Heatwaves threaten Australians’ health, and our politicians aren’t doing enough about it


Paul Beggs, Macquarie University; Helen Louise Berry, University of Sydney; Martina Linnenluecke, Macquarie University, and Ying Zhang, University of Sydney

Extreme heat affects the mental health of Australians to the same degree as unemployment, yet Australia’s policy action on climate change lags behind other high-income countries such as Germany and the United Kingdom.

As Australia approaches another summer, we face the inevitability of deadly heatwaves. Our report published today in the Medical Journal of Australia concludes that policy inaction, particularly at the federal level, is putting Australian lives at risk.

The report, The MJA–Lancet Countdown on health and climate change: Australian policy inaction threatens lives, builds on an earlier publication in The Lancet medical journal, which concluded climate change is the biggest global health threat of the 21st century.




Read more:
Climate mitigation – the greatest public health opportunity of our time


Australia is the first to prepare its own country-level report. Developed in partnership with the Lancet Countdown – which tracks the global connections between health and climate change – it adopts the structure and methods of the global assessment but with an Australian focus.

How Australians’ health suffers

Australians are already facing climate change-related exposures that come from increasing annual average temperatures, heatwaves and weather-related disasters. Australian deaths during the 2014 Adelaide heatwave and Melbourne’s 2016 thunderstorm asthma event are examples of the risk climate poses to our health.




Read more:
Keeping one step ahead of pollen triggers for thunderstorm asthma


Our report was produced by a team of 19 experts from 13 universities and research institutes. We aimed to answer what we know about climate change and human health in Australia and how we are responding to this threat, if at all.

To do this, our team examined more than 40 indicators that enable us to track progress on the broad and complex climate change and human health issue. Health impact indicators included the health effects of temperature change and heatwaves, change in labour capacity, trends in climate-sensitive diseases, lethality of weather-related disasters and food insecurity and malnutrition.

We also developed an indicator for the impacts of climate change on mental health. This involved examining the association between mean annual maximum temperatures and suicide rates for all states and territories over the last ten years.

We found that, in most jurisdictions, the suicide rate increased with increasing maximum temperature. In Australia’s changing climate, we urgently need to seek ways to break the link between extreme temperature and suicide.

Across other indicators, we found workers’ compensation claims in Adelaide increased by 6.2% during heatwaves, mainly among outdoor male workers and tradespeople over 55 years.

And we found the length of heatwaves increased in 2016 and 2017 in Australia’s three largest cities – Sydney, Melbourne and Brisbane. Heatwave length varied from year to year, but between 2000 and 2017, the mean number of heatwave days increased by more than two days across the country.

Policy action we need

Australia’s slow transition to renewables and low-carbon electricity generation is problematic, and not only from a climate change perspective. Our report shows that pollutants from fossil fuel combustion cause thousands of premature deaths nationwide every year. We argue even one premature death is one too many when there is so much that we can do to address this.

Australia is one of the world’s wealthiest countries with the resources and technical expertise to act on climate change and health. Yet Australia’s carbon intensity is the highest among the countries we included in our comparison – Germany, United States, China, India and Brazil.

A carbon-intensive energy system is one of the main drivers behind climate change. Australia was once a leader in the uptake of renewables but other nations have since streaked ahead and are reaping the benefits for their economies, energy security and health.

Despite some progress increasing renewable generation, it’s time we truly pull our weight in the global effort to prevent acceleration towards dangerous climate change.

Policy leaders must take steps to protect human health and lives. These include strong political and financial commitments to accelerate transition to renewables and low-carbon electricity generation. The government lacks detailed planning for a clean future with a secure energy supply.




Read more:
What would a fair energy transition look like?


Our MJA-Lancet Countdown report will be updated annually. Now that Australia has begun systematically tracking the effects of climate change on health – and given its poor performance compared with comparable economies globally – further inaction would be reckless.The Conversation

Paul Beggs, Associate Professor and Environmental Health Scientist, Macquarie University; Helen Louise Berry, Professor of Climate Change and Mental Health, University of Sydney; Martina Linnenluecke, Professor of Environmental Finance; Director of the Centre for Corporate Sustainability and Environmental Finance, Macquarie University, and Ying Zhang, Associate Director, Teaching and Learning, Sydney School of Public Health, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

Summer forecast: scorching heat and heightened bushfire risk


Catherine Ganter, Australian Bureau of Meteorology

Large parts of Australia are facing a hotter and drier summer than average, according to the Bureau of Meteorology’s summer outlook.

