Noise from offshore oil and gas surveys can affect whales up to 3km away



File 20170817 16245 4ucjdu
Migrating humpback whales avoid loud, nearby sounds.
BRAHSS, Author provided

Rebecca Dunlop, The University of Queensland and Michael Noad, The University of Queensland

Air guns used for marine oil and gas exploration are loud enough to affect humpback whales up to 3km away, potentially affecting their migration patterns, according to our new research.

Whales’ communication depends on loud sounds, which can travel very efficiently over distances of tens of kilometres in the underwater environment. But our study, published today in the Journal of Experimental Biology, shows that they are affected by other loud ocean noises produced by humans.

As part of the BRAHSS (Behavioural Response of Humpback whales to Seismic Surveys) project, we and our colleagues measured humpback whales’ behavioural responses to air guns like those used in seismic surveys carried out by the offshore mining industry.


Read more: It’s time to speak up about noise pollution in the oceans


Air guns are devices towed behind seismic survey ships that rapidly release compressed air into the ocean, producing a loud bang. The sound travels through the water and into the sea bed, bouncing off various layers of rock, oil or gas. The faint echoes are picked up by sensors towed by the same vessel.

During surveys, the air guns are fired every 10-15 seconds to develop a detailed geological picture of the ocean floor in the area. Although they are not intended to harm whales, there has been concern for many years about the potential impacts of these loud, frequent sounds.

Sound research

Although it sounds like a simple experiment to expose whales to air guns and see what they do, it is logistically difficult. For one thing, the whales may respond to the presence of the ship towing the air guns, rather than the air guns themselves. Another problem is that humpback whales tend to show a lot of natural behavioural variability, making it difficult to tease out the effect of the air gun and ship.

There is also the question of whether any response by the whales is influenced more by the loudness of the air gun, or how close the air blast is to the whale (although obviously the two are linked). Previous studies have assumed that the response is driven primarily by loudness, but we also looked at the effect of proximity.

We used a small air gun and a cluster of guns, towed behind a vessel through the migratory path of more than 120 groups of humpback whales off Queensland’s sunshine coast. By having two different sources, one louder than the other, we were able to fire air blasts of different perceived loudness from the same distance.

We found that whales slowed their migratory speed and deviated around the vessel and the air guns. This response was influenced by a combination of received level and proximity; both were necessary. The whales were affected up to 3km away, at sound levels over 140 decibels, and deviated from their path by about 500 metres. Within this “zone”, whales were more likely to avoid the air guns.

Each tested group moved as one, but our analysis did not include the effects on different group types, such as a female with calf versus a group of adults, for instance.

The ConversationOur results suggest that when regulating to reduce the impact of loud noise on whale behaviour, we need to take into account not just how loud the noise is, but how far away it is. More research is needed to find out how drastically the whales’ migration routes change as a result of ocean mining noise.

Rebecca Dunlop, Senior Lecturer in Physiology, The University of Queensland and Michael Noad, Associate Professor, The University of Queensland

This article was originally published on The Conversation. Read the original article.

Even ugly animals can win hearts and dollars to save them from extinction



File 20170616 31517 1k53u9e
It can be easier to raise money to aid animals like these African elephants than species that are more threatened with extinction but get humans less excited.
www.shutterstock.com

Diogo Veríssimo, Johns Hopkins University and Bob Smith, University of Kent

The Earth is home to millions of species, but you wouldn’t know it from the media’s obsession with only a few dozen animals like tigers and gorillas.

This narrow focus makes the most of popular fascination with large and cute creatures. Conservationists take advantage of these nonhuman celebrities to raise awareness about important issues and to seek donations to help save endangered animals. Given the multi-billion-dollar funding shortfall for nature conservation, public support is crucial.

Very popular species attract the most wildlife conservation funding. But what about the Nimba otter shrew, the Cuban greater funnel-eared bat or other threatened yet obscure species? And don’t all imperiled green spaces, not just the homes of snow leopards and orangutans, deserve attention?

