A hidden toll: Australia’s cats kill almost 650 million reptiles a year



File 20180625 152146 10y0h61.jpg?ixlib=rb 1.1
A feral cat snapped by a remote camera in the wild.
NT government, Author provided

John Woinarski, Charles Darwin University; Brett Murphy, Charles Darwin University; Chris Dickman, University of Sydney; Sarah Legge, Australian National University, and Tim Doherty, Deakin University

Cats take a hefty toll on Australia’s reptiles – killing an estimated 649 million of them every year, including threatened species – according to our new research published in the journal Wildlife Research.

This follows the earlier discovery that cats take a similarly huge chunk out of Australian bird populations. As we reported last year, more than a million Australian birds are killed by cats every day. Since their introduction to Australia, cats have also driven many native mammal species extinct.




Read more:
For whom the bell tolls: cats kill more than a million Australian birds every day


We collated information from about 100 previous local studies of cats’ diets across Australia. These studies involved teasing apart the contents of more than 10,000 samples of faeces or stomachs from cats collected as part of management programs.

We tallied the number of reptiles found in these samples, and then scaled it up to Australia’s estimated cat population of between 2.1 million and 6.3 million. We also collated information from museums and wildlife shelters on the various animals that had been brought in after being killed or injured by cats.

We calculate that an average feral cat kills 225 reptiles per year, so the total feral cat population kills 596 million reptiles per year. This tally will vary significantly from year to year, because the cat population in inland Australia fluctuates widely between drought and rainy years.

On the hunt.
NT government, Author provided

We also estimated that the average pet cat kills 14 reptiles per year. That means that Australia’s 3.9 million pet cats kill 53 million reptiles in total each year. However, there is much less firm evidence to quantify the impact of pet cats, mainly because it is much more straightforward to catch and autopsy feral cats to see what they have been eating, compared with pet cats.

Binge eaters

According to our study, cats have been known to kill 258 different Australian reptiles (snakes, lizards and turtles – but not crocodiles!), including 11 threatened species.

The cat autopsies revealed that some cats binge on reptiles, with many cases of individual cats having killed and consumed more than 20 individual lizards within the previous 24 hours. One cat’s stomach was found to contain no less than 40 lizards.

Cat stomach contents, including several reptile parts.
Arid Recovery, Author provided

Such intensive predation probably puts severe pressure on local populations of some reptile species. There is now substantial evidence that cats are a primary cause of the ongoing decline of some threatened Australian reptile species, such as the Great Desert Skink.

By our estimate, the average Australian feral cat kills four times more lizards than the average free-roaming cat in the United States (which kills 59 individuals per year). But there are many more such cats in the US (between 30 million and 80 million), so the total toll on reptiles is likely similar.




Read more:
The war on feral cats will need many different weapons


The conservation of the Australian reptile fauna has been accorded lower public profile than that of many other groups. However, a recent international program has nearly completed an assessment of the conservation status of every one of Australia’s roughly 1,000 lizard and snake species.

Our research provides yet more evidence of the harm that cats are wreaking on Australia’s native wildlife. It underlines the need for more effective and strategic control of Australia’s feral cats, and for more responsible ownership of pet cats.

Pet cats that are allowed to roam will kill reptiles, birds and other small animals. Preventing pet cats from roaming will help the cats live longer and healthier lives – not to mention saving the lives of wildlife.


The ConversationThe authors acknowledge the contribution of Russell Palmer, Glenn Edwards, Alex Nankivell, John Read and Dani Stokeld to this research.

John Woinarski, Professor (conservation biology), Charles Darwin University; Brett Murphy, Senior Research Fellow, Charles Darwin University; Chris Dickman, Professor in Terrestrial Ecology, University of Sydney; Sarah Legge, Associate Professor, Australian National University, and Tim Doherty, Research Fellow, Deakin University

This article was originally published on The Conversation. Read the original article.

Advertisements

Nature’s traffic engineers have come up with many simple but effective solutions



File 20180524 90281 mi9czk.jpg?ixlib=rb 1.1
Ant colonies direct traffic flows of millions of individuals along the best routes – army ants even manage inbound and outbound lanes – but how?
Geoff Gallice/Wikimedia, CC BY

Tanya Latty, University of Sydney

This is the third article in our series, Moving the Masses, about managing the flow of crowds of individuals, be they drivers or pedestrians, shoppers or commuters, birds or ants.