Drier than average conditions are likely for much of northern Australia. Most of the country has at least an 80% chance of experiencing warmer than average day and night-time temperatures.

The threat of bushfire will remain high, with few signs of the sustained rain needed to reduce fire risk or make a significant dent in the ongoing drought.

Expect extreme heat

Large parts of Western Australia, most of Queensland and the Top End of the Northern Territory are expected to be drier than usual. Further south, the rest of the country shows no strong push towards a wetter or drier than average summer, which is a change for parts of the southeast compared to recent months.


Bureau of Meteorology

Queensland has already seen some extraordinary record-breaking heat in recent days, with summer yet to truly begin. With the summer outlook predicting warmer days and nights, combined with recent dry conditions and our long-term trend of increasing temperatures, some extreme highs are likely this summer.


Bureau of Meteorology

All of this means above-normal bushfire potential in eastern Australia, across New South Wales, Victoria and Queensland. The bushfire outlook, also released today, notes that rain in areas of eastern Australia during spring, while welcome, was not enough to recover from the long-term dry conditions. The current wet conditions across parts of coastal New South Wales will help, but it will not take long once hot and dry conditions return for vegetation to dry out.




Read more:
Sydney storms could be making the Queensland fires worse


What about El Niño?

The Bureau is currently at El Niño ALERT, which means a roughly 70% chance of El Niño developing this season.




Read more:
Australia moves to El Niño alert and the drought is likely to continue


However, not all the ducks are lined up. While ocean temperatures have already warmed to El Niño levels, to declare a proper “event” there must also be a corresponding response in the atmosphere to reinforce the ocean – this hasn’t happened yet.

That said, climate models expect this event to arrive in the coming months. The outlook has factored in that chance, and the conditions predicted are largely consistent with what we would expect during El Niño. In summer, this includes drier weather in parts of northern Australia, and warmer summer days.

Once an El Niño is in place, weather systems across southern Australia tend to be more mobile. This can mean shorter but more intense heatwaves in Victoria and southern South Australia. However, in New South Wales and Queensland, El Niño is associated with both longer and more intense heat waves.

The exact reason why the states are affected differently is complicated, but relates to the fast-moving cold fronts and troughs that sweep through Victoria and South Australia in the summertime, creating cool changes. These weather systems don’t influence areas further north so when hot air arrives, it takes longer to clear.




Read more:
Drought, wind and heat: when fire seasons start earlier and last longer


The heavy rains seen in parts of eastern Australia in October and November have provided some welcome short-term relief to drought-stricken farmers, but longer-term rainfall relief has not arrived yet. If El Niño arrives, this widespread relief may only be on the cards in autumn.The Conversation

Catherine Ganter, Senior Climatologist, Australian Bureau of Meteorology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Protecting wetlands helps communities reduce damage from hurricanes and storms



File 20181009 72133 1o1hr7u.jpg?ixlib=rb 1.1
Protecting coastal wetlands, like this slough in Florida’s Everglades National Park, is a cost-effective way to reduce flooding and storm damage.
NPS/C. Rivas

Siddharth Narayan, University of California, Santa Cruz and Michael Beck, University of California, Santa Cruz

2017 was the worst year on record for hurricane damage in Texas, Florida and the Caribbean from Harvey, Irma and Maria. We had hoped for a reprieve this year, but less than a month after Hurricane Florence devastated communities across the Carolinas, Hurricane Michael has struck Florida.

Coastlines are being developed rapidly and intensely in the United States and worldwide. The population of central and south Florida, for example, has grown by 6 million since 1990. Many of these cities and towns face the brunt of damage from hurricanes. In addition, rapid coastal development is destroying natural ecosystems like marshes, mangroves, oyster reefs and coral reefs – resources that help protect us from catastrophes.

In a unique partnership funded by Lloyd’s of London, we worked with colleagues in academia, environmental organizations and the insurance industry to calculate the financial benefits that coastal wetlands provide by reducing storm surge damages from hurricanes. Our study, published in 2017, found that this function is enormously valuable to local communities. It offers new evidence that protecting natural ecosystems is an effective way to reduce risks from coastal storms and flooding.

Coastal wetlands and flood damage reduction: A collaboration between academia, conservation and the risk industry.