Mining activities have destroyed parts of the Nimba otter shrew’s habitat.
Flickr/Julian Bayliss, CC BY-NC-SA

Conventional wisdom counsels sticking with the old approach to fundraising, and conservationists tend to see animals like bats and snakes as lost causes. As conservation scientists, we wanted to discover whether marketing could perhaps rescue these species. If companies can successfully sell mops and other humdrum products, why can’t conservationists raise money to save the unglamorous giant golden mole – even if it looks like a small cushion with a nose poking out of it? We sought the answer to this question by measuring the links between marketing efforts and conservation fundraising success.

Who will save the giant golden mole?
Gary Bronner, CC BY-NC-SA

Two different animals

Our recently published study contrasted online fundraising campaigns by two conservation charities: World Wildlife Fund-US (WWF-US) and the Zoological Society of London (ZSL), through its EDGE of Existence program.

These campaigns are very different. WWF-US raises money for a broad set of projects, addressing global issues from climate change and illegal wildlife trade to forest and ocean conservation. The EDGE campaign we analyzed focuses on saving 100 threatened mammal species.

Given these contrasting approaches, we wanted to see if and when marketing makes a difference. To do this we also had to account for whether the species used for fundraising mattered. This involved measuring an animal’s “appeal,” which depends on lots of factors, such as whether it is cute, large or famous. To see which animals were the most appealing, we showed 850 conservation supporters a random selection of the animal photos featured on the WWF-US and EDGE websites and asked these volunteers to rank the photos.

Let’s first consider WWF-US, which raises money through animal “adoptions.” When people donate, they signal their support for the well-known species. In return they get a stuffed toy, photos of the animals and adoption certificates. But the money WWF-US raised funds projects that benefit more than just the “adopted” animals.

We found two factors influenced WWF-US donors’ choices: the animals’ appeal and the degree of the threat of their extinction. Marketing efforts played no role. No matter how they were described or presented, the most appealing species always drew more donations. This was probably because people already knew and liked them.

The EDGE program raises money in a different way. It supports some universally familiar animals, like the Asian elephant, but many of the species it helps are less appealing to humans, including a variety of rats and bats. Each of these species is shown on their website, so people can click on a link to find out more and then donate.

We found that while people were generally more interested in donating to appealing species, the amount of marketing also made a difference. The animals EDGE actively promoted fared better with potential donors – including some homely ones. Similarly, pitches for the species shown higher up on EDGE’s site got more donors interested in funding the animals’ conservation.


https://cdn.theconversation.com/infographics/105/e3ab8b91f50afedb8ecf0ed8b623bf6f46fc331c/site/index.html

A way to save the rodents

EDGE’s track record suggests that using marketing techniques to raise money for wildlife conservation could increase donations aimed at helping less popular species. To estimate the difference that marketing could make in this regard, we created a mathematical model based on our analysis of the EDGE data. This is an equation that predicts donations based on a species’ appeal (which is fixed) and whether it was promoted by EDGE or shown high up on the website (which we could vary).

Partnering with an EDGE staff member, we then modeled different fundraising scenarios for the 10 most appealing and 10 least appealing animals, as rated by our conservation volunteers. With no marketing effort, our model predicted that the most appealing species would raise 10 times more money than the least appealing animals. This was in line with what we expected and supported the WWF-US strategy.

However, things changed when we modeled the impact from EDGE’s marketing efforts. If the group highlighted the least appealing species by making them prominent on its website, our model predicted a 26-fold increase in donations for those specific animals. This suggests that charities could raise conservation funds for species like bats and rodents, if they tried hard enough.

Our findings indicate that conservationists have more options than they may realize to raise money to aid wildlife.

When can marketing boost donations?

But when should they fundraise for more obscure species? The answer depends on how threatened the animal is, how much help it already gets, the cost of saving it and the chances of the project succeeding. When conservationists focus only on saving elephants, rhinos or other popular species, they often overlook these considerations.

That doesn’t mean WWF-US should end its focus on familiar animals. Since the money it raises funds broad projects that benefit more than just the “adopted” animals, catering to widespread fixations with particular species makes sense.