As more and more people move to cities, the experience of being stuck in impenetrable gridlock becomes an increasingly common part of the human experience. But managing traffic isn’t just a human problem. From the tunnels built by termites to the enormous underground networks built by fungi, life forms have evolved incredible ways of solving the challenge of moving large numbers of individuals and resources from one place to another.

But how do natural systems – which lack engineers or in some cases even brains – build and manage their transportation networks?

Building a transport network

Perhaps the most familiar animal transport systems are the trail networks of ants. As ants walk through their environment they leave behind tiny droplets of an attractive chemical called a pheromone. Other ants are attracted to the chemical bouquet and as they follow it they add to the trail by leaving their own droplets of pheromone. Like Hansel and Gretel leaving a trail of breadcrumbs, ants use their trails to find their way back home.

The Argentine ant (Linepithema humile) builds chemical trail networks that connect their nests using the shortest possible path. Connecting points via the shortest path saves on construction costs by using less material and requiring less effort.

Argentine ant trails connect nests using an approximation of the shortest path. The grey lines are ant trails visualised by overlaying several photos of the trail system. The inset shows the actual shortest path solution.
Tanya Latty- supplied

Yet calculating the shortest path between a set of points is a very difficult task. So how do ants, which have brains smaller than a pinhead, figure out the solution?

The answer is elegant in its simplicity. Short, direct paths are faster to traverse, and so more pheromone gets deposited by the higher density of ants. As ants are more likely to follow stronger pheromone trails, shorter, more direct trails attract more ants than do long meandering trails.

Meanwhile, fewer and fewer ants travel along the long paths, as they are attracted away by the stronger, shorter path. Eventually the longer paths disappear altogether due to evaporation, leaving only the direct routes. This simple mechanism allows small-brained Argentine ants to solve a difficult problem.

Australian meat ants (Iridomyrmex purpureus) take trail-building to the next level. Meat ants diligently cut away all vegetation from their trails, creating a smooth path. Unlike Argentine ants, meat ants do not connect their nests using the shortest possible route. Instead they build a network that includes extra “redundant” links.

Meat ants clear the grass from their trails and nest.
Nathan Brown, Author provided

Connecting points with the shortest path takes less time and uses less energy, but it would also result in a fragile network; any damage to any trail would isolate one of the nests.

This is less of an issue for Argentine ants, which can rapidly repair any damage to their trail system by depositing more pheromone droplets. For meat ants, however, damage to the system takes more time to fix. So rather than building a cheap but fragile network, meat ants build networks whose structure neatly balances the competing demands of cost and robustness.

Walking in lanes

In most human road networks, traffic flows are organised by dividing traffic into lanes where all the cars travel in the same direction. The army ant (Eciton burchellii) also uses lanes – two outer ones for outbound traffic, and one inner lane for nest-bound traffic.

But how do the army ants organise this? Lanes form because ants heading to the nest often carry heavy loads and so tend not to turn away during head-on collisions. Ants leaving the nest tend to veer away from their heavily laden sisters and so end up in the outer lanes.

Again, a simple set of behavioural rules allows ants to ensure they have a fast, efficient transport system.

Pothole pluggers

Potholes are an annoying and jarring part of driving that can slow traffic to a crawl. So when workers of the army ant (Eciton burchellii) encounter uneven surfaces, they take one for the team and plug it with their living bodies. Workers even match their size to the hole that needs filling.

Teams of ants cooperate to fill larger holes. Ants will even form bridges to span larger gaps. They adjust the width, length and position of the bridge to accommodate changes in traffic.

The result of these hardworking ants is a smooth, fast-flowing transport system that works even over the bumpiest terrain.

Humongous fungus

It’s not just insects that build transport networks. Brainless organisms such as fungi and slime moulds are also master transportation designers.

Fungi build some of the biggest biological transportation systems on Earth. One giant network of honey fungus (Armillaria solidipes) spanned 9.6km. The network is made up of tiny tubules called mycelia, which distribute nutrients around the fungi’s body.

The honey fungus is connected by vast underground transportation networks, spanning many kilometres.
Armand Robichaud/Flickr, CC BY-NC

Slime moulds – which are not fungi but giant single-celled amoebas – use a network of veins to connect food sources to one another.

In a highly creative experiment, researchers used tiny bits of food to make a map of the Tokyo metro system, with the food representing stations. Amazingly, the slime mould quickly connected all the points in a pattern that closely matched the actual Tokyo metro system. It seems slime moulds and engineers use the same rules when constructing transport networks – yet the slime mould does it without the aid of computers, maps or even a brain!