The economic value of flood protection from wetlands

Although there is broad understanding that wetlands can protect coastlines, researchers have not explicitly measured how and where these benefits translate into dollar values in terms of reduced risks to people and property. To answer this question, our group worked with experts who understand risk best: insurers and risk modelers.

Using the industry’s storm surge models, we compared the flooding and property damages that occurred with wetlands present during Hurricane Sandy to the damages that would have occurred if these wetlands were lost. First we compared the extent and severity of flooding during Sandy to the flooding that would have happened in a scenario where all coastal wetlands were lost. Then, using high-resolution data on assets in the flooded locations, we measured the property damages for both simulations. The difference in damages – with wetlands and without – gave us an estimate of damages avoided due to the presence of these ecosystems.

Our paper shows that during Hurricane Sandy in 2012, coastal wetlands prevented more than US$625 million in direct property damages by buffering coasts against its storm surge. Across 12 coastal states from Maine to North Carolina, wetlands and marshes reduced damages by an average of 11 percent.

These benefits varied widely by location at the local and state level. In Maryland, wetlands reduced damages by 30 percent. In highly urban areas like New York and New Jersey, they provided hundreds of millions of dollars in flood protection.

Wetland benefits for flood damage reduction during Sandy (redder areas benefited more from having wetlands).
Narayan et al., Nature Scientific Reports 7, 9463 (2017)., CC BY

Wetlands reduced damages in most locations, but not everywhere. In some parts of North Carolina and the Chesapeake Bay, wetlands redirected the surge in ways that protected properties directly behind them, but caused greater flooding to other properties, mainly in front of the marshes. Just as we would not build in front of a seawall or a levee, it is important to be aware of the impacts of building near wetlands.

Wetlands reduce flood losses from storms every year, not just during single catastrophic events. We examined the effects of marshes across 2,000 storms in Barnegat Bay, New Jersey. These marshes reduced flood losses annually by an average of 16 percent, and up to 70 percent in some locations.

Reductions in annual flood losses to properties that have a marsh in front (blue) versus properties that have lost the marshes in front (orange).
Narayan et al., Nature Scientific Reports 7, 9463 (2017)., CC BY

In related research, our team has also shown that coastal ecosystems can be highly cost-effective for risk reduction and adaptation along the U.S. Gulf Coast, particularly as part of a portfolio of green (natural) and gray (engineered) solutions.

Reducing risk through conservation

Our research shows that we can measure the reduction in flood risks that coastal ecosystems provide. This is a central concern for the risk and insurance industry and for coastal managers. We have shown that these risk reduction benefits are significant, and that there is a strong case for conserving and protecting our coastal ecosystems.

The next step is to use these benefits to create incentives for wetland conservation and restoration. Homeowners and municipalities could receive reductions on insurance premiums for managing wetlands. Post-storm spending should include more support for this natural infrastructure. And new financial tools such as resilience bonds, which provide incentives for investing in measures that reduce risk, could support wetland restoration efforts too.

The dense vegetation and shallow waters within wetlands can slow the advance of storm surge and dissipate wave energy.
USACE

Improving long-term resilience

Increasingly, communities are also beginning to consider ways to improve long-term resilience as they assess their recovery options.

There is often a strong desire to return to the status quo after a disaster. More often than not, this means rebuilding seawalls and concrete barriers. But these structures are expensive, will need constant upgrades as as sea levels rise, and can damage coastal ecosystems.

Even after suffering years of damage, Florida’s mangrove wetlands and coral reefs play crucial roles in protecting the state from hurricane surges and waves. And yet, over the last six decades urban development has eliminated half of Florida’s historic mangrove habitat. Losses are still occurring across the state from the Keys to Tampa Bay and Miami.

Protecting and nurturing these natural first lines of defense could help Florida homeowners reduce property damage during future storms. In the past two years our team has worked with the private sector and government agencies to help translate these risk reduction benefits into action for rebuilding natural defenses.

Across the United States, the Caribbean and Southeast Asia, coastal communities face a crucial question: Can they rebuild in ways that make them better prepared for the next storm, while also conserving the natural resources that make these locations so valuable? Our work shows that the answer is yes.

