Forget massive seawalls, coastal wetlands offer the best storm protection money can buy


shutterstock.

Robert Costanza, Crawford School of Public Policy, Australian National UniversityCoastal communities around the world are facing increasing threats from tropical cyclones. Climate change is causing rising sea levels and bigger, more frequent storms.

Many coastal communities are pondering what to do. Should they build massive seawalls in a bid to protect existing infrastructure? Do they give up on their current coastal locations and retreat inland? Or is there another way?

In the US, the US Army Corps of Engineers has proposed building a 20-foot high giant seawall to protect Miami, the third most populous metropolis on the US east coast. The US$6 billion proposal is tentative and at least five years off, but sure to be among many proposals in the coming years to protect coastal communities from storms.




Read more:
A 20-foot sea wall won’t save Miami – how living structures can help protect the coast and keep the paradise vibe


But seawalls are expensive to build, require constant maintenance and provide limited protection.

Consider China, which already has a huge number of seawalls built for storm protection. A 2019 study analysed the impact of 127 storms on China between 1989 and 2016.

Coastal wetlands were far more cost effective in preventing storm damages. They also provided many other ecosystem services that seawalls do not.

How wetlands reduce storm effects

Coastal wetlands reduce the damaging effects of tropical cyclones on coastal communities by absorbing storm energy in ways that neither solid land nor open water can.

The mechanisms involved include decreasing the area of open water (fetch) for wind to form waves, increasing drag on water motion and hence the amplitude of a storm surge, reducing direct wind effects on the water surface, and directly absorbing wave energy.

Wetland vegetation contributes by decreasing surges and waves and maintaining shallow water depths that have the same effect. Wetlands also reduce flood damages by absorbing flood waters caused by rain and moderating their effects on built-up areas.

Coastal wetlands can absorb storm energy in ways neither solid land nor open water can.
Coastal wetlands can absorb storm energy in ways neither solid land nor open water can.
Shutterstock

In 2008 I and colleagues estimated coastal wetlands in the US provided storm protection services worth US$23 billion a year.

Our new study estimates the global value of coastal wetlands to storm protection services is US$450 billion a year (calculated at 2015 value) with 4,600 lives saved annually.

To make this calculation, we used the records of more than 1,000 tropical cyclones since 1902 that caused property damage and/or human casualties in 71 countries. Our study took advantage of improved storm tracking, better global land-use mapping and damage-assessment databases, along with improved computational capabilities to model the relationships between coastal wetlands and avoided damages and deaths from tropical cyclones.

The 40 million hectares of coastal wetlands in storm-prone areas provided an average of US$11,000 per hectare a year in avoided storm damages.




Read more:
Rising seas allow coastal wetlands to store more carbon


Pacific nations benefit most

The degree to which coastal wetlands provide storm protection varies between countries (and within countries). Key factors are storm probability, amount of built infrastructure in storm-prone areas, if wetlands are in storm-prone areas, and coastal conditions.

The top five countries in terms of annual avoided damages (all in 2015 US dollar values) are the United States (US$200 billion), China (US$157 billion), the Philippines (US$47 billion), Japan (US$24 billion) and Mexico (US$15 billion).

In terms of lives saved annually, the top five are: China (1,309); the Philippines (976); the United States (469)l India (414); and Bangladesh (360).

Floodwaters inundate Manila suburbs in November 2020 following Typhoon Vamco.
Floodwaters inundate Manila suburbs in November 2020 following Typhoon Vamco.
Ace Morandante/Malacanang Presidential Photographers Division/AP

Other ecosystem services

Coastal wetlands also provide other valuable ecosystem services. They provide nursery habitat for many commercially important marine species, recreational opportunities, carbon sequestration, management of sediment and nutrient run-off, and many other valuable services.

In 2014 I and colleagues estimated the value of other ecosystem services provided by wetlands (over and above storm protection) at about $US 135,000 a hectare a year.

But land-use changes, including the loss of coastal wetlands, has been eroding both services. Since 1900 the world has lost up to 70% of its wetlands (Davidson, 2014).

Preserving and restoring coastal wetlands is a very cost-effective strategy for society, and can significantly increase well-being for humans and the rest of nature.

With the frequency and intensity of tropical cyclones and other extreme weather events projected to further increase, the value of coastal wetlands will increase in the future. This justifies investing much more in their conservation and restoration.The Conversation

Robert Costanza, Professor and VC’s Chair, Crawford School of Public Policy, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Peatlands worldwide are drying out, threatening to release 860 million tonnes of carbon dioxide every year


Shutterstock

Yuanyuan Huang, CSIRO and Yingping Wang, CSIROPeatlands, such as fens, bogs, marshes and swamps, cover just 3% of the Earth’s total land surface, yet store over one-third of the planet’s soil carbon. That’s more than the carbon stored in all other vegetation combined, including the world’s forests.

But peatlands worldwide are running short of water, and the amount of greenhouse gases this could set loose would be devastating for our efforts to curb climate change.

Specifically, our new research in Nature Climate Change found drying peatlands could release an additional 860 million tonnes of carbon dioxide into the atmosphere every year, by around 2100. To put this into perspective, Australia emitted 539 million tonnes in 2019.

To stop this from happening, we need to urgently preserve and restore healthy, water-logged conditions in peatlands. These thirsty peatlands need water.

Peatlands are like natural archives

Peatlands are found across the world: the arctic tundra, coastal marshes, tropical swamp forests, mountainous fens and blanket bogs on subantarctic islands.

They’re characterised by having water-logged soil filled with very slowly decaying plant material (the “peat”) that accumulated over tens of thousands of years, preserved by the low-oxygen environment. This partially decomposed plant debris is locked up in the soils as organic carbon.




Read more:
Peat bogs: restoring them could slow climate change – and revive a forgotten world


Peatlands can act like natural archives, letting scientists and archaeologists reconstruct past climate, vegetation, and even human lives. In fact, an estimated 20,500 archaeological sites are preserved under or within peat in the UK.

As unique habitats, peatlands are home for many native and endangered species of plants and animals that occur nowhere else, such as the white-bellied cinclodes (Cinclodes palliatus) in Peru and Australia’s giant dragonfly (Petalura gigantea), the world’s largest. They can also act as migration corridors for birds and other animals, and can purify water, regulate floods, retain sediments and so on.

Giant dragonfly on a branch
The giant dragonfly (Petalura gigantea) is listed as endangered under NSW environment law.
Christopher Brandis/iNaturalist, CC BY-NC

But over the past several decades, humans have been draining global peatlands for a range of uses. This includes planting trees and crops, harvesting peat to burn for heat, and for other land developments.

For example, some peatlands rely on groundwater, such as portions of the Greater Everglades, the largest freshwater marsh in the United States. Over-pumping groundwater for drinking or irrigation has cut off the peatlands’ source of water.

Together with the regional drier climate due to global warming, our peatlands are drying out worldwide.

What happens when peatlands dry out?

