I’ve always wondered: who calls cyclones their names?


Richard Wardle, Australian Bureau of Meteorology

This is an article from I’ve Always Wondered, a series where readers send in questions they’d like an expert to answer. Send your question to alwayswondered@theconversation.edu.au


Who calls cyclones their names? – Guy Mullin, Mozambique.

In the Australian region, the Bureau of Meteorology gives tropical cyclones their name. You can write to the Bureau of Meteorology to suggest a cyclone name, but it is likely to be more than a 50-year wait.

Tropical cyclones are named so we can easily highlight them to the community, and to reduce confusion if more than one cyclone happens at the same time. The practice of naming tropical cyclones (or storms) began years ago to help in the quick identification of storms in warning messages. Humans find names far easier to remember than numbers and technical terms.

Aerial views of flooded areas following Cyclone Idai in March 2019.
EU Civil Protection and Humanitarian Aid Operations/flickr, CC BY-NC-ND



Read more:
Explainer: ‘bomb cyclones’ – the intense winter storms that hit the US (and Australia too)


Clement Wragge began naming cyclones in 1887

Tropical Cyclone Oma captured by NASA international space station.
NASA Johnson/flickr, CC BY-NC-ND

Now, people ask us all the time how we come up with the names for tropical cyclones. It started in 1887 when Queensland’s chief weather man Clement Wragge began naming tropical cyclones after the Greek alphabet, fabulous beasts, and politicians who annoyed him.

After Wragge retired in 1908, the naming of cyclones and storms occurred much less frequently, with only a handful of countries informally naming cyclones. It was almost 60 years later that the Bureau formalised the practice, with Western Australia’s Tropical Cyclone Bessie being the first Australian cyclone to be officially named on January 6, 1964.

Other countries quickly began using female names to identify the storms and cyclones that affected them.

Naming cyclones helps people quickly identify storms in warning messages. Cameras outside the NASAA international space station capture Hurricane Florence in 2018.
NASA Goddard Space Flight Center/flickr, CC BY-SA



Read more:
I’ve Always Wondered: How do we know what lies at the heart of Pluto?


How cyclone names are chosen

While the world was giving female names to cyclones and storms, International Women’s Year in 1975 saw Bill Morrison, the then Australian science minister, recognise that both sexes should bear the shame of the devastation caused by cyclones. He ordered cyclones to carry both male and female names, a world first.

These days the Bureau is responsible for naming tropical cyclones in the Australian region, with the names coming from an alphabetical list suggested by the Australian public. These names alternate between male and female. The Bureau of Meteorology receives many requests from the public to name tropical cyclones after themselves, friends, and even pets.

The Bureau cannot grant all these requests, as they far outnumber the tropical cyclones that occur in the Australian region.

Trees on the side of the road at Mission Beach, North Queensland, in the aftermath of Cyclone Yasi, 2011. Cyclone Yasi formed in Fiji and maintained the name from that region’s weather agency.
Michael Dawes/flickr, CC BY-NC



Read more:
Curious Kids: What causes windy weather?


Cyclone Oma was named in Fiji

Cyclone names are reused, but when a tropical cyclone severely impacts the coast, or is deadly, like Debbie in 2017 and Tracy in 1974, the name is permanently retired for reasons of sensitivity.

If a listed name comes up that matches the name of a well-known person, or someone in the news for a sensitive or controversial reason, the name is skipped to avoid any offence or confusion.

When a cyclone forms in another region, say near Fiji or in the Indian Ocean, and then travels into the Australian region, the original name given by that region’s weather agency is kept, such as 2019’s Cyclone Oma, which came from Fiji.

Tropical cyclone Bessie was the first Australian cyclone to be officially named by the Bureau of Meteorology.

A list of cyclone names around the world can be found here.The Conversation

Richard Wardle, Weather Services Manager, Queensland, Australian Bureau of Meteorology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

El Niño has rapidly become stronger and stranger, according to coral records


Mandy Freund, University of Melbourne; Ben Henley, University of Melbourne; David Karoly, CSIRO; Helen McGregor, University of Wollongong, and Nerilie Abram, Australian National University

The pattern of El Niño has changed dramatically in recent years, according to the first seasonal record distinguishing different types of El Niño events over the last 400 years.