To be sure, our research did not measure whether marketing efforts pay off by increasing donations overall. But including more kinds of species in a campaign may boost donations – especially for endangered frogs and tarantulas or other underappreciated animals – and even plants.

It might also increase the total number of species in the public eye, highlighting the many ways everyone can help save wildlife.

Conservationists often complain animals that are important to save can get ignored. Our results suggest that they should stop complaining and start marketing.

The ConversationThe graphic containing endangered animals in this article that was originally published on June 21, 2017 was corrected on July 5, 2017. The new version contains the top five animals for EDGE’s fundraising. The old version misidentified and featured the other five in the group’s top 10.

Diogo Veríssimo, David H. Smith Conservation Research Fellow, Johns Hopkins University and Bob Smith, Director, Durrell Institute of Conservation and Ecology, University of Kent

This article was originally published on The Conversation. Read the original article.

Land clearing isn’t just about trees – it’s an animal welfare issue too



File 20170704 10704 10o5p14
This quenda seems to have been a victim of land clearing.
Colin Leonhardt/Birdseyeviewphotography.com.au, Author provided

Hugh Finn, Curtin University

Tens of millions of wild animals are killed each year by land clearing across Australia, according to our research on the harm done to animals when native vegetation is removed for agricultural, urban and industrial development.

As my colleague Nahiid Stephens and I point out in our study, this harm to animals is largely invisible, unlike the obvious effects of clearing on trees and other plants. But just because something is invisible, that does not mean it should be ignored.

We argue that reforms are necessary to ensure that decision-makers take wild animals’ welfare into account when assessing development proposals and land clearing applications.

How does land clearing harm animals?

Land clearing harms animals in two basic ways. First, they may be killed or injured when native vegetation is removed, typically through the use of earth-moving machinery. For example, animals may suffer traumatic injuries or be smothered when vegetation is cut or soil and debris are shifted.

Second, the removal of native vegetation puts animals in harm’s way. Those that survive the clearing process will be left in an environment that is typically hostile, unfamiliar or unsuitable. Animals are likely to find themselves in landscapes that are devoid of food and shelter but filled with predators, disease, and increased aggression from members of their own species as they struggle to make a living.

Land clearing causes animals to die in ways that are physically painful and psychologically distressing. Animals will also suffer physical injuries and other pathological conditions that may persist for days or months as they try to survive in cleared areas or other environments to which they are displaced.

Many reptiles and mammals are territorial or have small home ranges, and thus have strong associations with small areas of habitat. Koalas in urban areas, for example, tend to rely on particular food trees. Likewise, lizards and snakes often rely on particular microhabitat features such as logs, rocks, and leaf litter to provide the combination of temperature and humidity that they need to survive.

Laws are not protecting animals

Land clearing remains a fundamental pressure on the Australian environment. While the regulatory frameworks for land clearing vary greatly across the Australian states and territories, the principal statutes that govern native vegetation clearance in most jurisdictions typically contain some sort of express recognition of the harm that land clearing causes, such as the loss or fragmentation of habitat, land degradation, and salinity.

Habitat lost: land cleared for the now-discontinued Perth Freight Link road project.
Colin Leonhardt/Birdseyeviewphotography.com.au, Author provided

Yet these regulations are uniformly silent on the issue of how land clearing harms animals. No state or territory has developed a clear framework to evaluate this harm, let alone minimise it in future development proposals.

This failure to recognise animal welfare as a significant issue for decision-making about land clearing is troubling, especially given the scale of current land clearing. In Queensland, for example, an estimated 296,000 hectares of woody vegetation was cleared in 2014-15, nearly all of which was for the purpose of converting native vegetation to pasture. In our study we estimate that, on the basis of previous studies and current estimates of clearing rates, land clearing in Queensland and New South Wales combined kills more than 50 million birds, mammals and reptiles each year.

What reforms are necessary?

We suggest that two basic reforms are required. First, state and territory parliaments should amend the laws that govern environmental impact assessments and native vegetation clearance, to require decision-makers to take animal welfare into account when assessing land clearing applications.