Slime mould form a map of the Tokyo railway system.

Nature has found many different solutions to the universal problem of building and managing a transport system. By studying biological systems, perhaps we can pick up a few tips for improving our own systems.


The ConversationYou can find other articles in the series here.

Tanya Latty, Senior lecturer, University of Sydney

This article was originally published on The Conversation. Read the original article.

The future is fenced for Australian animals



File 20180530 120490 1mm1egn.jpg?ixlib=rb 1.1
Mala, also known as rufous hare-wallabies, will be protected behind an enormous cat-proof fence.
Donald Hobern/Flickr, CC BY-SA

Michael Bode, The University of Queensland

Many of Australia’s mammals spend their entire lives imprisoned, glimpsing the outside world through tall chain-link fences and high-voltage wires. There are dozens of these enclosures across Australia. Many are remote, standing alone in the endless expanse of inland Australia, but others are on the outskirts of our largest cities – Melbourne, Perth, Canberra.

Every year there are more of them, the imprisoned population growing, while the wild populations outside dwindle. These are Australia’s conservation fences.




Read more:
Let’s move the world’s longest fence to settle the dingo debate


The captives within our conservation fences are adorable – floppy-eared bilbies, tiny hare-wallabies, long-tongued numbats – and they all share an extreme susceptibility to introduced predators. At least 68 native mammal species cannot exist in the wild if either foxes or cats are present. Many of these species once numbered in the millions, ranging from the woodlands of Queensland to the deserts of Western Australia, but predation has driven them to the brink of extinction.

Fences offer these species a future in the wild, and conservation groups have risen to the challenge. Last week, the Australian Wildlife Conservancy completed a new cat-proof fence in their Newhaven Sanctuary, the largest conservation fence ever constructed.

Fences are extraordinarily successful

Make no mistake, these conservation fences work. Species that wilt at the sight of a fox, that have been exterminated from every corner of the Australian mainland, will explode in numbers behind fences. Along with offshore islands, inside these fences are the only places in Australia where these species can prosper – a few hundred square kilometres of safety, surrounded by 7.6 million lethal square kilometres.

Environmentalists have never particularly liked fences. Rather than hide behind walls, they repeatedly took the fight to the cats and foxes on the outside.

Their tactics have been diverse, innovative and brutal. Managers have rained bullets from helicopters and poison baits from planes. They have set cunning snares and traps, mimicked the smell and sound of their enemies, and have turned landscapes to ash with wildfire.

Nothing has worked for the most threatened marsupials. Some of the largest and most expensive management campaigns in Australian conservation history have ended in exhaustion and stalemate, and with a retreat back behind the fences.

Fences were once a source of vehement debate in conservation circles. Should they be permanent? Are fenced populations wild or captive? Should they contribute to species’ conservation status?

These arguments have effectively been abandoned. Scientific studies and painful experience has proven fences and offshore islands to be the only reliable method of protecting predator-threatened species http://www.wildliferesearchmanagement.com.au/Final%20Report_0609.pdf. In place of these debates, conservation organisations and governments have turned to more practical questions of fence height, electric wire voltage and skirt depth.

So now, on average, Australians are building a new fence every year, some of them truly enormous. The just-completed fence at Newhaven encloses a staggering 10,000 hectares of red sand and spinifex. By the time the project is complete, this fence will be home to 11 different threatened mammal species.

And Australia is not alone: around the world, from New Zealand to Hawaii to South Africa, an archipelago of fences is emerging from an ocean of predators. It is one of the great achievements of modern conservation and has already averted the extinction of critically endangered species. Although it’s much smaller than our network of protected areas, it offers refuge to species that are long-gone from our national parks and wilderness areas.

Red foxes have been extraordinarily successful in Australia.
Harley Kingston/Flickr, CC BY

A troubling pattern

However, in recent years a concerning pattern has begun to emerge. While the number and size of fences continue to increase, the number of new species being protected has stalled. In fact, the last five fences haven’t included any new species – they have only offered additional protection to species that were already protected behind existing fences https://www.nature.com/articles/s41559-017-0456-4.