A new category of El Niño has become far more prevalent in the last few decades than at any time in the past four centuries. Over the same period, traditional El Niño events have become more intense.

This new finding will arguably alter our understanding of the El Niño phenomenon. Changes to El Niño will influence patterns of precipitation and temperature extremes in Australia, Southeast Asia and the Americas.

Some climate model studies suggest this recent change in El Niño “flavours” could be due to climate change, but until now, long-term observations were limited.




Read more:
Explainer: El Niño and La Niña


Our paper, published in Nature Geoscience today, fills this gap using coral records to reconstruct El Niño event types for the past 400 years.

Central Pacific El Niño event frequency relative to Eastern Pacific El Niño event frequency over the past four centuries, expressed as the number of events in 30-year sliding windows.
Author provided

What is El Niño?

El Niño describes an almost year-long warming of the surface ocean in the tropical Pacific. These warming events are so extreme and powerful that their impacts are felt around the globe.

During strong El Niño events, Australia and parts of Asia often receive much less rainfall than during normal years. The opposite applies to the western parts of the Americas, where the stronger rising motion over unusually warm ocean waters often results in heavy rainfall, causing massive floods. At the same time many of the hottest years on record across the globe coincide with El Niño events.

El Niño and its global impacts. Schematic of idealised atmospheric and sea surface temperature conditions during Central (top left) and Eastern Pacific events (top right). Annual global temperature anomalies (lower panel) show the familiar upward trend due to climate change. Many of the hottest years on record coincide with El Niño events.
NOAA National Centers for Environmental information, Climate at a Glance: Global Time Series

The reason for such far-reaching influences on weather is the changes El Niño causes in atmospheric circulation. In normal years, a massive circulation cell, called the Walker circulation, moves air along the equator across the tropical Pacific.




Read more:
500 years of drought and flood: trees and corals reveal Australia’s climate history


Warmer waters during El Niño events disrupt or even reverse this circulation pattern. The type of atmospheric disruption and the climate impacts this causes depend in particular on where the warm waters of El Niño are located.

The new ‘flavour’ of El Niño

A new “flavour” of El Niño is now recognised in the tropical Pacific. This type of El Niño is characterised by warm ocean temperatures in the Central Pacific, rather than the more typical warming in the far Eastern Pacific near the South American coast, some 10,000km away.

Although not as strong as the Eastern Pacific version, the Central Pacific El Niño is clearly observed in recent decades, including in 2014-15 and most recently in 2018-19. Over most of the last 400 years, El Niño events happened roughly at the same rate in the Central and Eastern Pacific.

Differences between Central and Eastern Pacific El Niño events and their associated drought impacts.

By the end of the 20th century, though, our research shows a sudden change: a sharp increase of Central Pacific El Niño events becomes evident. At the same time, the number of conventional Eastern Pacific events stayed relatively low, but the three most recent Eastern-type events (in 1982-83, 1997-98 and 2015-16) were unusually strong.

Using coral to unlock the past

Our understanding of the new Central Pacific flavour of El Niño is hindered by the fact that El Niño events happen only every 2-7 years. So during our lifetime we can observe only a handful of events.

This isn’t enough to really understand Central Pacific El Niño, and whether they are becoming more common.

That’s why we look at corals from the tropical Pacific. The corals started growing decades to centuries before we began routinely measuring the climate with instruments. The corals are an excellent archive of changes in water conditions they experience as they grow, including ocean changes related to El Niño. We combined the information from a network of coral records that preserve seasonal histories.

At a seasonal timescale, we can see the characteristic patterns of past El Niño events in the chemistry of the corals. These patterns tell us which El Niño is which over the last 400 years. It is in this continuous picture of past El Niños obtained from coral archives that we found a clear picture of an unusual recent change in the Pacific’s El Niño flavours.

Underwater drilling of corals off Christmas Island (underwater team: Jennie Mallela, Oscar Branson; surface team: Jessica Hargreaves, Nerilie Abram).
Jason Turl, Nerilie Abram

Why do we care?

This extraordinary change in El Niño behaviour has serious implications for societies and ecosystems around the world. For example, the most recent Eastern-Pacific El Niño event in 2015-2016 triggered disease outbreaks across the globe. With the impacts of climate change continuing to unfold, many of the hottest years on record also coincide with El Niño events.