When peat isn’t covered by water, it could be exposed to enough oxygen to fuel aerobic microbes living within. The oxygen allows the microbes to grow extremely fast, enjoy the feast of carbon-rich food, and release carbon dioxide into the atmosphere.

A marsh in Les Sables d Olonne, France. Some peatlands are also a natural sources of methane, which is a more potent greenhouse gas than carbon dioxide.
Arthur Gallois, Author provided

Some peatlands are also a natural source of methane, a potent greenhouse gas with the warming potential up to 100 times stronger than carbon dioxide.

But generating methane actually requires the opposite conditions to generating carbon dioxide. Methane is more frequently released in water-saturated conditions, while carbon dioxide emissions are mostly in unsaturated conditions.




Read more:
Emissions of methane – a greenhouse gas far more potent than carbon dioxide – are rising dangerously


This means if our peatlands are getting drier, we would have an increase in emissions of carbon dioxide, but a reduction in methane emissions.

So what’s the net impact on our climate?

We were part of an international team of scientists across Australia, France, Germany, Netherlands, Switzerland, the US and China. Together, we collected and analysed a large dataset from carefully designed and controlled experiments across 130 peatlands all over the world.

In these experiments, we reduced water under different climate, soil and environmental conditions and, using machine learning algorithms, disentangled the different responses of greenhouse gases.

Our results were striking. Across the peatlands we studied, we found reduced water greatly enhanced the loss of peat as carbon dioxide, with only a mild reduction of methane emissions.

A swamp forest in Peru.
Rupesh Bhomia, Author provided

The net effect — carbon dioxide vs methane — would make our climate warmer. This will seriously hamper global efforts to keep temperature rise under 1.5℃.

This suggests if sustainable developments to restore these ecosystems aren’t implemented in future, drying peatlands would add the equivalent of 860 million tonnes of carbon dioxide to the atmosphere every year by 2100. This projection is for a “high emissions scenario”, which assumes global greenhouse gas emissions aren’t cut any further.

Protecting our peatlands

It’s not too late to stop this from happening. In fact, many countries are already establishing peatland restoration projects.

For example, the Central Kalimantan Peatlands Project in Indonesia aims to rehabilitate these ecosystems by, for instance, damming drainage canals, revegetating areas with native trees, and improving local socio-economic conditions and introducing more sustainable agricultural techniques.

Likewise, the Life Peat Restore project aims to restore 5,300 hectares of peatlands back to their natural function as carbon sinks across Poland, Germany and the Baltic states, over five years.

But protecting peatlands is a global issue. To effectively take care of our peatlands and our climate, we must work together urgently and efficiently.




Read more:
People, palm oil, pulp and planet: four perspectives on Indonesia’s fire-stricken peatlands


The Conversation


Yuanyuan Huang, Research Scientist , CSIRO and Yingping Wang, Chief research scientist, CSIRO

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Half of global methane emissions come from aquatic ecosystems – much of this is human-made


Shutterstock

Judith Rosentreter, Yale University; Alberto Borges, Université de Liège; Ben Poulter, NASA, and Bradley Eyre, Southern Cross UniversityMethane — a greenhouse gas far more potent than carbon dioxide — plays a major role in controlling the Earth’s climate. But methane concentrations in the atmosphere today are 150% higher than before the industrial revolution.

In our paper published today in Nature Geoscience, we show as much as half of global methane emissions come from aquatic ecosystems. This includes natural, human-created and human-impacted aquatic ecosystems — from flooded rice paddies and aquaculture ponds to wetlands, lakes and salt marshes.

Our findings are significant. Scientists had previously underestimated this global methane contribution due to underaccounting human-created and human-impacted aquatic ecosystems.

It’s critical we use this new information to stop rising methane concentrations derailing our attempts to stabilise the Earth’s temperature.

From underwater sediment to the atmosphere

Most of the methane emitted from aquatic ecosystems is produced by micro-organisms living in deep, oxygen-free sediments. These tiny organisms break down organic matter such as dead algae in a process called “methanogenesis”.

Flooded rice paddies
Rice farming releases more methane per year than the entire open ocean.
Shutterstock

This releases methane to the water, where some is consumed by other types of micro-organisms. Some of it also reaches the atmosphere.

Natural systems have always released methane (known as “background” methane). And freshwater ecosystems, such as lakes and wetlands, naturally release more methane than coastal and ocean environments.

Human-made or human-impacted aquatic ecosystems, on the other hand, increase the amount of organic matter available to produce methane, which causes emissions to rise.




Read more:
Emissions of methane – a greenhouse gas far more potent than carbon dioxide – are rising dangerously


Significant global contribution

Between 2000 and 2006, global methane emissions stabilised, and scientists are still unsure why. Emissions began steadily rising again in 2007.

There’s active debate in the scientific community about how much of the renewed increase is caused by emissions or by a decline of “methane sinks” (when methane is eliminated, such as from bacteria in soil, or from chemical reactions in the atmosphere).

We looked at inland, coastal and oceanic ecosystems around the world. While we cannot resolve the debate about what causes the renewed increase of atmospheric methane, we found the combined emissions of natural, impacted and human-made aquatic ecosystems are highly variable, but may contribute 41% to 53% of total methane emissions globally.




Read more:
Feeding cows a few ounces of seaweed daily could sharply reduce their contribution to climate change


In fact, these combined emissions are a larger source of methane than direct anthropogenic methane sources, such as cows, landfill and waste, and coal mining. This knowledge is important because it can help inform new monitoring and measurements to distinguish where and how methane emissions are produced.

Water is a big part of much of our landscape, from mountain rivers to the coastal ocean. This aerial image shows Himalaya rivers, wetlands, lakes and ponds, and the world’s largest mangrove forest (the Sundarbans) at the coast of the tropical Bay of Bengal.
George Allen, Author provided

The alarming human impact

There is an increasing pressure from humans on aquatic ecosystems. This includes increased nutrients (like fertilisers) getting dumped into rivers and lakes, and farm dam building as the climate dries in many places.

In general, we found methane emissions from impacted, polluted and human-made aquatic ecosystems are higher than from more natural sites.

For example, fertiliser runoff from agriculture creates nutrient-rich lakes and reservoirs, which releases more methane than nutrient-poor (oligotrophic) lakes and reservoirs. Similarly, rivers polluted with nutrients also have increased methane emissions.

An aquaculture farm
Coastal aquaculture farms emit up to 430 times more methane per area than coastal habitats.
Shutterstock

What’s particularly alarming is the strong methane release from rice cultivation, reservoirs and aquaculture farms.

Globally, rice cultivation releases more methane per year than all coastal wetlands, the continental shelf and open ocean together.

The fluxes in methane emissions per area of coastal aquaculture farms are 7-430 times higher than from coastal habitats such as mangrove forests, salt marshes or seagrasses. And highly disturbed mangroves and salt marsh sites have significantly higher methane fluxes than more natural sites.

So how do we reduce methane emissions?

For aquatic ecosystems, we can effectively reduce methane emissions and help mitigate climate change with the right land use and management choices.

For example, managing aquaculture farms and rice paddies so they alternate between wet and dry conditions can reduce methane emissions.