As an example, the first two marsupials planned for introduction behind the Newhaven fence will be the mala (Lagorchestes hirsutus) and the burrowing bettong (Bettongia lesueur). These two species undeniably deserve more protection. Both are highly susceptible to foxes and cats and will derive tremendous benefit from the protection of this enormous fence. However, both species are already found elsewhere behind fences (four different fences for burrowing bettongs). Meanwhile, yet-to-be-published research from the National Environmental Science Program has found 41 other species that are desperately vulnerable to introduced predators are not protected by any fence.

This problem is not new to conservation. In the 1990s, Australian researchers suddenly realised that our national park system was failing to protect the full range of Australian ecosystems. Despite our best efforts, we had created a system of reserves that was biased towards mountainous landscapes and deserts, and away from the fertile valley floors. The solution was to create new national parks using systematic and mathematical methods.

This discovery – the theory of systematic conservation planning – revolutionised global conservation. In 2018, conservation fences need their own systematic revolution.

Unfortunately, the national park system had natural advantages that fences lack. The vast majority of Australia’s protected areas belong to the state and federal governments. The centralised nature of the protected area network is perfect for systematic thinking and top-down optimisation – picture the Soviet Union’s Politburo. In contrast, the conservation fencing sector is diverse and decentralised – picture the third day of Woodstock.




Read more:
All cost, little benefit: WA’s barrier fence is bad news for biodiversity



Fences are built by governments at the state, federal and municipal levels, by multimillion-dollar NGOs like the Australia Wildlife Conservancy, by tiny local environmentalist groups and by profit-making corporations. This diversity is a fundamental strength of the fence network, giving it access to a spectrum of funding and ideas. But it makes it almost impossible to plan in a systematic manner. You can’t tell a small bilby conservation group in western Queensland that they should protect the central Australian rock-rat instead (Zyzomys pedunculatus). It doesn’t necessarily matter to them that bilbies are already protected behind four different fences and the rock-rat has none.

While conservation science tries to work this problem out, new and larger fences will continue to be built at an accelerating rate into the foreseeable future. True, the absence of coordination will make mathematicians break their slide rules, but each fence will do its job. The furry denizens will hop, and scurry, and bounce around, heedless of their precarious safety.

The ConversationAnd for us, from the outside looking in, these fences will help us forget the parlous state of Australian marsupial conservation. It will be possible to forget our record-breaking rate of extinctions, to forget the empty forests and deserts, and to imagine what a bushwalk might have been like before Europeans unleashed foxes and cats onto Australia.

Michael Bode, Associate Professor of Mathematics, The University of Queensland

This article was originally published on The Conversation. Read the original article.

Dugong and sea turtle poo sheds new light on the Great Barrier Reef’s seagrass meadows


Samantha J Tol, James Cook University; Alana Grech, James Cook University; Paul York, James Cook University, and Rob Coles, James Cook University

Just like birds and mammals carrying seeds through a rainforest, green sea turtles and dugong spread the seeds of seagrass plants as they feed. Our team at James Cook University’s TropWATER Centre has uncovered a unique relationship in the seagrass meadows of the Great Barrier Reef.

We followed feeding sea turtle and dugong, collecting samples of their floating faecal matter. Samantha then had the unenviable job of sifting through hundreds of smelly samples to find any seagrass seeds. These seeds range in size from a few centimetres to a few millimetres, and therefore can require the assistance of a microscope to be found. Once any seeds were found, they were stained with a chemical dye (Tetrazolium) to see if they were still viable (capable of growing).

PhD candidate Samantha Tol holding dugong poo collected from Cleveland Bay in Townsville.
TropWATER, JCU

Why is this important for turtles and dugong?

Green sea turtles and dugong are iconic animals on the reef, and seagrass is their food. Dugong can eat as much as 35 kilograms of wet seagrass a day, while sea turtles can eat up to 2.5% of their body weight per day. Without productive seagrass meadows, they would not survive.

This relationship was highlighted in 2010-11 when heavy flooding and the impact of tropical cyclone Yasi led to drastic seagrass declines in north Queensland. In the year following this seagrass decline there was a spike in the number of starving and stranded sea turtles and dugong along the entire Queensland coast.

The seagrass team at James Cook University has been mapping, monitoring and researching the health of the Great Barrier Reef seagrasses for more than 30 years. While coral reefs are more attractive for tourists, the Great Barrier Reef World Heritage Area actually contains a greater area of seagrass than coral, encompassing around 20% of the world’s seagrass species. Seagrass ecosystems also maintain vibrant marine life, with many fish, crustaceans, sea stars, sea cucumbers, urchins and many more marine animals calling these meadows their home.