Second, we urgently need accurate ways to evaluate the harm that proposed clearing actions may cause to individual animals. Animal welfare is broadly recognised as an important social concern, so it makes sense that in a situation where we know animals are being harmed, we should take steps to measure and prevent that harm.

The basic aim of any reform should be to ensure that the harm that land clearing causes to individual wild animals is appropriately considered in all forms of environmental decision-making and that such evaluations are based on clear and objective criteria for animal welfare.

At a minimum, those who apply to clear native vegetation should be required to provide an estimate of the number and type of native animals that will be killed by the proposed land clearing. This would ensure that all parties – applicants, decision-makers, and the community – understand the harm that the clearing would cause. These estimates could be made by using population density information for species that are likely to be affected – an approach that has been already been used.

We also need to revise our perceptions about the usefulness and necessity of land clearing in Australia. A better idea of what is “acceptable” would include not only the environmental costs of clearing an area of native vegetation, but also the individual suffering that animals will experience.

Issues of causation and responsibility are critical here. While it’s unlikely that someone who wants to clear land actually wants native animals to suffer, such suffering will nevertheless be an inevitable consequence. The relevant question is not whether animals will be killed and harmed when land is cleared, but how much of that harm will occur, how severe it will be, and whether it ought to be avoided.

The ConversationIf such harm is deemed necessary – based on an accepted system for weighing the potential benefits and harms – the next question is how the harm to animals can be minimised by, for example, keeping the amount of vegetation to be cleared to a minimum.

Hugh Finn, Lecturer, Curtin University

This article was originally published on The Conversation. Read the original article.

Explainer: what is tularemia and can I catch it from a possum?


File 20170623 27895 1f3iigw
Researchers have found Australia’s first confirmed case of tularemia in a ringtail possum.
Andrew Mercer/flickr, CC BY-NC-SA

John-Sebastian Eden, University of Sydney

Tularemia is a disease that affects humans and other animals. It is caused by infection with the bacterium Francisella tularensis and is commonly spread by biting insects or by direct contact with an infected animal.

Human infection is less common than infection in small animals like rabbits and rodents. But it is important human cases are recognised and diagnosed quickly because without appropriate treatment the disease can be life-threatening.

Our team has recently confirmed its presence in Australia in samples taken from ringtail possums who died in two outbreaks in early 2000.

While this is clearly a newly identified risk to public health, it’s important to recognise how rare the disease is and how well the infection responds to treatment.

How is it transmitted to humans?

Tularemia is a “zoonotic disease”, an animal disease that can be transmitted to humans. The most common way someone might be infected is by being directly exposed to an infected animal through a bite or scratch, or even handling infected tissue, like when hunters skin animals.


Further reading: First Hendra, now bat lyssavirus, so what are zoonotic diseases?


Human infections can also occur indirectly from an animal through a biting insect vector, like ticks or deer flies. So, a fly might feed on an infected animal then also bite a human, transferring the bacterium via its mouth parts.

Humans can also catch the disease from animals by coming into contact with environmental sources such as water or soil that have been contaminated by an infected carcass. The bacteria might then infect humans through the eye, or an open wound, or even if digested from contaminated food.

How rare is tularemia in humans?

Fortunately, human cases of tularemia are relatively rare and appear to be limited to the Northern Hemisphere. Yet, even in the US, where the disease is well described, human cases rarely exceed 100-200 a year.

Australia has long been considered tularemia-free. So, it was surprising when, in 2011, two human cases were reported in Tasmania after exposure to ringtail possums.

While diagnostic tests on the patients’ samples suggested an infection with the bacterium, no samples were obtained from the offending possums to corroborate the unusual infection.

More importantly, researchers couldn’t grow and isolate the bacteria from any of the patients’ samples. Follow-up surveys of native animals in the area failed to detect the organism. So, the story of tularemia in Australia had, until recently, remained somewhat of a mystery.

How can I protect myself?