Read more:
Australia moves to El Niño alert and the drought is likely to continue


What’s more, the Pacific Ocean is currently lingering in an El Niño state. With these confounding events, many people around the world are wondering what extreme weather will be inflicted upon them in the months and years to come.

Our new record opens a door to understanding past changes of El Niño, with implications for the future too. Knowing how the different types of El Niño have unfolded in the past will mean we are better able to model, predict and plan for future El Niños and their widespread impacts.The Conversation

Mandy Freund, PhD Researcher, University of Melbourne; Ben Henley, Research Fellow in Climate and Water Resources, University of Melbourne; David Karoly, Leader, NESP Earth Systems and Climate Change Hub, CSIRO; Helen McGregor, ARC Future Fellow, University of Wollongong, and Nerilie Abram, ARC Future Fellow, Research School of Earth Sciences; Chief Investigator for the ARC Centre of Excellence for Climate Extremes, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Are more Aussie trees dying of drought? Scientists need your help spotting dead trees



File 20190326 36273 5tp4r3.jpg?ixlib=rb 1.1
As climate change threatens Australian trees, it’s important to identify which are at risk.
Nicolás Boullosa/flickr, CC BY-SA

Belinda Medlyn, Western Sydney University; Brendan Choat, Western Sydney University, and Martin De Kauwe, UNSW

Most citizen science initiatives ask people to record living things, like frogs, wombats, or feral animals. But dead things can also be hugely informative for science. We have just launched a new citizen science project, The Dead Tree Detective, which aims to record where and when trees have died in Australia.

The current drought across southeastern Australia has been so severe that native trees have begun to perish, and we need people to send in photographs tracking what has died. These records will be valuable for scientists trying to understand and predict how native forests and woodlands are vulnerable to climate extremes.




Read more:
Recent Australian droughts may be the worst in 800 years


Understanding where trees are most at risk is becoming urgent because it’s increasingly clear that climate change is already underway. On average, temperatures across Australia have risen more than 1℃ since 1910, and winter rainfall in southern Australia has declined. Further increases in temperature, and increasing time spent in drought, are forecast.

How our native plants cope with these changes will affect (among other things) biodiversity, water supplies, fire risk, and carbon storage. Unfortunately, how climate change is likely to affect Australian vegetation is a complex problem, and one we don’t yet have a good handle on.

Phil Spark of Woolomin, NSW submitted this photo to The Dead Tree Detective project online.
Author provided

Climate niche

All plants have a preferred average climate where they grow best (their “climatic niche”). Many Australian tree species have small climatic niches.

It’s been estimated an increase of 2℃ would see 40% of eucalypt species stranded in climate conditions to which they are not adapted.

But what happens if species move out of their climatic niche? It’s possible there will be a gradual migration across the landscape as plants move to keep up with the climate.




Read more:
How the warming world could turn many plants and animals into climate refugees


It’s also possible that plants will generally grow better, if carbon dioxide rises and frosts become less common (although this is a complicated and disputed claim.

Farmers have reported anecdotal evidence of tree deaths on social media.
Author provided

However, a third possibility is that increasing climate extremes will lead to mass tree deaths, with severe consequences.

There are examples of all three possibilities in the scientific literature, but reports of widespread tree death are becoming increasingly commonplace.

Many scientists, including ourselves, are now trying to identify the circumstances under which we may see trees die from climate stress. Quantifying these thresholds is going to be key for working out where vegetation may be headed.

The water transport system

Australian plants must deal with the most variable rainfall in the world. Only trees adapted to prolonged drought can survive. However, drought severity is forecast to increase, and rising heat extremes will exacerbate drought stress past their tolerance.

To explain why droughts overwhelm trees, we need to look at the water transport system that keeps them alive. Essentially, trees draw water from the soil through their roots and up to their leaves. Plants do not have a pump (like our hearts) to move water – instead, water is pulled up under tension using energy from sunlight. Our research illustrates how this transport system breaks down during droughts.