These underwater flowering plants are a vital component of the reef ecosystem. Seagrasses stabilise the sediment, sequester large amounts of carbon from the atmosphere and filter the water before it reaches the coral reefs. Further, the seagrass meadows in the Great Barrier Reef support one of the largest populations of sea turtles and dugong in the world.

Seagrass meadows are more connected than we thought

Samantha’s research was worth the effort. There were seeds of at least three seagrass species in the poo of both sea turtles and dugong. And lots of them – as many as two seeds per gram of poo. About one in ten were viable, meaning they could grow into new plants.

Based on estimates of the number of animals in the coastal waters, the time it takes for food to pass through their gut, and movement data collected from animals fitted with satellite tags, there are potentially as many as 500,000 viable seeds on the move each day in the Great Barrier Reef. These seeds can be transported distances of up to 650km in total.

Green Island seagrass meadow exposed at low tide.
TropWATER, JCU

This means turtles and dugong are connecting distant seagrass meadows by transporting seeds. Those seeds improve the genetic diversity of the meadows and may help meadows recover when they are damaged or lost after cyclones. These animals help to protect and nurture their own food supply, and in doing so make the reef ecosystem around them more resilient.

Understanding recovery after climate events

Seagrass meadows have been under stress in recent years. A series of floods and cyclones has left meadows in poor condition, and recovery has been patchy and site-dependent.

This research shows that these ecosystems have pathways for recovery. Provided we take care with the environment, seagrasses may yet recover without direct human intervention.

The ConversationThis work emphasises how much we still have to learn about how the reef systems interconnect and work together – and how much we need to protect every part of our marvellous and amazing reef environment.

Samantha J Tol, PhD Candidate, James Cook University; Alana Grech, Assistant Director, ARC Centre of Excellence for Coral Reef Studies, James Cook University; Paul York, Senior Research Scientist in Marine Biology, James Cook University, and Rob Coles, Team leader, Seagrass Habitats, TropWATER, James Cook University

This article was originally published on The Conversation. Read the original article.

Why Iceland is set to resume whaling despite international opposition


Julia Jabour, University of Tasmania and Rachael Lorna Johnstone, University of Akureyri

After a two-year pause in the fin whale (Balaenoptera physalus) hunt, Icelandic whaling company Hvalur hf. will resume whaling this summer, with a government-issued quota.

Two factors help explain why Iceland and other countries are determined to hunt whales in defiance of international disapproval. The first is demand for the product; the second is Iceland’s interpretation of international law on whaling.

Whale meat and its buyers

Demand for whale meat appears to be stable in Iceland. Many reports suggest that Icelanders no longer eat whale meat in great numbers. Yet minke whale (Balaenoptera acutorostrata) meat is readily available in supermarkets and sells for the equivalent of A$29.80 per kilogram.

Much of this is imported from Norway, indicating that there remains a strong domestic demand that is not being met by Icelandic whaling, and suggesting that it is not just Iceland’s growing number of tourists who want to eat whale meat. The fin whale hunt, in contrast, is intended primarily for export to Japan.




Read more:
A necessary harvest: it’s time to allow Japan to kill whales


Fundamentally different rationales

The second, and far more complex, factor to understand why pro- and anti-whaling nations differ is that they have different interpretations of the basic purpose of the international regime to protect whales.

The International Convention for the Regulation of Whaling has banned commercial whaling. In line with the norms of international law, only parties to the whaling convention are obliged to observe this ban.

Iceland was an original member of the International Whaling Commission (IWC) and accepted the temporary halt on commercial whaling, which came into effect in the mid-1980s.

However, Iceland left in 1992 after the IWC refused to authorise quotas, even when scientific evidence indicated that controlled commercial whaling would not threaten the survival of the targeted species. The zero quota on all whale species, irrespective of their conservation status, has been criticised by several other countries, including Norway and Japan, as non-scientific.

Iceland later re-adhered to the convention, but with a reservation to the temporary ban. Iceland’s reservation included the statement that:

Under no circumstances will whaling for commercial purposes be authorised without a sound scientific basis and an effective management and enforcement scheme.




Read more:
Could ‘whale poo diplomacy’ help bring an end to whaling?


Iceland argued that the ban had become a permanent one and that this was contrary to the object and purpose of the convention, which was initially about regulating whaling rather than prohibiting it.