While our study has confirmed the presence of tularemia in Australia and identified ringtail possums as a reservoir for the disease, no-one knows if it’s present in other wildlife along the east coast.


Further reading: Bites and parasites: vector-borne diseases and the bugs spreading them


So, to minimise the chances of infection, take care when handling sick, distressed or dead animals. Similarly, when travelling in an area with ticks or other biting insects, wear protective clothing and repellents.

How do I know if I’m infected?

In humans, tularaemia symptoms can vary but typically depend on how someone was exposed.

An ulcer forms at the site of infection, like this one on someone’s hand.
CDC Public Health Image Library/Wikimedia

The most common form of disease in humans is known as ulceroglandular tularemia, which develops after an infected animal or insect bites or wounds you. As the name suggests, you develop a sudden fever, an ulcer forms at the site of infection, and the lymph glands near the wound swell.

Another and perhaps more serious form of the disease is pneumonic tularemia. This can occur when you breathe in bacteria from contaminated dust or aerosols, and your lungs become infected. Symptoms include cough, chest pain and difficulty breathing, and can be difficult to treat.

Yes, it can be treated

While infection can potentially cause severe disease and can kill, timely treatment with commonly available antibiotics should clear the infection. However, it is important the disease is correctly diagnosed as the most effective antibiotics (such as streptomycin) are often different to those used to treat other bacterial skin or wound infections.

There have been no reported cases of humans infecting other humans. While being exposed to someone infected with tularemia might pose some risk, the rarity of the cases and the effectiveness of antibiotic treatments to control the infection minimise this.

Looking to the future

What our study highlights more than anything is the need to investigate wildlife disease to understand potential risks to our environment and our own health.

So, we plan to conduct further surveys of animal and tick-borne diseases to explore undiscovered pathogens that may affect public health or impact our native animal populations.

We are also applying the same technology used to confirm the presence of tularemia in Australian wildlife for the first time to investigate other cold cases of the animal disease world – neglected and undiagnosed animal diseases.

We do this using a powerful technique called “RNA-Seq”, short for RNA sequencing, to analyse samples. With RNA-Seq, there’s no need to know what diseases might be present; researchers sequence all the genetic material in the sample, whether it has come from a host such as a human or animal, or from an infecting organism such as a virus, bacteria, or parasite.

This “metagenome” data is then pieced together and compared to databases containing genome data from previously sequenced pathogens.

The ConversationThrough these studies, we hope to reveal the full diversity of pathogens present in our native wildlife, and particularly, those that sit at the human-animal interface, a fault line that allows microbes to flow from one host to another. Most novel emerging diseases are spill-overs from zoonotic sources, so this research is critical for human health.

John-Sebastian Eden, NHMRC early career fellow, Faculty of Science, University of Sydney

This article was originally published on The Conversation. Read the original article.

Zoos aren’t Victorian-era throwbacks: they’re important in saving species



File 20170614 21315 17v6lu
A meerkat at the National Zoo and Aquarium in Canberra. The Zoo has recently announced an expansion that will double its size.
AAP Image/Stefan Postles

Alienor Chauvenet, The University of Queensland

The National Zoo and Aquarium in Canberra recently announced a new expansion that will double its size, with open range space for large animals like white rhinos and cheetahs.

As well as improving visitors’ experience, the expansion is touted as a way to improve the zoo’s breeding program for threatened animals. However, zoos have received plenty of criticism over their capacity to educate, conserve, or even keep animals alive.

But while zoos began as 19th-century menageries, they’ve come a long way since then. They’re responsible for saving 10 iconic species worldwide. Without captive breeding and reintroduction efforts, there might be no Californian Condor or Przewalski’s Horse – the only truly wild horse – left in the wild.

Australian zoos form part of a vital global network that keeps our most vulnerable species alive.

What is the role of zoos for conservation?

Although Canberra Zoo is relatively new compared with others in Australia – Melbourne zoo, for example, was opened in 1862 – it adds to a collection of conservation-orientated establishments.