Lyn Lacey submitted these photos of dead trees at Ashford, NSW to The Dead Tree Detective.
Author provided

In hot weather, more moisture evaporates from trees’ leaves, putting more pressure on their water transport system. This evaporation can actually be useful, because it keeps the trees’ leaves cool during heatwaves. However if there is not enough water available, leaf temperatures can become lethally high, scorching the tree canopy.

We’ve also identified how drought tolerance varies among native tree species. Species growing in low-rainfall areas are better equipped to handle drought, showing they are finely tuned to their climate niche and suggesting many species will be vulnerable if climate change increases drought severity.

Based on all of these data, we hope to be able to predict where and when trees will be vulnerable to death from drought and heat stress. The problem lies in testing our predictions – and that’s where citizen science comes in. Satellite remote sensing can help us track overall greenness of ecosystems, but it can’t detect individual tree death. Observation on the ground is needed.

These images show a failure of the water transport system in Eucalyptus saligna. Left: well-watered plant. Right: severely droughted plant. On the right, air bubbles blocking the transport system can be seen.
Brendan Choat, Author provided

However, there is no system in place to record tree death from drought in Australia. For example, during the Millennium Drought, the most severe and extended drought for a century in southern Australia, there are almost no records of native tree death (other than along the rivers, where over-extraction of water was also an issue). Were there no deaths? Or were they simply not recorded?

The current drought gripping the southeast has not been as long as the Millennium Drought, but it does appear to be more intense, with some places receiving almost no rain for two years. We’ve also had a summer of repeated heatwaves, which will have intensified the stress.




Read more:
Is Australia’s current drought caused by climate change? It’s complicated


We’re hearing anecdotal reports of tree death in the news and on twitter. We’re aiming to capture these anecdotal reports, and back them up with information including photographs, locations, numbers and species of trees affected, on the Dead Tree Detective.

We encourage anyone who sees dead trees around them to hop online and contribute. The Detective also allows people to record tree deaths from other causes – and trees that have come back to life again (sometimes dead isn’t dead). It can be depressing to see trees die – but recording their deaths for science helps to ensure they won’t have died in vain.The Conversation

Belinda Medlyn, Professor, Western Sydney University; Brendan Choat, Associate Professor, Western Sydney University, and Martin De Kauwe, Senior Research Fellow, UNSW

This article is republished from The Conversation under a Creative Commons license. Read the original article.

2018-19 was Australia’s hottest summer on record, with a warm autumn likely too


File 20190228 150702 1t8sa4f.jpg?ixlib=rb 1.1
Dirty water from Queensland’s historic flooding, triggered by weeks of exceptional monsoon rains earlier in the year.
NASA Worldview/EPA

David Jones, Australian Bureau of Meteorology; Lynette Bettio, Australian Bureau of Meteorology, and Skie Tobin, Australian Bureau of Meteorology

Australian summers are getting hotter. Today marks the end of our warmest summer on record, setting new national temperature records. Worsening drought, locally significant flooding, damaging bushfires, and heatwaves capped a summer of extremes.

As we look to autumn, warmer temperatures overall and below average rainfall – especially in eastern parts of the country – are likely.

Australian summer mean temperature anomalies against the 1961–1990 average.
Bureau of Meteorology



Read more:
The stubborn high-pressure system behind Australia’s record heatwaves


Very hot…

The starkest feature of this summer was the record warmth. The national average temperature is expected to be about 2.1℃ above average, and will easily beat the previous record high set in summer 2012-13 (which was 1.28℃ warmer than average).

Very low rainfall accompanied the record heat of summer. At the national scale, each month was notably dry, and total summer rainfall was around 30% below average; the lowest for summer since 1982–83. The monsoon onset was delayed in Darwin until the 23rd of January (the latest since 1972–73) and typical monsoonal weather was absent for most of summer.

Preliminary summer 2018–19 mean temperature deciles.
Bureau of Meteorology

In December 2018 Australia saw its highest mean, maximum and minimum temperatures on record (monthly averages, compared to all other Decembers). Notable heatwaves affected the north of Australia at the start of the month, spreading to the west and south during the second half of December. Temperatures peaked at 49.3℃ at Marble Bar in Western Australia on the 27th, with mid-to-high 40s extending over larger areas.