Essentially, Iceland and other pro-whaling countries reject arguments that the object and purpose of the convention has evolved into the preservation of whales rather than their conservation for sustainable use.

Iceland also objects to the ongoing situation whereby a scientific procedure adopted by the IWC to assess stocks and the potential for sustainable whaling was not followed up by the promised adoption of a non-scientific (political) scheme that would allocate actual quotas. Because of majority voting in the IWC, this standoff has created a persistent stalemate between pro- and anti-whaling countries.

Iceland’s current position

After a couple of years of heated discussions among members, Iceland was readmitted to the IWC. However, other countries (including Australia) still object to its reservation, meaning there is no universal acceptance of Iceland’s position.

If Iceland were cast out of the IWC, then it would not be bound by the convention at all. However, it would not be able to export to other IWC members, including Japan.

The whaling firm Hvalur hf. intends to resume its commercial hunt for fin whales in June. Quotas have been awarded consistently since 2006, but in 2016 and 2017 the company did not use them, citing doubts about profitability because of difficulties reaching target markets (especially Japan). A couple of shipments of whale meat were made recently (one in 2015 and one in 2016), using the Northern Sea Route to avoid customs delays and, potentially, protesters at Dutch harbours. The pause merely reflected the commercial reality of the time.

For 2018, Fiskistofa (the Directorate of Fisheries) has set a quota of 161 fin whales, with an additional 30 carried over from the unused 2017 quota. Although the IUCN listed the fin whale as endangered in 2008, there are no concerns about sustainability since the Icelandic quota represents 0.9% of the lowest estimate of fin whale numbers off the Icelandic coast.

The harvest is primarily destined for the Japanese market, which had been difficult to access for a number of reasons, including the effects of the 2011 tsunami, which disrupted processing facilities.

Minke whales are hunted by the company IP-Útgerð ehf., mostly for Icelandic consumption. In 2017, only 17 were taken. This was well within the quota of 269, although numbers were higher in previous years. The IUCN assesses the status of minke whales as “least concern”.




Read more:
Whale of a problem: why do humpback whales protect other species from attack?


Iceland is making no efforts to stop whaling and never has. Unlike Japan, Iceland does not claim that its whaling is for scientific research, which is authorised under Article VIII of the whaling convention. It agreed to the temporary ban in order to gather scientific evidence that was supposed to protect the whaling industry in the medium to long term.

Iceland has never had sentimental ideas that whales should not be hunted. Nevertheless, the country has two whale sanctuaries, in Faxaflói (the bay around Reykjavík) and in the north, to support the tourism and whale-watching industry.

The ConversationWhaling might not be popular in some countries – and indeed some Icelanders would like to see it end – but foreign interference is viewed with suspicion and is more likely to make the traditionalists who support the whale hunt dig in their heels (and harpoons) still further.

Julia Jabour, Senior Lecturer, Ocean and Antarctic Governance Research Program, University of Tasmania and Rachael Lorna Johnstone, Professor of Law, University of Greenland, University of Akureyri

This article was originally published on The Conversation. Read the original article.

China-backed Sumatran dam threatens the rarest ape in the world


Bill Laurance, James Cook University

The plan to build a massive hydropower dam in Sumatra as part of China’s immense Belt and Road Initiative threatens the habitat of the rarest ape in the world, which has only 800 remaining members.

This is merely the beginning of an avalanche of environmental crises and broader social and economic risks that will be provoked by the BRI scheme.




Read more:
How we discovered a new species of orangutan in northern Sumatra


The orangutan’s story began in November 2017, when scientists made a stunning announcement: they had discovered a seventh species of Great Ape, called the Tapanuli Orangutan, in a remote corner of Sumatra, Indonesia.

In an article published in Current Biology today, my colleagues and I show that this ape is perilously close to extinction – and that a Chinese-sponsored megaproject could be the final nail in its coffin.

Forest clearing for the Chinese-funded development has already begun.
Sumatran Orangutan Society

Ambitious but ‘nightmarishly complicated’

The BRI is an ambitious but nightmarishly complicated venture, and far less organised than many believe. The hundreds of road, port, rail, and energy projects will ultimately span some 70 nations across Asia, Africa, Europe and the Pacific region. It will link those nations economically and often geopolitically to China, while catalysing sweeping expansion of land-use and extractive industries, and will have myriad knock-on effects.

