveled to the mid-Atlantic coast, killing 22 and causing $4 billion to $5 billion in damages.

Walls of wind

Scientists have long recognized that organized lines of thunderstorms can produce widespread damaging winds. Gustav Hinrichs, a professor at the University of Iowa, analyzed severe winds in the 1870s and 1880s and identified that many destructive storms were produced by straight-line winds rather than by tornadoes, in which winds rotate. Because the word “tornado,” of Spanish origin, was already in common usage, Hinrichs proposed “derecho” – Spanish for “straight ahead” – for damaging windstorms not associated with tornadoes.

In 1987, meteorologists defined what qualified as a derecho. They proposed that for a storm system to be classified as a derecho, it had to produce severe winds – 57.5 mph (26 meters per second) or greater – and those intense winds had to extend over a path at least 250 miles (400 kilometers) long, with no more than three hours separating individual severe wind reports.

Derechos are almost always caused by a type of weather system known as a bow echo, which has the shape of an archer’s bow on radar images. These in turn are a specific type of mesoscale convective system, a term that describes large, organized groupings of storms.

Researchers are studying whether and how climate change is affecting weather hazards from thunderstorms. Although some aspects of mesoscale convective systems, such as the amount of rainfall they produce, are very likely to change with continued warming, it’s not yet clear how future climate change may affect the likelihood or intensity of derechos.

Speeding across the landscape

The term “derecho” vaulted into public awareness in June 2012, when one of the most destructive derechos in U.S. history formed in the Midwest and traveled some 700 miles in 12 hours, eventually making a direct impact on the Washington, D.C. area. This event killed 22 people and caused millions of power outages.

Top: Radar imagery every two hours, from 1600 UTC 29 June to 0400 UTC 30 June 2012, combined to show the progression of a derecho-producing bow echo across the central and eastern US. Bottom: Severe wind reports for the 29-30 June 2012 derecho, colored by wind speed.
Schumacher and Rasmussen, 2020, adapted from Guastini and Bosart 2016, CC BY-ND

Only a few recorded derechos had occurred in the western U.S. prior to June 6, 2020. On that day, a line of strong thunderstorms developed in eastern Utah and western Colorado in the late morning. This was unusual in itself, as storms in this region tend to be less organized and occur later in the day.

The thunderstorms continued to organize and moved northeastward across the Rocky Mountains. This was even more unusual: Derecho-producing lines of storms are driven by a pool of cold air near the ground, which would typically be disrupted by a mountain range as tall as the Rockies. In this case, the line remained organized.

As the line of storms emerged to the east of the mountains, it caused widespread wind damage in the Denver metro area and northeastern Colorado. It then strengthened further as it proceeded north-northeastward across eastern Wyoming, western Nebraska and the Dakotas.

In total there were nearly 350 reports of severe winds, including 44 of 75 miles per hour (about 34 meters per second) or greater. The strongest reported gust was 110 mph at Winter Park ski area in the Colorado Rockies. Of these reports, 95 came from Colorado – by far the most severe wind reports ever from a single thunderstorm system.

Animation showing the development and evolution of the 6-7 June 2020 western derecho. Radar reflectivity is shown in the color shading, with National Weather Service warnings shown in the colored outlines (yellow polygons indicate severe thunderstorm warnings). Source: Iowa Environmental Mesonet.

Coloradans are accustomed to big weather, including strong winds in the mountains and foothills. Some of these winds are generated by flow down mountain slopes, localized thunderstorm microbursts, or even “bomb cyclones.” Western thunderstorms more commonly produce hailstorms and tornadoes, so it was very unusual to have a broad swath of the state experience damaging straight-line winds that extended from west of the Rockies all the way to the Dakotas.

Damage comparable to a hurricane

Derechos are challenging to predict. On days when derechos form, it is often uncertain whether any storms will form at all. But if they do, the chance exists for explosive development of intense winds. Forecasters did not anticipate the historic June 2012 derecho until it was already underway.

For the western derecho on June 6, 2020, outlooks showed an enhanced potential for severe storms in Nebraska and the Dakotas two to three days in advance. However, the outlooks didn’t highlight the potential for destructive winds farther south in Colorado until the morning that the derecho formed.

Once a line of storms has begun to develop, however, the National Weather Service routinely issues highly accurate severe thunderstorm warnings 30 to 60 minutes ahead of the arrival of intense winds, alerting the public to take precautions.

Communities, first responders and utilities may have only a few hours to prepare for an oncoming derecho, so it is important to know how to receive severe thunderstorm warnings, such as TV, radio and smartphone alerts, and to take these warnings seriously. Tornadoes and tornado warnings often get the most attention, but lines of severe thunderstorms can also pack a major punch.

This is an updated version of an article originally published on June 15, 2020.