Read more:
Climate explained: methane is short-lived in the atmosphere but leaves long-term damage


Restoring salt marsh and mangrove habitats and the flow of seawater from tides is another promising strategy to further reduce methane emissions from degraded coastal wetlands.

We should also reduce the amount of nutrients coming from fertilisers washing into freshwater wetlands, lakes, reservoirs and rivers as it leads to organic matter production, such as toxic algal blooms. This will help curtail methane emissions from inland waters.

These actions will be most effective if we apply them in the aquatic ecosystems that have the greatest contribution of aquatic methane: freshwater wetlands, lakes, reservoirs, rice paddies and aquaculture farms.

This will be no small effort, and will require knowledge across many disciplines. But with the right choices we can create conditions that bring methane fluxes down while also preserving ecosystems and biodiversity.The Conversation

Judith Rosentreter, Postdoctoral Research Fellow, Yale University; Alberto Borges, Research Director FRS-FNRS, Associate Professor at ULiège, Université de Liège; Ben Poulter, Research scientist, NASA, and Bradley Eyre, Professor of Biogeochemistry, Director of the Centre for Coastal Biogeochemistry, Southern Cross University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

We tested tiger snake scales to measure wetland pollution in Perth. The news is worse than expected


Shutterstock

Damian Lettoof, Curtin University; Kai Rankenburg, Curtin University; Monique Gagnon, Curtin University, and Noreen Evans, Curtin University

Australia’s wetlands are home to a huge range of stunning flora and fauna, with large snakes often at the top of the food chain.

Many wetlands are located near urban areas. This makes them particularly susceptible to contamination as stormwater, urban drainage and groundwater can wash metals — such as arsenic, cadmium, lead and mercury — into the delicate ecosystem.

We know many metals can travel up the food chain when they’re present in the environment. So to assess contamination levels, we caught highly venomous tiger snakes across wetlands in Perth, and repurposed laser technology to measure the metals they accumulated.

In our new paper, we show metal contamination in wild wetland tiger snakes is chronic, and highest in human-disturbed wetlands. This suggests all other plants and animals in these wetlands are likely contaminated as well.

34 times more arsenic in wild wetland snakes than captive snakes

Urban growth and landscape modification often introduces metals into the surrounding environment, such as mining, landfill and waste dumps, vehicles and roadworks, and agriculture.

When they reach wetlands, sediments collect and store these metals for hundreds of years. And if a wetland’s natural water levels are lowered, from agricultural draining for example, sediments can become exposed and erode. This releases the metals they’ve been storing into the ecosystem.

A reflective lake, with green vegetation surrounding it
The wetland in Yanchep National Park, Perth, was supposed to be our ‘clean’ comparison site. Its levels of metal contamination was unprecedented.
Shutterstock

This is what we suspect happened in Yanchep National Park’s wetland, which was supposed to be our “clean” comparison site to more urban wetlands. But in a 2020 study looking at sediment contamination, we found this wetland had higher levels of selenium, mercury, chromium and cadmium compared to urban wetlands we tested.

And at Herdsman Lake, our most urban wetland five minutes from the Perth city centre, we found concentrations of arsenic, lead, copper and zinc in sediment up to four times higher than government guidelines.




Read more:
Does Australia really have the deadliest snakes? We debunk 6 common myths


In our new study on tiger snake scales, we compared the metal concentrations in wild wetland tiger snakes to the concentrations that naturally occurs in captive-bred tiger snakes, and to the sediment in the previous study.

We found arsenic was 20-34 times higher in wild snakes from Herdsman Lake and Yanchep National Park’s wetland. And snakes from Herdsman Lake had, on average, eight times the amount of uranium in their scales compared to their captive-bred counterparts.

Tiger snake on the ground, near rubbish.
Our research confirmed snake scales are a good indicator of environmental contamination.
Damian Lettoof, Author provided

Tiger snakes usually prey on frogs, so our results suggest frogs at these lakes are equally as contaminated.

We know for many organisms, exposure to a high concentration of metals is fatally toxic. And when contamination is chronic, it can be “neurotoxic”. This can, for example, change an organism’s behaviour so they eat less, or don’t want to breed. It can also interfere with their normal cellular function, compromising immune systems, DNA repair or reproductive processes, to name a few.

Snakes in general appear relatively resistant to the toxic effects of metal contamination, but we’re currently investigating what these levels of contamination are doing to tiger snakes’ health and well-being.

Our method keeps snakes alive

Snakes can be a great indicator of environmental contamination because they generally live for a long time (over 10 years) and don’t travel too far from home. So by measuring metals in older snakes, we can assess the contamination history of the area they were collected from.

Typically, scientists use liver tissue to measure biological contamination since it acts like a filter and retains a substantial amount of the contaminants an animal is exposed to.

But a big problem with testing the liver is the animal usually has to be sacrificed. This is often not possible when studying threatened species, monitoring populations or working with top predators.

Two black swans in a lake, near cut grass
Sediment in Herdsman Lake had four times higher heavy metal levels than what government guidelines allow.
Shutterstock

In more recent years, studies have taken to measuring metals in external “keratin” tissues instead, which include bird feathers, mammal hair and nails, and reptile scales. As it grows, keratin can accumulate metals from inside the body, and scientists can measure this without needing to kill the animal.

Our research used “laser ablation” analysis, which involves firing a focused laser beam at a solid sample to create a small crater or trench. Material is excavated from the crater and sent to a mass spectrometer (analytical machine) where all the elements are measured.

This technology was originally designed for geologists to analyse rocks, but we’re among the first researchers applying it to snake scales.

Laser ablation atomises the keratin of snake scales, and allowed us to accurately measure 19 contaminants from each tiger snake caught over three years around different wetlands.

Wild tiger snake
Snakes generally appear resistant to the toxic effects of heavy metals.
Kristian Bell/Shutterstock

We need to minimise pollution

Our research has confirmed snake scales are a good indicator of environmental contamination, but this is only the first step.

Further research could allow us to better use laser ablation as a cost-effective technology to measure a larger suite of metals in different parts of the ecosystem, such as in different animals at varying levels in the food chain.

This could map how metals move throughout the ecosystem and help determine whether the health of snakes (and other top predators) is actually at risk by these metal levels, or if they just passively record the metal concentrations in their environment.




Read more:
Our toxic legacy: bushfires release decades of pollutants absorbed by forests


It’s difficult to prevent contaminants from washing into urban wetlands, but there are a number of things that can help minimise pollution.

This includes industries developing strict spill management requirements, and local and state governments deploying storm-water filters to catch urban waste. Likewise, thick vegetation buffer zones around the wetlands can filter incoming water.The Conversation

Damian Lettoof, PhD Candidate, Curtin University; Kai Rankenburg, Researcher, Curtin University; Monique Gagnon, Researcher, Curtin University, and Noreen Evans, Professor, Curtin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Wetlands have saved Australia $27 billion in storm damage over the past five decades



Shutterstock

Obadiah Mulder, University of Southern California and Ida Kubiszewski, Crawford School of Public Policy, Australian National University

Australia is in the midst of tropical cyclone season. As we write, a cyclone is forming off Western Australia’s Pilbara coast, and earlier in the week Queenslanders were bracing for a cyclone in the state’s far north (which thankfully, didn’t hit).