This is an updated version of an article originally published on Sept. 25, 2017.The Conversation

Siddharth Narayan, Postdoctoral Fellow, Coastal Flood Risk, University of California, Santa Cruz and Michael Beck, Research professor, University of California, Santa Cruz

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Why predicting the weather and climate is even harder for Australia’s rainy northern neighbours



File 20181116 194500 1wx1jwa.jpg?ixlib=rb 1.1
Clouds roll across Samosir in northern Sumatra.
Shutterstock.com

Andrew King, University of Melbourne and Claire Vincent, University of Melbourne

Australians love to complain about weather forecasts, but compared with some other parts of the world ours are impressively accurate. Our large, mostly flat continent surrounded by oceans makes modelling Australia’s weather and climate relatively straightforward.

The same cannot be said about our neighbours to the north.

For Southeast Asian countries such as Indonesia and Papua New Guinea – which we collectively refer to as the “Maritime Continent” – things are a lot more complicated. With their mountainous terrain and islands of different shapes and sizes, it’s much harder to model the weather and climate of this region.




Read more:
The tropics are getting wetter: the reason could be clumpy storms


The models we use to make the most of our climate projections have to simulate the climate for many decades to provide us with useful information. To run such long simulations we have to compromise on resolution; even state-of-the-art global climate models divide the world into grid boxes more than 100km across. The Maritime Continent doesn’t come out too well at these resolutions.

If you squint you can see it! The world’s surface looks a bit like a 1980s video game to a global climate model. The Maritime Continent region (in the black box) is especially messy.
Author provided

It’s unfortunate the Maritime Continent’s weather and climate are so tricky to simulate on long time scales. Due to its location right on the Equator and between the Indian and Pacific Oceans, this region has a defining influence on the global climate, being a major source of heat and water vapour to the atmosphere. If we don’t simulate the climate over the Maritime Continent well, we can get errors appearing on the global scale.

Besides that, the Maritime Continent is also home to hundreds of millions of people, and includes major cities such as Jakarta and Singapore. We need our weather and climate models to simulate the processes behind the severe storms, heatwaves, and droughts that these cities and the broader region experience. Accurate weather forecasts, seasonal outlooks and climate projections require models to simulate the atmosphere over the Maritime Continent well.

In our new study, published in Geophysical Research Letters, we show that many state-of-the-art global climate models struggle to simulate the climate of the Maritime Continent. But fortunately, a higher-resolution model captures more of the major processes in this area.

The benefits of high resolution

Like in Australia, much of the Maritime Continent region is wetter during La Niña seasons and drier in El Niño, although for some western coasts and Sumatra it’s the other way round. Many global climate models fail to reflect accurately this rainfall response to El Niño and La Niña.

We found that for climate models to do a good job in capturing the year-to-year variability in rainfall over the Maritime Continent, they need to do a few things well. Specifically, they need to represent accurately the amount of moisture held in the atmosphere, as well as the pattern of winds in the region. This gives the right pattern of rainfall response to El Niño and La Niña.

Our higher-resolution regional climate model does a much better job at simulating the Maritime Continent’s rainfall patterns than many of the global models we looked at. As the region has such a complex landscape, global models simply cannot capture enough detail on all the different processes between the land and the ocean, and the coasts and the mountains. But higher-resolution regional models can.

We can capture the processes behind rainfall in the Maritime Continent more realistically when we use a high-resolution model. In particular we can better represent the thunderstorms and heavy rain that tends to occur in the afternoons and evenings in the tropics.



Read more:
Australia moves to El Niño alert and the drought is likely to continue


As the Maritime Continent is so important for the global climate but so difficult to model, there is a concerted effort to improve our models and to get more atmospheric observations across the region.

International projects such as the Years of the Maritime Continent are taking place, with millions of dollars and dozens of researchers working on improving our understanding of the region’s weather and climate.

Ultimately, we hope that through better, higher-resolution model simulations, we can capture the processes behind the Maritime Continent’s weather and climate much more accurately. This should lead to better climate projections and seasonal forecasts not only for the region, but for the world as a whole.The Conversation

Andrew King, ARC DECRA fellow, University of Melbourne and Claire Vincent, Lecturer in Atmospheric Science, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Why is everyone talking about natural sequence farming?


Ian Rutherfurd, University of Melbourne

On the eve of the recent National Drought Summit, prime minister Scott Morrison and deputy prime minister Michael McCormack visited Mulloon Creek near Canberra, shown recently on the ABC’s Australian Story. They were there to see a creek that was still flowing, and green with vegetation, despite seven months of drought.

Mulloon Creek was the legacy of a long collaboration between prominent agriculturalist Peter Andrews, and Tony Coote, the owner of the property who died in August. For decades they have implemented Andrews’ “natural sequence farming” system at Mulloon Creek.