Up to 2015, the hundreds of BRI projects were reviewed by the powerful National Development and Reform Commission, which is directly under China’s State Council. Many observers have assumed that the NDRC will help coordinate the projects, but the only real leverage they have is over projects funded by the big Chinese policy banks – the China Development Bank and the Export-Import Bank of China – which they directly control.

China’s Belt & Road Initiative will sweep across some 70 nations in Asia, Africa, Europe and the Pacific region.
Mercator Institute for China Studies

Most big projects – many of which are cross-national – will have a mix of funding from various sources and nations, meaning that no single entity will be in charge or ultimately responsible. An informed colleague in China describes this model as “anarchy”.

Tapanuli Orangutan

The dangerous potential of the BRI becomes apparent when one examines the Tapanuli Orangutan. With fewer than 800 individuals, it is one of the rarest animals on Earth. It survives in just a speck of rainforest, less than a tenth the size of Sydney, that is being eroded by illegal deforestation, logging, and poaching.

All of these threats propagate around roads. When a new road appears, the ape usually disappears, along with many other rare species sharing its habitat, such as Hornbills and the endangered Sumatran Tiger.

A Tapanuli Orangutan.
Maxime Aliaga

The most imminent threat to the ape is a US$1.6 billion hydropower project that Sinohydro (China’s state-owned hydroelectric corporation) intends to build with funding from the Bank of China and other Chinese financiers. If the project proceeds as planned, it will flood the heart of the ape’s habitat and crisscross the remainder with many new roads and powerline clearings.

It’s a recipe for ecological Armageddon for one of our closest living relatives. Other major lenders such as the World Bank and Asian Development Bank aren’t touching the project, but that isn’t slowing down China’s developers.

What environmental safeguards?

China has produced a small flood of documents describing sustainable lending principles for its banks and broad environmental and social safeguards for the BRI, but I believe many of these documents are mere paper tigers or “greenwashing” designed to quell anxieties.

According to insiders, a heated debate in Beijing right now revolves around eco-safeguards for the BRI. Big corporations (with international ambitions and assets that overseas courts can confiscate) want clear guidelines to minimise their liability. Smaller companies, of which there are many, want the weakest standards possible.

The argument isn’t settled yet, but it’s clear that the Chinese government doesn’t want to exclude its thousands of smaller companies from the potential BRI riches. Most likely, it will do what it has in the past: issue lofty guidelines that a few Chinese companies will attempt to abide by, but that most will ignore.

The Greater Leuser Ecosystem in northern Sumatra is the last place on Earth where Orangutans, Tigers, Elephants and Rhinos still persist together.

Stacked deck

There are three alarming realities about China, of special relevance to the BRI.

First, China’s explosive economic growth has arisen from giving its overseas corporations and financiers enormous freedom. Opportunism, graft and corruption are embedded, and they are unlikely to yield economically, socially or environmentally equitable development for their host nations. I detailed many of these specifics in an article published by Yale University last year.

Second, China is experiencing a perfect storm of trends that ensures the harsher realities of the BRI are not publicly aired or even understood in China. China has a notoriously closed domestic media – ranked near the bottom in press freedom globally – that is intolerant of government criticism.

Beyond this, the BRI is the signature enterprise of President Xi Jinping, who has become the de-facto ruler of China for life. Thanks to President Xi, the BRI is now formally enshrined in the constitution of China’s Communist Party, making it a crime for any Chinese national to criticise the program. This has had an obvious chilling effect on public discourse. Indeed, I have had Chinese colleagues withdraw as coauthors of scientific papers that were even mildly critical of the BRI.

President Xi Jinpeng at the 19th People’s Congress, where the BRI was formally inscribed into China’s national constitution.
Foreign Policy Journal

Third, China is becoming increasingly heavy-handed internationally, willing to overtly bully or covertly pull strings to achieve its objectives. Professor Clive Hamilton of Charles Sturt University has warned that Australia has become a target for Chinese attempts to stifle criticism.

Remember the ape

It is time for a clarion call for greater caution. While led by China, the BRI will also involve large financial commitments from more than 60 nations that are parties to the Asian Infrastructure Investment Bank, including Australia and many other Western nations.




Read more:
China’s growing footprint on the globe threatens to trample the natural world


The ConversationWe all have a giant stake in the Belt and Road Initiative. It will bring sizeable economic gains for some, but in nearly 40 years of working internationally, I have never seen a program that raises more red flags.

Bill Laurance, Distinguished Research Professor and Australian Laureate, James Cook University

This article was originally published on The Conversation. Read the original article.