Australia has always experienced cyclones. But here and around the world, climate change means the cyclone threat is growing – and so too is the potential damage bill. Disadvantaged populations are often most at risk.

Our recent research shows 54 cyclones struck Australia in the 50 years between 1967 and 2016, causing about A$3 billion in damage. We found the damages would have totalled approximately A$30 billion, if not for coastal wetlands.

Wetlands such as mangroves, swamps, lakes and lagoons bear the brunt of much storm damage to coast, helping protect us and our infrastructure. But over the past 300 years, 85% of the world’s wetland area has been destroyed. It’s clear we must urgently preserve the precious little wetland area we have left.

A wetland close to coastal development.
Wetland areas provide important protection from cyclones.
Shutterstock

A critical buffer

National disasters cost Australia as much as A$18 billion each year on average. About one-quarter of this is due to cyclone damage.

Wetlands can mitigate cyclone and hurricane damage, by absorbing storm surges and slowing winds. For example in August 2020, Hurricane Laura hit the United States’ midwest. Massive damage was predicted, including a 6.5-metre storm surge extending 65 kilometres inland.

However the surge was one metre at most – largely because the storm drove straight into a massive wetland that absorbed most of the predicted flood.

In Australia, wetlands are lost through intentional infilling or drainage for mosquito control, or to create land for infrastructure and agriculture. They’re also lost due to pollution and upstream changes to water flows.

Caley Valley Wetlands,  next to Adani's Abbot Point coal terminal.
Australia’s wetlands are at risk. Pictured is the Caley Valley Wetlands, next to Adani’s Abbot Point coal terminal. Adani was fined for releasing polluted water into the wetland.
Gary Farr/ACF

Putting a price on cyclone protection

Our research set out to determine the financial value of the storm protection provided by Australia’s wetlands.

We examined the 54 cyclones that struck Australia in the five decades to 2016. We gathered data including:

  • physical damage wrought in each storm swath (or storm path)
  • gross domestic product (GDP) in the storm’s path
  • maximum windspeed during each storm, which helps predict damage
  • total area of wetlands in each swath.

Using a powerful type of statistics called Bayesian analysis, we estimated the extent to which GDP, windspeed and wetland area affected total damage. This allowed us to estimate damage caused in the absence of wetlands.

We found for every hectare of wetland, about A$4,200 per year in cyclone damage was avoided. This means the A$3 billion in cyclone damage over the past 50 years would have totalled approximately A$30 billion, if not for coastal wetlands.




Read more:
Restoring a gem in the Murray-Darling Basin: the success story of the Winton Wetlands


Importantly, the percentage of damage averted falls rapidly as wetland area decreases. And the protection afforded by a single hectare of wetland increases drastically if there are fewer other wetlands in the path of the storm. This makes protecting remaining wetland even more critical.

If the average cyclone path in Australia were to contain around 30,000 hectares of wetlands, it would avert about 90% of potential storm damage. If the wetland area dropped to 3,000 hectares, only about 30% of damage would be averted.

Climate change is making cyclones worse. By 2050, Australia’s annual damage bill could be as high as A$39 billion, assuming current levels of wetlands are maintained.

Seawalls and other artificial structures can be built along the coast to protect from storms. However, research in China has found wetlands are more cost-effective and efficient than man-made structures at preventing cyclone damage.

Unlike man-made structures, wetlands maintain themselves. Their only “cost” is the opportunity cost of not being able to use the land for something else.

People inspect cyclone damage
Wetlands can help prevent cyclone damage, such as this wrought in Queensland during Cyclone Debbie in 2017.
Dan Peled/AAP

Keeping wetlands safe

According to recent analysis by the authors, which is currently under peer review, global wetlands provide US$447 billion (A$657 billion) worth of protection from storms each year.

Of course, wetlands provide benefits beyond storm protection. They store carbon, regulate our climate and control flooding. They also absorb waste including pollutants and carbon, provide animal habitat and places for human recreation.

Wetlands are an incredibly important resource. It’s critical we protect them from development and keep them healthy, so they can continue to provide vital services.




Read more:
Our new model shows Australia can expect 11 tropical cyclones this season


This story is part of a series The Conversation is running on the nexus between disaster, disadvantage and resilience. You can read the rest of the stories here.The Conversation

Obadiah Mulder, PhD Candidate in Computational Biology, University of Southern California and Ida Kubiszewski, Associate Professor, Crawford School of Public Policy, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Scientists at work: Sloshing through marshes to see how birds survive hurricanes



A clapper rail with a fiddler crab in its bill.
Michael Gray, CC BY-ND

Scott Rush, Mississippi State University and Mark Woodrey, Mississippi State University

When storms like Huricane Zeta menace the Gulf Coast, residents know the drill: Board up windows, clear storm drains, gas up the car and stock up on water, batteries and canned goods.

But how does wildlife ride out a hurricane? Animals that live along coastlines have evolved to deal with a world where conditions can change radically. This year, however, the places they inhabit have borne the brunt of 10 named storms, some just a few weeks apart.

As wildlife ecologists, we are interested in how species respond to stresses in their environment. We are currently studying how marsh birds such as clapper rails (Rallus crepitans) have adapted to tropical storms along the Alabama and Mississippi Gulf coast. Understanding how they do this entails wading into marshes and thinking like a small, secretive bird.

Least bittern in marsh grass
A least bittern, one of the smallest species of heron.
Michael Gray, CC BY-ND

Mucky and full of life

Coastal wetlands are critically important ecosystems. They harbor fish, shellfish and wading birds, filter water as it flows through and buffer coastlines against flooding.

You wouldn’t choose a Gulf Coast salt marsh for a casual stroll. There are sharp-pointed plants, such as black needlerush​, and sucking mud. In summer and early fall the marshes are oppressively hot and humid. Bacteria and fungi in the mud break down dead material, generating sulfurous-smelling gases. But once you get used to the conditions, you realize how productive these places are, with a myriad of organisms moving about.

Marsh birds are adept at hiding in dense grasses, so it’s more common to hear them than to see them. That’s why we use a process known as a callback survey to monitor for them.

First we play a prerecorded set of calls to elicit responses from birds in the marsh. Then we determine where we think the birds are calling from and visually estimate the distance from the observer to that spot, often using tools such as laser range finders. We also note the type of ecosystem where we detect the birds – for example, whether they’re in a tidal marsh with emergent vegetation or out in the open on mud flats.

Adult clapper rail calling.

Through this process we’ve been able to estimate the distributions of several species in tidal marshes, including clapper rails, least bitterns (Ixobrychus exilis) and seaside sparrows (Ammospiza maritima). We’ve also plotted trends in their abundance and identified how their numbers can change with characteristics of the marsh.