Read more:
Government to set up new multi-billion Future Drought Fund


Central to the system is slowing flow in the creek with “leaky weirs”. These force water back into the bed and banks of the creek, which rehydrates the floodplain. This rehydrated floodplain is then said to be more productive and sustainable.

McCormack, who is also the minister for infrastructure, transport and regional development, was impressed and declared the success of Mulloon as a “model for everyone … this needs to be replicated right around our nation”. The ABC program suggested this form of farming could reduce the impact of drought across Australia. So, what is the evidence?

The promise of natural sequence farming

There are plenty of anecdotes but little published science around the effectiveness of natural sequence farming. What there is describes some modest floodplain rehydration, little change to stream flows, some trapping of sediment and some improvements in soil condition. These results are encouraging but not miraculous.

How much each of the different components of natural sequence farming contributes is not always clear, and the economic arguments for widespread adoption are modest. At present, there is not the standard of evidence to support this farming method as a panacea for drought relief, as proposed by the deputy prime minister.




Read more:
Helping farmers in distress doesn’t help them be the best: the drought relief dilemma


But if the evidence does emerge, why wouldn’t farmers simply adopt the methods as part of a sensible business model? Don’t all farmers want to do better in drought?

In the ABC show, and elsewhere, supporters of natural sequence farming argue that it is hard for farmers to adopt the methods because government regulations restrict use of willows, blackberries and other weeds, that they claim, are particularly effective in restoring streams.

Governments are correct to be wary of this call to use weeds, and some research suggests that native plants can do a similar job. This restriction on use of weeds might be galling for proponents of natural sequence farming but it should not be a fundamental impediment to adoption.

A more important frustration for natural sequence farming practitioners is how widely the approach can be applied. In Australian Story, John Ryan, a rural journalist, says:

I am sick of politicians, farmers groups, and government departments telling me that Peter Andrews only works where you’ve got little creeks in a mountain valley … I’ve seen it work on flat-lands, steep lands, anywhere.

Natural sequence farming arose in the attempt to restore upland valleys and creeks in southern NSW that were once environmentally valuable chains of ponds or swampy meadows. But these waterways have become deeply incised, degraded, and disconnected from their floodplains. Not only does this incision produce a great deal of sediment pollution, but it produces many agricultural problems.




Read more:
Spring is coming, and there’s little drought relief in sight


In reality, small and medium-sized stream systems across much of Australia have deepened after European settlement. If the leaky weirs of natural sequence farming are effective, then they could be applied across many gullied and incised streams across the country.

We’ve already been doing it

The good news is that landholders and governments have already been using aspects of natural sequence farming in those very gullies for decades to control erosion.

Since the 1970s, across the world, one useful method for controlling erosion has been grade-control structures. They were once made of concrete but are now usually made of dumped rock (called rock-chutes), and also logs.

Rock chutes in Barwidgee Creek, 1992, Ovens River catchment, Victoria. Source: T McCormack NE Catchment Management Authority.
T McCormack NE Catchment Management Authority
The same creek in 2002. It is now heavily vegetated and has pools of water, just like Mulloon Park.
T McCormack NE Catchment Management Authority

These structures reduce the speed of water flow, trap sediment, encourage vegetation, and stop gullies from deepening. These are all goals of natural sequence farming using leaky weirs.

There are thousands of such structures, supported by government initiatives, across the Australian landscape acting as an unrecognised experiment in rehydration and drought protection.




Read more:
We must strengthen, not weaken, environmental protections during drought – or face irreversible loss


Perhaps governments should already have evaluated these structures, but the rehydration potential of these works has not been recognised in the past. It is time that this public investment was scientifically evaluated.

We may find that natural sequence farming and the routine government construction of grade-control structures have similar effects on farmland and the environment.

But whatever the outcome, gully management is not likely to mark the end of drought in the Australian landscape.The Conversation

Ian Rutherfurd, Associate Professor in Geography, University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Will the arrival of El Niño mean fewer mosquitoes this summer?



File 20181105 74787 xceqwb.jpg?ixlib=rb 1.1
A hot summer will mean wetlands dry out faster than ever, so how will pest mosquitoes respond?
Cameron Webb (NSW Health Pathology), Author provided

Cameron Webb, University of Sydney

Once the warm weather arrives, you know mosquitoes won’t be far behind. Spring heatwaves associated with the impending arrival of El Niño to the east coast of Australia may mean we’ll get an early taste of summer, but what about mosquitoes? Does a long, hot summer mean fewer annoying buzzing and biting beasts bothering us whenever we spend time outdoors?