The heat continued into January, which set a national monthly mean temperature record at 2.91℃ above the 1961–1990 average. Heatwave conditions which had emerged in December persisted, with a prolonged warm spell and numerous records set. Eight of the ten hottest days for the nation occurred during the month, while a minimum temperature of 36.6℃ at Wanaaring (Borrona Downs) in western New South Wales on the 26th set a new national minimum temperature record.

Temperatures moderated a little in the east of the country for February, partly in response to flooding rainfall in tropical Queensland. Even so, the national mean temperature will come in around 1.4℃ above average, making this February likely to be the fourth or fifth warmest on record.

…and very dry

Australia has seen dry summers before and many of these have been notably hot. The summers of 1972–73 and 1982–83 – which featured mean temperatures 0.90℃ and 0.92℃ above average, respectively – both came during the latter stages of significant droughts, and were both records at the time.

As the State of the Climate 2018 report outlines, Australia has warmed by just over 1℃ since 1910, with most warming occurring since 1950. This warming means global and Australian climate variability sits on top of a higher average temperature, which explains why 2018-19 was warmer again.

A major rain event affected tropical Queensland during late January to early February, associated with a slow-moving monsoonal low. Some sites had a year’s worth of rain in a two-week period, including Townsville Airport which had 1,257mm in ten days. Many Queenslanders affected by this monsoonal low went from drought conditions to floods in a matter of days. Flooding was severe and continues to affect rivers near the Gulf of Carpentaria, as well as some inland rivers which flow towards Kati Thanda–Lake Eyre.

Preliminary summer 2018–19 rainfall deciles.
Bureau of Meteorology

The outlook for autumn

Spring 2018 saw a positive Indian Ocean Dipole which faded in early summer. At the start of summer sea surface temperature anomalies in the central Pacific exceeded 0.8℃, which is the typical threshold for El Niño affecting the oceans, but these declined as summer progressed. Combined with a lack of coupling between the atmosphere and ocean, the El Niño–Southern Oscillation remained neutral, though normal rainfall patterns shifted to oceans to the north and east, leaving Australia drier as a result.

As we move into autumn, the El Niño–Southern Oscillation and Indian Ocean Dipole tend to have less influence at this time of year. The onset of new Indian Ocean Dipole or El Niño/La Niña events typically happens in late autumn or winter/spring.

Over recent years, autumn rainfall has also become less reliable, with declines in cool season rainfall in the southeast and southwest. Temperatures are also rising, in a local expression of the global warming trend.




Read more:
Explainer: El Niño and La Niña


The Bureau’s outlook for autumn shows high probabilities that day and night-time temperatures will remain above average for most of the country. We expect to see continued below-average rainfall in much of the east, where drought is currently widespread.

Looking to the winter, the Bureau’s ENSO Wrap-Up suggests the Pacific Ocean is likely to remain warmer than average. The potential for an El Niño remains, with approximately a 50% chance of El Niño developing during the southern hemisphere autumn or winter, twice the normal likelihood.

Rainfall outlook for autumn 2019.
Bureau of Meteorology


For more information watch BOM’s March–May 2019 Climate and Water Outlook video and subscribe to receive Climate Information emails.The Conversation

David Jones, Climate Scientist, Australian Bureau of Meteorology; Lynette Bettio, Senior Climatologist, Australian Bureau of Meteorology, and Skie Tobin, Climatologist, Australian Bureau of Meteorology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

How climate change can make catastrophic weather systems linger for longer


Steve Turton, CQUniversity Australia

Many parts of Australia have suffered a run of severe and, in some cases, unprecedented weather events this summer. One common feature of many of these events – including the Tasmanian heatwave and the devastating Townsville floods – was that they were caused by weather systems that parked themselves in one place for days or weeks on end.

It all began with a blocking high – so-called because it blocks the progress of other nearby weather systems – in the Tasman Sea throughout January and early February.

This system prevented rain-bearing cold fronts from moving across Tasmania, and led to prolonged hot dry northwesterly winds, below-average rainfall and scorching temperatures.




Read more:
Dry lightning has set Tasmania ablaze, and climate change makes it more likely to happen again


Meanwhile, to the north, an intense monsoon low sat stationary over northwest Queensland for 10 days. It was fed on its northeastern flank by extremely saturated northwesterly winds from Indonesia, which converged over the greater northeast Queensland area with strong moist trade winds from the Coral Sea, forming a “convergence zone”.