We’ve walked hundreds of miles through marshes to locate nests and to record data such as nest height, density of surrounding vegetation and proximity to standing water, which provides increased foraging opportunities for rails. Then we revisit the nests to document whether they produce young that hatch and eventually leave. Success isn’t guaranteed: Predators may eat the eggs, or flooding could wash them out of the nest and kill the developing embryos inside.

Salt marshes shelter many types of plants, birds, animals, fish and shellfish.

Rails in the grass

Our research currently focuses on clapper rails, which look like slender chickens with grayish-brown feathers and short tails. Like many other marsh birds, they have longish legs and toes for walking across soft mud, and long bills for probing the marsh surface in search of food. They are found year-round along the Atlantic and Gulf coasts.

Clapper rails typically live in tidal marshes where there is vegetation to hide in and plenty of fiddler crabs, among their frequent foods. Because they are generally common and rely on coastal marshes, they are a good indicator of the health of these coastal areas.

Scientist in marsh holding live Clapper Rail
Ecologist Scott Rush with clapper rail, Pascagoula River Marshes, Mississippi.
Mark Woodrey, CC BY-ND

Water levels in tidal marshes change daily, and clapper rails have some adaptations that help them thrive there. They often build nests in areas with particularly tall vegetation to hide them from predators. And they can raise the height of the nest bowl to protect it against flooding during extra-high or “king” tides and storms. The embryos inside their eggs can survive even if the eggs are submerged for several hours.

When a tropical storm strikes, many factors – including wind speed, flooding and the storm’s position – influence how severely it will affect marsh birds. Typically birds ride out storms by moving to higher areas of the marsh. However, if a storm generates extensive flooding, birds in affected areas may swim or be blown to other locations. We saw this in early June when Hurricane Cristobal blew hundreds of clapper rails onto beaches in parts of coastal Mississippi.

Clapper rails hiding under a breakwater
Clapper rails on a Mississippi beach after Hurricane Cristobal in June 2020.
Mark Woodrey, CC BY-ND

In coastal areas immediately to the east of the eye of a tropical cyclone we typically see a drop in clapper rail populations in the following spring and summer. This happens because the counterclockwise rotation of the storms results in the highest winds and storm surge to the north and east of the eye of the storm.

But typically there’s a strong bout of breeding and a population rebound within a year or so – evidence that these birds are quick to adapt. After Hurricane Katrina devastated the Mississippi Gulf Coast in 2005, however, depending on the type of marsh, it took several years for rail populations to return to their pre-Katrina levels.

Now we’re radio-tagging clapper rails and collecting data that allow us to determine the birds’ life spans. This information helps us estimate when large numbers of birds have died – information that we can correlate with events like coastal hurricanes.

2020 Atlantic hurricane paths
Summary map of the 2020 Atlantic hurricane season, updated Oct. 27.
Master0Garfield/Wikipedia

Losing parts

Tropical storms have shaped coastal ecosystems since long before recorded history. But over the past 150 years humans have complicated the picture. Coastal development – draining marshes, building roads and reinforcing shorelines – is altering natural places that support marsh birds.

Clapper rails and other species have evolved traits that help them offset population losses due to natural disasters. But they can do so only if the ecosystems where they live keep providing them with food, breeding habitat and protection from predators. Coastal development, in combination with rising sea levels and larger tropical storms, can act like a one-two punch, making it increasingly hard for marshes and the species that live in them to recover.

[Deep knowledge, daily. Sign up for The Conversation’s newsletter.]

Biologist Paul Ehrlich has compared species at risk to rivets on an airplane. You might not need every rivet in place for the airplane to fly, but would you fly it through a cyclone if you knew that 10% of its rivets were missing? What about 20%, or 30%? At some point, Ehrlich asserts, nature could lose so many species that it becomes unable to provide valuable services that humans take for granted.

We see coastal marshes as an airplane that humans are piloting through storms. As species and ecosystem services are pummeled, rivets are failing. No one knows where or how the aircraft will land. But we believe that preserving marshes instead of weakening them can improve the chance of a smooth landing.The Conversation

Scott Rush, Assistant Professor of Wildlife Ecology and Management, Mississippi State University and Mark Woodrey, Assistant Research Professor, Mississippi State University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Rising seas allow coastal wetlands to store more carbon



File 20190306 48417 1mvzgzg.jpg?ixlib=rb 1.1
Carbon storage in Australian mangroves can help mitigate climate change.
Shutterstock

Kerrylee Rogers, University of Wollongong; Jeffrey Kelleway, Macquarie University, and Neil Saintilan, Macquarie University

Coastal wetlands don’t cover much global area but they punch well above their carbon weight by sequestering the most atmospheric carbon dioxide of all natural ecosystems.

Termed “blue carbon ecosystems” by virtue of their connection to the sea, the salty, oxygen-depleted soils in which wetlands grow are ideal for burying and storing organic carbon.

In our research, published today in Nature, we found that carbon storage by coastal wetlands is linked to sea-level rise. Our findings suggest as sea levels rise, these wetlands can help mitigate climate change.

Sea-level rise benefits coastal wetlands

We looked at how changing sea levels over the past few millennia has affected coastal wetlands (mostly mangroves and saltmarshes). We found they adapt to rising sea levels by increasing the height of their soil layers, capturing mineral sediment and accumulating dense root material. Much of this is carbon-rich material, which means rising sea levels prompt the wetlands to store even more carbon.

We investigated how saltmarshes have responded to variations in “relative sea level” over the past few millennia. (Relative sea level is the position of the water’s edge in relation to the land rather than the total volume of water within the ocean, which is called the eustatic sea level.)




Read more:
Mangrove forests can rebound thanks to climate change – it’s an opportunity we must take


What does past sea-level rise tell us?

Global variation in the rate of sea-level rise over the past 6,000 years is largely related to the proximity of coastlines to ice sheets that extended over high northern latitudes during the last glacial period, some 26,000 years ago.

As ice sheets melted, northern continents slowly adjusted elevation in relation to the ocean due to flexure of the Earth’s mantle.

Karaaf Wetlands in Victoria, Australia.
Boobook48/flickr, CC BY-NC-SA

For much of North America and Europe, this has resulted in a gradual rise in relative sea level over the past few thousand years. By contrast, the southern continents of Australia, South America and Africa were less affected by glacial ice sheets, and sea-level history on these coastlines more closely reflects ocean surface “eustatic” trends, which stabilised over this period.

Our analysis of carbon stored in more than 300 saltmarshes across six continents showed that coastlines subject to consistent relative sea-level rise over the past 6,000 years had, on average, two to four times more carbon in the upper 20cm of sediment, and five to nine times more carbon in the lower 50-100cm of sediment, compared with saltmarshes on coastlines where sea level was more stable over the same period.

In other words, on coastlines where sea level is rising, organic carbon is more efficiently buried as the wetland grows and carbon is stored safely below the surface.

Give wetlands more space

We propose that the difference in saltmarsh carbon storage in wetlands of the southern hemisphere and the North Atlantic is related to “accommodation space”: the space available for a wetland to store mineral and organic sediments.