[Deep knowledge, daily. Sign up for The Conversation’s newsletter.]The Conversation

Russ Schumacher, Associate Professor of Atmospheric Science and Colorado State Climatologist, Colorado State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Storm warning: a new long-range tropical cyclone outlook is set to reduce disaster risk for Pacific Island communities



Photobank.kiev.ua/Shutterstock

Andrew Magee, University of Newcastle; Andrew Lorrey, National Institute of Water and Atmospheric Research, and Anthony Kiem, University of Newcastle

Tropical cyclones are among the most destructive weather systems on Earth, and the Southwest Pacific region is very exposed and vulnerable to these extreme events.

Our latest research, published today in Scientific Reports, presents a new way of predicting the number of tropical cyclones up to four months ahead of the cyclone season, with outlooks tailored for individual island nations and territories.

A new model predicts tropical cyclone counts up to four months in advance.

Tropical cyclones produce extreme winds, large waves and storm surges, intense rainfall and flooding — and account for almost three in four natural disasters across the Southwest Pacific region.

Currently, Southwest Pacific forecasting agencies release a regional tropical cyclone outlook in October, one month ahead of the official start of the cyclone season in November. Our new model offers a long-range warning, issued monthly from July, to give local authorities more time to prepare.

Most importantly, this improvement on existing extreme weather warning systems may save more lives and mitigate damage by providing information up to four months ahead of the cyclone season.

This map shows the expected number of tropical cyclones for the 2020/21 Southwest Pacific cyclone season (November to April).
http://www.tcoutlook.com/latest-outlook, Author provided

Tropical cyclones and climate variability

An average of 11 tropical cyclones form in the Southwest Pacific region each season. Since 1950, tropical cyclones have claimed the lives of nearly 1500 and have affected more than 3 million people.

In 2016, Cyclone Winston, a record-breaking severe category 5 event, was the strongest cyclone to make landfall across Fiji. It killed 44 people, injured 130 and seriously damaged around 40,000 homes. Damages totalled US$1.4 billion — making it the costliest cyclone in Southwest Pacific history.




Read more:
Winston strikes Fiji: your guide to cyclone science


Tropical cyclones are erratic in their severity and the path they travel. Every cyclone season is different. Exactly where and when a tropical cyclone forms is driven by complex interactions between the ocean and the atmosphere, including the El Niño-Southern Oscillation, sea surface temperatures in the Indian Ocean, and many other climate influences.

Capturing changes in all of these climate influences simultaneously is key to producing more accurate tropical cyclone outlooks. Our new tool, the Long-Range Tropical Cyclone Outlook for the Southwest Pacific (TCO-SP), will assist forecasters and help local authorities to prepare for the coming season’s cyclone activity.

This map shows the probability of below or above-average tropical cyclones for the 2020/21 Southwest Pacific cyclone season.
http://www.tcoutlook.com/latest-outlook, Author provided

According to the latest long-range sea surface temperature outlook, there is a 79% chance that La Niña conditions could develop before the start of the 2020-21 Southwest Pacific cyclone season. La Niña conditions typically mean the risk of tropical cyclone activity is elevated for island nations in the western part of the region (New Caledonia, Solomon Islands and Vanuatu) and reduced for nations in the east (French Polynesia and the Cook Islands). But there are exceptions, particularly when certain climate influences like the Indian Ocean Dipole occur with La Niña events.




Read more:
India’s cyclone Fani recovery offers the world lessons in disaster preparedness


Improving existing tropical cyclone guidance

Current guidance on tropical cyclones in the Southwest Pacific region is produced by the National Institute of Water and Atmospheric Research, the Australian Bureau of Meteorology and the Fiji Meteorological Service. Each of these organisations uses a different method and considers different indices to capture ocean-atmosphere variability associated with the El Niño-Southern Oscillation.

Our research adds to the existing methods used by those agencies, but also considers other climate drivers known to influence tropical cyclone activity. In total, 12 separate outlooks are produced for individual nations and territories including Fiji, Solomon Islands, New Caledonia, Vanuatu, Papua New Guinea and Tonga.

Other locations are grouped into sub-regional models, and we also provide outlooks for New Zealand because of the important impacts there from ex-tropical cyclones.

Our long-range outlook is a statistical model, trained on historical relationships between ocean-atmosphere processes and the number of tropical cyclones per season. For each target location, hundreds of unique model combinations are tested. The one that performs best in capturing historical tropical cyclone counts is selected to make the prediction for the coming season.

At the start of each monthly outlook, the model retrains itself, taking the most recent changes in ocean temperature and atmospheric variability and attributes of tropical cyclones from the previous season into account.

Both deterministic (tropical cyclone numbers) and probabilistic (the chance of below, normal or above average tropical cyclone activity) outlooks are updated every month between July and January and are freely available.The Conversation

Andrew Magee, Postdoctoral Researcher, University of Newcastle; Andrew Lorrey, Principal Scientist & Programme Leader of Climate Observations and Processes, National Institute of Water and Atmospheric Research, and Anthony Kiem, Associate Professor – Hydroclimatology, University of Newcastle

This article is republished from The Conversation under a Creative Commons license. Read the original article.