In Australia, Taronga Conservation Society Australia, the Royal Melbourne Zoological Gardens, Adelaide Zoo and Perth Zoo are all members of the World Association of Zoos and Aquariums (WAZA). WAZA is an international organisation that aims to guide and support zoos in their conservation missions, including captive breeding, reintroductions into the wild, habitat restoration, and genetic management.

From the perspective of nature conservation, zoos have two major roles: educating the public about the plight of our fauna, and contributing to species recovery in the wild.

Conservation education is deeply embedded in the values of many zoos, especially in Australia. The evidence for the link between zoo education and conservation outcomes is mixed, however zoos are, above anybody else, aimed at children. Evidence shows that after guided experiences in zoos children know more about nature and are more likely to have a positive attitude towards it. Importantly, this attitude is transferable to their parents.

Zoos contribute unique knowledge and research to support field conservation programs, and thus species recovery. In Australia, zoos are directly involved in monitoring of free-ranging native fauna and investigations into emerging diseases. Without zoos many fundamental questions about a species’ biology could not be answered, and we would lack essential knowledge on animal handling, husbandry and care.

Through captive breeding, zoos can secure healthy animals that can be introduced to old or new habitats, or bolster existing wild populations. For example, a conservation manager at Taronga Zoo told me they’ve released more than 50,000 animals that were either bred on-site or rehabilitated in their wildlife hospitals (another important function of zoos).

Criticisms of captive breeding programs

The critics of captive breeding as a conservation strategy raise several concerns. Captive bred population can lose essential behavioural and cultural adaptations, as well as genetic diversity. Large predators – cats, bears and wolves – are more likely to be affected.

Some species, such as frogs, do well in captivity, breed fast, and are able to be released into nature with limited or no training. For others, there is usually a concerted effort to maintain wild behaviour.

There’s a higher chance of disease wiping out zoo populations due to animal proximity. In 2004 the largest tiger zoo in Thailand experienced an outbreak of H5N1 bird flu after 16 tigers were fed contaminated raw chicken; ultimately 147 tigers died or were put down.

However, despite these risks, research shows that reintroduction campaigns improve the prospects of endangered species, and zoos can play a crucial role in conservation. Zoos are continually improving their management of the genetics, behaviour and epidemiology of captive populations.

They are the last resort for species on the brink of extinction, such as the Orange-bellied Parrot or the Scimitar-horned Oryx, and for those facing a threat that we cannot stop yet, such as amphibians threatened by the deadly Chytrid fungus.

Orange-bellied parrots are ranked among the most endangered species on the planet – their survival depends on zoos.
Chris Tzaros/AAP

Zoos need clear priorities

A cost-benefit approach can help zoos prioritise their actions. Taronga, for example, uses a prioritisation system to decide which projects to take on, with and without captive breeding. Their aim is to a foresee threats to wildlife and ecosystems and implement strategies that ensure sustainability.

Developing prioritisation systems relies on clearly defined objectives. Is there value in keeping a species in captivity indefinitely, perhaps focusing only on education? Is contributing to a wild population the end goal, requiring both education and active conservation?

Once this is defined, zoos can assess the benefit and costs of different actions, by asking sometimes difficult questions. Is a particular species declining in the wild? Can we secure a genetically diverse sample before it is too late? Will capturing animals impact the viability of the wild population? How likely is successful reintroduction? Can we provide enough space and stimulation for the animals, and how expensive are they to keep?

Decision science can help zoos navigate these many factors to identify the best species to target for active captive conservation. In Australia, some of the rapidly declining northern mammals, which currently do not have viable zoo populations, could be a good place to start.

Partnerships with governmental agencies, universities and other groups are essential to all of these activities. Zoos in Australia are experts at engaging with these groups to help answer and address wildlife issues.


The ConversationAlienor Chauvenet would like to acknowledge the contribution of Hugh Possingham to this article, and thank Nick Boyle and Justine O’Brien from Taronga Conservation Society Australia for the information they provided.

Alienor Chauvenet, Postdoctoral Research Fellow, The University of Queensland

This article was originally published on The Conversation. Read the original article.