Coastal wetlands live within the upper portion of the intertidal zone, roughly between mean sea level and the upper limit of high tide.

These tidal boundaries define where coastal wetlands can store mineral and organic material. As mineral and organic material accumulates within this zone it creates layers, raising the ground of the wetlands.

The coastal wetlands of Broome, Western Australia.
Shutterstock

New accommodation space for storage of carbon is therefore created when the sea is rising, as has happened on many shorelines of the North Atlantic Ocean over the past 6,000 years.

To confirm this theory we analysed changes in carbon storage within a unique wetland that has experienced rapid relative sea-level rise over the past 30 years.




Read more:
Without wetlands, what will protect the Great Barrier Reef?


When underground mine supports were removed from a coal mine under Lake Macquarie in southeastern Australia in the 1980s, the shoreline subsided a metre in a matter of months, causing a relative rise in sea level.

Following this the rate of mineral accumulation doubled, and the rate of organic accumulation increased fourfold, with much of the organic material being carbon. The result suggests that sea-level rise over the coming decades might transform our relatively low-carbon southern hemisphere marshes into carbon sequestration hot-spots.

How to help coastal wetlands

The coastlines of Africa, Australia, China and South America, where stable sea levels over the past few millennia have constrained accommodation space, contain about half of the world’s saltmarshes.

Saltmarsh on the shores of Westernport Bay in Victoria.
Author provided

A doubling of carbon sequestration in these wetlands, we’ve estimated, could remove an extra 5 million tonnes of CO₂ from the atmosphere per year. However, this potential benefit is compromised by the ongoing clearance and reclamation of these wetlands.

Preserving coastal wetlands is critical. Some coastal areas around the world have been cut off from tides to lessen floods, but restoring this connection will promote coastal wetlands – which also reduce the effects of floods – and carbon capture, as well as increase biodiversity and fisheries production.




Read more:
As communities rebuild after hurricanes, study shows wetlands can significantly reduce property damage


In some cases, planning for future wetland expansion will mean restricting coastal developments, however these decisions will provide returns in terms of avoided nuisance flooding as the sea rises.

Finally, the increased carbon storage will help mitigate climate change. Wetlands store flood water, buffer the coast from storms, cycle nutrients through the ecosystem and provided vital sea and land habitat. They are precious, and worth protecting.


The authors would like to acknowledge the contribution of their colleagues, Janine Adams, Lisa Schile-Beers and Colin Woodroffe.The Conversation

Kerrylee Rogers, Associate Professor, University of Wollongong; Jeffrey Kelleway, Postdoctoral Research Fellow in Environmental Sciences, Macquarie University, and Neil Saintilan, Head, Department of Environmental Science, Macquarie University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Protecting wetlands helps communities reduce damage from hurricanes and storms



File 20181009 72133 1o1hr7u.jpg?ixlib=rb 1.1
Protecting coastal wetlands, like this slough in Florida’s Everglades National Park, is a cost-effective way to reduce flooding and storm damage.
NPS/C. Rivas

Siddharth Narayan, University of California, Santa Cruz and Michael Beck, University of California, Santa Cruz

2017 was the worst year on record for hurricane damage in Texas, Florida and the Caribbean from Harvey, Irma and Maria. We had hoped for a reprieve this year, but less than a month after Hurricane Florence devastated communities across the Carolinas, Hurricane Michael has struck Florida.

Coastlines are being developed rapidly and intensely in the United States and worldwide. The population of central and south Florida, for example, has grown by 6 million since 1990. Many of these cities and towns face the brunt of damage from hurricanes. In addition, rapid coastal development is destroying natural ecosystems like marshes, mangroves, oyster reefs and coral reefs – resources that help protect us from catastrophes.

In a unique partnership funded by Lloyd’s of London, we worked with colleagues in academia, environmental organizations and the insurance industry to calculate the financial benefits that coastal wetlands provide by reducing storm surge damages from hurricanes. Our study, published in 2017, found that this function is enormously valuable to local communities. It offers new evidence that protecting natural ecosystems is an effective way to reduce risks from coastal storms and flooding.

Coastal wetlands and flood damage reduction: A collaboration between academia, conservation and the risk industry.

The economic value of flood protection from wetlands

Although there is broad understanding that wetlands can protect coastlines, researchers have not explicitly measured how and where these benefits translate into dollar values in terms of reduced risks to people and property. To answer this question, our group worked with experts who understand risk best: insurers and risk modelers.

Using the industry’s storm surge models, we compared the flooding and property damages that occurred with wetlands present during Hurricane Sandy to the damages that would have occurred if these wetlands were lost. First we compared the extent and severity of flooding during Sandy to the flooding that would have happened in a scenario where all coastal wetlands were lost. Then, using high-resolution data on assets in the flooded locations, we measured the property damages for both simulations. The difference in damages – with wetlands and without – gave us an estimate of damages avoided due to the presence of these ecosystems.

Our paper shows that during Hurricane Sandy in 2012, coastal wetlands prevented more than US$625 million in direct property damages by buffering coasts against its storm surge. Across 12 coastal states from Maine to North Carolina, wetlands and marshes reduced damages by an average of 11 percent.

These benefits varied widely by location at the local and state level. In Maryland, wetlands reduced damages by 30 percent. In highly urban areas like New York and New Jersey, they provided hundreds of millions of dollars in flood protection.

Wetland benefits for flood damage reduction during Sandy (redder areas benefited more from having wetlands).
Narayan et al., Nature Scientific Reports 7, 9463 (2017)., CC BY

Wetlands reduced damages in most locations, but not everywhere. In some parts of North Carolina and the Chesapeake Bay, wetlands redirected the surge in ways that protected properties directly behind them, but caused greater flooding to other properties, mainly in front of the marshes. Just as we would not build in front of a seawall or a levee, it is important to be aware of the impacts of building near wetlands.

Wetlands reduce flood losses from storms every year, not just during single catastrophic events. We examined the effects of marshes across 2,000 storms in Barnegat Bay, New Jersey. These marshes reduced flood losses annually by an average of 16 percent, and up to 70 percent in some locations.

Reductions in annual flood losses to properties that have a marsh in front (blue) versus properties that have lost the marshes in front (orange).
Narayan et al., Nature Scientific Reports 7, 9463 (2017)., CC BY

In related research, our team has also shown that coastal ecosystems can be highly cost-effective for risk reduction and adaptation along the U.S. Gulf Coast, particularly as part of a portfolio of green (natural) and gray (engineered) solutions.

Reducing risk through conservation

Our research shows that we can measure the reduction in flood risks that coastal ecosystems provide. This is a central concern for the risk and insurance industry and for coastal managers. We have shown that these risk reduction benefits are significant, and that there is a strong case for conserving and protecting our coastal ecosystems.

The next step is to use these benefits to create incentives for wetland conservation and restoration. Homeowners and municipalities could receive reductions on insurance premiums for managing wetlands. Post-storm spending should include more support for this natural infrastructure. And new financial tools such as resilience bonds, which provide incentives for investing in measures that reduce risk, could support wetland restoration efforts too.