Ironically, these trade winds originated from the northern flank of the blocking high in the Tasman, deluging Queensland while leaving the island state parched.

Unusually prolonged

Convergence zones along the monsoon trough are not uncommon during the wet season, from December to March. But it is extremely rare for a stationary convergence zone to persist for more than a week.

Could this pattern conceivably be linked to global climate change? Are we witnessing a slowing of our weather systems as well as more extreme weather?

There does seem to be a plausible link between human-induced warming, slowing of jet streams, blocking highs, and extreme weather around the world. The recent Tasman Sea blocking high can be added to that list, along with other blocking highs that caused unprecedented wildfires in California and an extreme heatwave in Europe last year.

There is also a trend for the slowing of the forward speed (as opposed to wind speed) of tropical cyclones around the world. One recent study showed the average forward speeds of tropical cyclones fell by 10% worldwide between 1949 and 2016. Meanwhile, over the same period, the forward speed of tropical cyclones dropped by 22% over land in the Australian region.

Climate change is expected to weaken the world’s circulatory winds due to greater warming in high latitudes compared with the tropics, causing a slowing of the speed at which tropical cyclones move forward.

Obviously, if tropical cyclones are moving more slowly, this can leave particular regions bearing the brunt of the rainfall. In 2017, Houston and surrounding parts of Texas received unprecedented rainfall associated with the “stalling” of Hurricane Harvey.

Townsville’s floods echoed this pattern. Near the centre of the deep monsoon low, highly saturated warm air was forced to rise due to colliding winds, delivering more than a year’s worth of rainfall to parts of northwest Queensland in just a week.

The widespread rain has caused significant rises in many of the rivers that feed into the Gulf of Carpentaria and the Great Barrier Reef lagoon, and some runoff has made it into the Channel Country and will eventually reach Lake Eyre in South Australia. Unfortunately, little runoff has found its way into the upper reaches of the Darling River system.

Satellite images before (right) and after (left) the floods in northwest Queensland.
Courtesy of Japan Meteorological Agency, Author provided

Huge impacts

The social, economic and environmental impacts of Australia’s recent slow-moving weather disasters have been huge. Catastrophic fires invaded ancient temperate rainforests in Tasmania, while Townsville’s unprecedented flooding has caused damage worth more than A$600 million and delivered a A$1 billion hit to cattle farmers in surrounding areas.

Townsville’s Ross River, which flows through suburbs downstream from the Ross River Dam, has reached a 1-in-500-year flood level. Some tributaries of the dam witnessed phenomenal amounts of runoff, reliably considered as a 1-in-2,000-year event

Up to half a million cattle are estimated to have died across the area, a consequence of their poor condition after years of drought, combined with prolonged exposure to water and wind during the rain event.




Read more:
Queensland’s floods are so huge the only way to track them is from space


Farther afield, both Norfolk Island and Lord Howe Island – located under the clear skies associated with the blocking high – have recorded exceptionally low rainfall so far this year, worsening the drought conditions caused by a very dry 2018. These normally lush subtropical islands in the Tasman Sea are struggling to find enough water to supply their residents’ and tourists’ demands.

Many parts of Australia have tolerated widespread extreme weather events this year, including some records. This follows a warm and generally dry 2018. In fact, 9 of the 10 warmest years on record in Australia have occurred since 2005, with only 1998 remaining from last century with reliable records extending back to 1910. Steady warming of our atmosphere and oceans is directly linked to more extreme weather events in Australia and globally.

If those extreme weather events travel more slowly across the landscape, their effects on individual regions could be more devastating still.The Conversation

Steve Turton, Adjunct Professor of Environmental Geography, CQUniversity Australia

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Ice melt in Greenland and Antarctica predicted to bring more frequent extreme weather



File 20190204 193206 1wihd6q.jpg?ixlib=rb 1.1
A new climate model combines data on ice loss from both polar regions for the first time.
Mark Brandon, CC BY-ND

Nick Golledge, Victoria University of Wellington

Last week, rivers froze over in Chicago when it got colder than at the North Pole. At the same time, temperatures hit 47℃ in Adelaide during the peak of a heatwave.