Where do mosquitoes come from?

Mosquitoes are complex animals. Like all insects, they thrive in warm weather, but they need more than just heat, they need water.

Mosquitoes lay their eggs on or around water. Without it, they cannot complete their life cycle. Mosquito “wrigglers” hatch out from eggs and spend a week or so swimming about before emerging and flying off in search of blood. Depending on where the water is, whether it is wetlands, puddles or water-filled containers, different kinds of mosquitoes will be present.

There are hundreds of different mosquitoes in Australia. Some like salty water, some like fresh. Some need pristine conditions while some will tolerate filthy water trapped at the bottom of a septic tank.

Because mosquitoes rely on water, rainfall plays a critical role in determining how many mosquitoes will be buzzing about this summer.




Read more:
Health Check: why mosquitoes seem to bite some people more


A hot, dry summer must mean fewer mosquitoes?

The likelihood that an El Niño will bring drier and warmer conditions to eastern Australia this summer is increasing. The latest predictions from the Bureau of Meteorology are that there is a 70% chance an El Nino will occur this year, about three times more than usual.

At first, this may seem like good news for those averse to mosquito bites, but don’t pack away the repellent just yet.

While floods bring mosquitoes, and often outbreaks of mosquito-borne disease, drought will knock out almost all mosquitoes. It is true that the ongoing dry conditions across inland areas of Australia will ensure mosquito populations remain low, but that doesn’t mean mosquitoes will disappear completely.




Read more:
The worst year for mosquitoes ever? Here’s how we find out


Water doesn’t just come from rain

While a lack of rain will keep many wetlands dry, that isn’t the case for our coastal wetlands. Some of the worst pest mosquitoes in Australia are found in our mangroves, saltmarshes and sedgelands.

Mosquitoes, like the saltmarsh mosquito, Aedes vigilax, love wetlands regularly flooded by high tides. The eggs of this mosquito, laid in moist wetland mud, survive long periods of dry conditions. Once covered by tides, these hatch, complete development within a week, and emerge in extraordinary numbers to fly kilometres away into nearby communities to bite and spread disease-causing pathogens such as Ross River virus.

Not only have these mosquitoes found a way to survive without rain, they thrive in hot and dry conditions. Without substantial rainfall, the pools and ponds in the wetlands dry completely, killing off any fish or other aquatic predators, ensuring perfect conditions once the next series of tides comes flooding in. The arrival of El Niño may be bad news for lots of wetland wildlife, but it isn’t all bad news for mosquitoes.

The saltmarsh mosquito, Aedes vigilax, is one of the most important pest mosquitoes in coastal regions of Australia and has adapted to thrive in hot and dry conditions.
Stephen Doggett (NSW Health Pathology)

Bringing mosquitoes home

Much has been made of the impact of heatwaves on human health. It may also inadvertently increase health risks in metropolitan regions of Australia. A shortage of water increases the need to conserve and store water around the backyard. Unfortunately, that also means creating a home for mosquitoes.

One of the most widespread mosquitoes in the country, a mosquito that has probably bitten almost every Australian, is the backyard mosquito Aedes notoscriptus. This mosquito is found in water-filled containers around the backyard, from drains and roof gutters to rainwater tanks and bird baths. While you’d think hot and dry conditions will impact this mosquito, think about the extra effort we’re taking to store water around the home. If your rainwater tank isn’t properly screened or you’re keeping uncovered bins and buckets around the backyard filled with water, you’ll be providing a home for mosquitoes.

The debate about the impact of a changing climate on mosquitoes and mosquito-borne disease often focuses on the spread of tropical diseases into warming temperate regions. The truth is it may be the way humans respond to a changing climate through water-saving measures around the home that could increase mosquito impacts in urban areas. This also may bring a risk of exotic mosquitoes to our suburbs, which could transmit more serious mosquito-borne pathogens such as dengue, chikungunya and Zika viruses.

While some parts of Australia will have fewer annoying mozzies this summer, don’t be complacent about taking steps to avoid mosquito bites. Choose and use the right insect repellents and reduce opportunities for mosquitoes to move into your backyard by covering up water-holding containers.The Conversation

Cameron Webb, Clinical Lecturer and Principal Hospital Scientist, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.