The dense vegetation and shallow waters within wetlands can slow the advance of storm surge and dissipate wave energy.
USACE

Improving long-term resilience

Increasingly, communities are also beginning to consider ways to improve long-term resilience as they assess their recovery options.

There is often a strong desire to return to the status quo after a disaster. More often than not, this means rebuilding seawalls and concrete barriers. But these structures are expensive, will need constant upgrades as as sea levels rise, and can damage coastal ecosystems.

Even after suffering years of damage, Florida’s mangrove wetlands and coral reefs play crucial roles in protecting the state from hurricane surges and waves. And yet, over the last six decades urban development has eliminated half of Florida’s historic mangrove habitat. Losses are still occurring across the state from the Keys to Tampa Bay and Miami.

Protecting and nurturing these natural first lines of defense could help Florida homeowners reduce property damage during future storms. In the past two years our team has worked with the private sector and government agencies to help translate these risk reduction benefits into action for rebuilding natural defenses.

Across the United States, the Caribbean and Southeast Asia, coastal communities face a crucial question: Can they rebuild in ways that make them better prepared for the next storm, while also conserving the natural resources that make these locations so valuable? Our work shows that the answer is yes.

This is an updated version of an article originally published on Sept. 25, 2017.The Conversation

Siddharth Narayan, Postdoctoral Fellow, Coastal Flood Risk, University of California, Santa Cruz and Michael Beck, Research professor, University of California, Santa Cruz

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Why a wetland might not be wet


File 20181017 17668 1gdarar.png?ixlib=rb 1.1
Wetlands can have decades-long dry periods.
Felicity Burke/The Conversation, CC BY-SA

Deborah Bower, University of New England; Ben Vincent, University of New England; Darren Ryder, University of New England; John Thomas Hunter, University of New England; Lindsey Frost, University of New England; Manu Saunders, University of New England, and Sarah Mika, University of New England

Lake Eyre is one of Australia’s most iconic wetlands, home to thousands of waterbirds that migrate from all over Australia and the world. But it is often dry for decades between floods.

Many people think wetlands are swamps or ponds that die when dry. But unlike many places worldwide, most Australian wetlands have natural wet-dry cycles, with dry spells that can last for decades. Dry phases are necessary for the life cycle of the wetland itself, as well as for many of the plants and animals that live there.




Read more:
Without wetlands, what will protect the Great Barrier Reef?


So, if wetlands are still wetlands when they’re dry, how do you spot one? And what do we need to know about these unique places to protect their wonderful and unique biodiversity?

Fogg Dam wetlands in the Northern Territory are a riot of colour during monsoon season.
Geoff Whalan/Flickr, CC BY-NC

When the rains come

Floods are vital for a wetland. As one fills, water depth can increase rapidly, the temperature falls, and dissolved oxygen is high as turbulent raindrops or floodwaters fill the basin. Within a few hours of wetting, animals and plants that can tolerate the dry periods will hatch, sprout or resume life, and a new aquatic food web begins.

Algae begin blooming, the soil releases nutrients, and tiny aquatic animals like rotifers hatch from dried eggs. Within a week, copepods and other small crustaceans hatch and adult insects like dragonflies arrive to lay their eggs. Huge numbers of waterbirds may flock to the wetland to enjoy the abundant algae and crustaceans. Other critters emerge from hideouts in crayfish burrows, beneath leaf litter or buried in shallow sediment.

When wetlands flood they fill rapidly with life.
Felicity Burke/The Conversation, CC BY

After filling, new plants emerge in distinct zones depending on water depth and how often and long they are wet. Wetland plants produce oxygen and store carbon, two services essential for life on earth. They have evolved many ways to survive through dry times and thrive during the wet.

Some plants, like pondweed, are so adapted to aquatic life that a single stem can grow thin branching leaves underwater and thicker broader leaves above water. This helps the plant to access oxygen underwater while simultaneously maximising the sunlight it receives above water. Both are necessary for growth and survival.




Read more:
As communities rebuild after hurricanes, study shows wetlands can significantly reduce property damage


As the wetland dries, water temperatures increase, dissolved oxygen drops and aquatic animals either leave or prepare to survive the dry times.

Some, like mosquito larvae, have adapted to stagnant water. They breath through siphons on their tail to survive this final drying stage. Once the wetland is completely dry, microbes take over to start breaking down any remaining organic matter and the cycle starts again.

Macquarie Marshes in NSW moves between wet and dry.
Margaret Donald/Flickr, CC BY-ND

Many plants and animals in the wetland die and decompose, enriching the earth. These very fertile soils are the reason why wetlands are so often drained for cropping and grazing. If undisturbed, these nutrients are stored in the soil until the next flood. When completely dry, the wetland may only be evident as a depression of fine soil with a perimeter of sedges or reeds.

Wetlands may stay dry for many decades, while eggs and seeds wait and rest until the next flood. Some eggs (such as shield shrimp) are small enough to be dispersed by the wind, or hitch a ride on waterbirds leaving the area.

The plants, animals and microbes occupying wetlands improve the surrounding landscape, providing pollination, pest control, carbon and nutrient storage, and waste removal. Wetlands store 35% of carbon in only 9% of the earth’s surface, reducing floods and recharging groundwater. Understanding how plants and animals will adapt to the extended dry periods predicted with climate change is increasingly important.

Under dry earth, many plants and creatures wait for the rains to come again.
Felicity Burke/The Conversation, CC BY

A drying climate is particularly concerning for high altitude wetlands that are very restricted in the Australian landscape. They occur on the New England Tablelands and Monaro Plateau and can be rapidly degraded by grazing, cropping, diverting or storing water, or fires that can each destroy thousands of years of peat growth in a few days. Losing these wetlands brings us a step closer to losing threatened species such as the Giant dragonfly and Latham’s snipe that rely on these unique upland wetlands.




Read more:
How wetlands can help us adapt to rising seas


Wetlands are largely threatened by lack of understanding that the quiet dry periods fuel the booming wet periods. It is critical that we know where wetlands are in the landscape, so we can protect them during wet and dry phases. Protecting wetlands even when they’re not wet sustains vital seed and egg banks that kickstart complex food webs linking land and water across Australia’s iconic wetland ecosystems.The Conversation

Deborah Bower, Lecturer in Ecosystem Rehabilitation, University of New England; Ben Vincent, Research officer, University of New England; Darren Ryder, Professor of Aquatic Ecology and Restoration, University of New England; John Thomas Hunter, Adjunct Associate Professor in Landscape Ecology, University of New England; Lindsey Frost, Technical Officer, University of New England; Manu Saunders, Research fellow, University of New England, and Sarah Mika, Research fellow, University of New England

This article is republished from The Conversation under a Creative Commons license. Read the original article.

What the world needs now to fight climate change: More swamps



File 20180911 144473 k9w2ui.jpg?ixlib=rb 1.1
Freshwater cypress swamp, First Landing State Park, Va.
VA State Parks, CC BY

William Moomaw, Tufts University; Gillian Davies, Tufts University, and Max Finlayson, Charles Sturt University

“Drain the swamp” has long meant getting rid of something distasteful. Actually, the world needs more swamps – and bogs, fens, marshes and other types of wetlands.