Such extreme and unpredictable weather is likely to get worse as ice sheets at both poles continue to melt.

Our research, published today, shows that the combined melting of the Greenland and Antarctic ice sheets is likely to affect the entire global climate system, triggering more variable weather and further melting. Our model predictions suggest that we will see more of the recent extreme weather, both hot and cold, with disruptive effects for agriculture, infrastructure, and human life itself.

We argue that global policy needs urgent review to prevent dangerous consequences.




Read more:
We finally have the rulebook for the Paris Agreement, but global climate action is still inadequate


Accelerated loss of ice

Even though the goal of the Paris Agreement is to keep warming below 2℃ (compared to pre-industrial levels), current government pledges commit us to surface warming of 3-4℃ by 2100. This would cause more melting in the polar regions.

Already, the loss of ice from ice sheets in Antarctica and Greenland, as well as mountain glaciers, is accelerating as a consequence of continued warming of the air and the ocean. With the predicted level of warming, a significant amount of meltwater from polar ice would enter the earth’s oceans.

The West Antarctic Ice Sheet is considered more vulnerable to melting, but East Antarctica , once thought to be inert, is now showing increasing signs of change.
Nick Golledge, CC BY-ND

We have used satellite measurements of recent changes in ice mass and have combined data from both polar regions for the first time. We found that, within a few decades, increased Antarctic melting would form a lens of freshwater on the ocean surface, allowing rising warmer water to spread out and potentially trigger further melting from below.

In the North Atlantic, the influx of meltwater would lead to a significant weakening of deep ocean circulation and affect coastal currents such as the Gulf Stream, which carries warm water from the tropics into the North Atlantic. This would lead to warmer air temperatures in Central America, Eastern Canada and the high Arctic, but colder conditions over northwestern Europe on the other side of the Atlantic.

Recent research suggests that tipping points in parts of the West Antarctic Ice Sheet may have already been passed. This is because most of the ice sheet that covers West Antarctica rests on bedrock far below sea level – in some areas up to 2 kilometres below.




Read more:
How Antarctic ice melt can be a tipping point for the whole planet’s climate


Bringing both poles into one model

It can be a challenge to simulate the whole climate system because computer models of climate are usually global, but models of ice sheets are typically restricted to just Antarctica or just Greenland. For this reason, the most recent Intergovernmental Panel of Climate Change (IPCC) assessment used climate models that excluded ice sheet interactions.

Global government policy has been guided by this assessment since 2013, but our new results show that the inclusion of ice sheet meltwater can significantly affect climate projections. This means we need to update the guidance we provide to policy makers. And because Greenland and Antarctica affect different aspects of the climate system, we need new modelling approaches that look at both ice sheets together.

When the edges of the West Antarctic Ice Sheet start to recede, they retreat into deeper and deeper water and the ice begins to float more easily.
Mark Brandon, CC BY-ND

Seas rise as ice melts on land

Apart from the impact of meltwater on ocean circulation, we have also calculated how ongoing melting of both polar ice caps will contribute to sea level. Melting ice sheets are already raising sea level, and the process has been accelerating in recent years.

Our research is in agreement with another study published today, in terms of the amount that Antarctica might contribute to sea level over the present century. This is good news for two reasons.

First, our predictions are lower than one US modelling group predicted in 2016. Instead of nearly a metre of sea level rise from Antarctica by 2100, we predict only 14-15cm.

Second, the agreement between the two studies and also with previous projections from the IPCC and other modelling groups suggests there is a growing consensus, which provides greater certainty for planners. But the regional pattern of sea level rise is uneven, and islands in the southwest Pacific will most likely experience nearly 1.5 times the amount of sea level rise that will affect New Zealand.

While some countries, including New Zealand, are making progress on developing laws and policies for a transition towards a low-carbon future, globally policy is lagging far behind the science.

The predictions we make in our studies underline the increasingly urgent need to reduce greenhouse gas emissions. It might be hard to see how our own individual actions can save polar ice caps from significant melting. But by making individual choices that are environmentally sustainable, we can persuade politicians and companies of the desire for urgent action to protect the world for future generations.The Conversation

Nick Golledge, Associate Professor of Glaciology, Victoria University of Wellington

This article is republished from The Conversation under a Creative Commons license. Read the original article.