These are some of the most diverse and productive ecosystems on Earth. They also are underrated but irreplaceable tools for slowing the pace of climate change and protecting our communities from storms and flooding.

Scientists widely recognize that wetlands are extremely efficient at pulling carbon dioxide out of the atmosphere and converting it into living plants and carbon-rich soil. As part of a transdisciplinary team of nine wetland and climate scientists, we published a paper earlier this year that documents the multiple climate benefits provided by all types of wetlands, and their need for protection.

Saltwater wetland, Waquoit Bay Estuarine Research Reserve, Mass.
Ariana Sutton-Grier, CC BY-ND

A vanishing resource

For centuries human societies have viewed wetlands as wastelands to be “reclaimed” for higher uses. China began large-scale alteration of rivers and wetlands in 486 B.C. when it started constructing the Grand Canal, still the longest canal in the world. The Dutch drained wetlands on a large scale beginning about 1,000 years ago, but more recently have restored many of them. As a surveyor and land developer, George Washington led failed efforts to drain the Great Dismal Swamp on the border between Virginia and North Carolina.

Today many modern cities around the world are built on filled wetlands. Large-scale drainage continues, particularly in parts of Asia. Based on available data, total cumulative loss of natural wetlands is estimated to be 54 to 57 percent – an astounding transformation of our natural endowment.

Vast stores of carbon have accumulated in wetlands, in some cases over thousands of years. This has reduced atmospheric levels of carbon dioxide and methane – two key greenhouse gases that are changing Earth’s climate. If ecosystems, particularly forests and wetlands, did not remove atmospheric carbon, concentrations of carbon dioxide from human activities would increase by 28 percent more each year.

Wetland soil core taken from Todd Gulch Fen at 10,000 feet in the Colorado Rockies. The dark, carbon-rich core is about 3 feet long. Living plants at its top provide thermal insulation, keeping the soil cold enough that decomposition by microbes is very slow.
William Moomaw, Tufts University, CC BY-ND

From carbon sinks to carbon sources

Wetlands continuously remove and store atmospheric carbon. Plants take it out of the atmosphere and convert it into plant tissue, and ultimately into soil when they die and decompose. At the same time, microbes in wetland soils release greenhouse gases into the atmosphere as they consume organic matter.

Natural wetlands typically absorb more carbon than they release. But as the climate warms wetland soils, microbial metabolism increases, releasing additional greenhouse gases. In addition, draining or disturbing wetlands can release soil carbon very rapidly.

For these reasons, it is essential to protect natural, undisturbed wetlands. Wetland soil carbon, accumulated over millennia and now being released to the atmosphere at an accelerating pace, cannot be regained within the next few decades, which are a critical window for addressing climate change. In some types of wetlands, it can take decades to millennia to develop soil conditions that support net carbon accumulation. Other types, such as new saltwater wetlands, can rapidly start accumulating carbon.

Arctic permafrost, which is wetland soil that remains frozen for two consecutive years, stores nearly twice as much carbon as the current amount in the atmosphere. Because it is frozen, microbes cannot consume it. But today, permafrost is thawing rapidly, and Arctic regions that removed large amounts of carbon from the atmosphere as recently as 40 years ago are now releasing significant quantities of greenhouse gases. If current trends continue, thawing permafrost will release as much carbon by 2100 as all U.S. sources, including power plants, industry and transportation.

Kuujjuarapik is a region underlain by permafrost in Northern Canada.
Nigel Roulet, McGill University., CC BY-ND

Climate services from wetlands

In addition to capturing greenhouse gases, wetlands make ecosystems and human communities more resilient in the face of climate change. For example, they store flood waters from increasingly intense rainstorms. Freshwater wetlands provide water during droughts and help cool surrounding areas when temperatures are elevated.

Salt marshes and mangrove forests protect coasts from hurricanes and storms. Coastal wetlands can even grow in height as sea level rises, protecting communities further inland.

Saltwater mangrove forest along the coast of the Biosphere Reserve in Sian Ka’an, Mexico.
Ariana Sutton-Grier, CC BY-ND

But wetlands have received little attention from climate scientists and policymakers. Moreover, climate considerations are often not integrated into wetland management. This is a critical omission, as we pointed out in a recent paper with 6 colleagues that places wetlands within the context of the Scientists’ Second Warning to Humanity, a statement endorsed by an unprecedented 20,000 scientists.

The most important international treaty for the protection of wetlands is the Ramsar Convention, which does not include provisions to conserve wetlands as a climate change strategy. While some national and subnational governments effectively protect wetlands, few do this within the context of climate change.

Forests rate their own section (Article 5) in the Paris climate agreement that calls for protecting and restoring tropical forests in developing countries. A United Nations process called Reducing Emissions from Deforestation and Degraded Forests, or REDD+ promises funding for developing countries to protect existing forests, avoid deforestation and restore degraded forests. While this covers forested wetlands and mangroves, it was not until 2016 that a voluntary provision for reporting emissions from wetlands was introduced into the U.N. climate accounting system, and only a small number of governments have taken advantage of it.

Models for wetland protection

Although global climate agreements have been slow to protect wetland carbon, promising steps are starting to occur at lower levels.

Ontario, Canada has passed legislation that is among the most protective of undeveloped lands by any government. Some of the province’s most northern peatlands, which contain minerals and potential hydroelectric resources, are underlain by permafrost that could release greenhouse gases if disturbed. The Ontario Far North Act specifically states that more than 50 percent of the land north of 51 degrees latitude is to be protected from development, and the remainder can only be developed if the cultural, ecological (diversity and carbon sequestration) and social values are not degraded.

Also in Canada, a recent study reports large increases in carbon storage from a project that restored tidal flooding to a saltmarsh near Aulac, New Brunswick, on Canada’s Bay of Fundy. The marsh had been drained by a dike for 300 years, causing loss of soil and carbon. But just six years after the dike was breached, rates of carbon accumulation in the restored marsh averaged more than five times the rate reported for a nearby mature marsh.

Ten feet (3 meters) of carbon-rich soil accumulation along Dipper Harbour, Bay of Fundy, New Brunswick, Canada, has been radiocarbon dated to have accumulated over 3,000 years.
Gail Chmura, McGill University, CC BY-ND

In our view, instead of draining swamps and weakening protections, governments at all levels should take action immediately to conserve and restore wetlands as a climate strategy. Protecting the climate and avoiding climate-associated damage from storms, flooding and drought is a much higher use for wetlands than altering them for short-term economic gains.

This article has been updated to add a link to the Scientists’ Second Warning to Humanity.The Conversation

William Moomaw, Professor Emeritus of International Environmental Policy, Tufts University; Gillian Davies, Visiting Scholar, Global Development and Environment Institute, Tufts University, and Max Finlayson, Director, Institute for Land, Water and Society, Charles Sturt University

This article is republished from The Conversation under a Creative Commons license. Read the original article.