Monarch butterflies raised in captivity can still join the migration


Migrating monarch butterflies rest at Pismo Beach, Calif. on their way to Mexico.
(Shutterstock)

Alana Wilcox, University of Guelph and Ryan Norris, University of GuelphEach year, thousands of hobbyists and educators across North America collect monarch eggs or caterpillars from the wild to raise indoors and patiently wait for butterflies to emerge. Raising monarch butterflies indoors has become an increasingly popular activity that can have numerous benefits.

Captively reared monarchs provide a unique opportunity for people to learn about the complex life cycle of butterflies and, at the same time, help raise awareness about monarch conservation. However, rearing monarchs (and other butterflies) must be done responsibly and in moderation to make sure that it does not have a negative effect on the population.

Monarch butterflies undergo a multi-generational migration in spring and summer that will bring them as far north as Canada and then, in the fall, a new generation of monarchs undergo a unique transformation that prepares them for a single-bout long-distance migration south. These larger, stronger monarch butterflies will travel more than 4,500 kilometres to congregate and overwinter by the millions in the tree canopies high in the Sierra Madre Mountains of Mexico.

A PBS Nature special on overwintering monarch butterflies in Mexico.

Population decline

The overwintering population of eastern monarch butterflies, however, has been dwindling from an occupancy level of 44.95 hectares in 1997 to 14.95 hectares in 2019 to five hectares this year. Some causes of this decline are thought to be loss of milkweed on which caterpillars feed, long-term changes in climate and deforestation at their overwintering sites. This has caused concern about the likelihood of extinction and the loss of the migratory phenomenon.

Rearing monarchs indoors has been touted as a way to help bolster population numbers and mitigate declines. In reality, indoor rearing probably does little to supplement the wild population, but arguably goes a long way towards awareness and education.

The practice of indoor rearing is not without controversy and has been considered potentially harmful due to the negative impact it could have on butterfly health and the risk it could pose to the butterflies’ ability to migrate to Mexico.

However, our recent research provides some evidence that monarchs raised indoors may still be able to migrate south to their overwintering grounds.

Monarch butterfly with a radio-tracking tag
Monarch butterfly with a radio-tracking tag.
(Wilcox), Author provided

Disoriented butterflies

Our team at the University of Guelph raised monarch caterpillars on milkweed indoors in controlled environmental conditions that approximated what monarchs would experience naturally in the wild. Once butterflies emerged from their cocoons, they were tested in a flight simulator, a large open vessel with a digital sensor that recorded which direction the monarchs attempted to fly.

The results from this experiment were consistent with previous research showing that indoor-reared monarchs, on average, did not orient in the proper direction for migration to Mexico.

Monarch butterflies’ inability to orient in the flight simulator could be the result of a lack of exposure to natural and direct sunlight during development. Many animals are equipped with an internal clock that tells the animal when to perform certain activities. For monarch butterflies, this internal clock is located in their antennae and, when coupled with visual information on the sun’s position, tells the monarch which direction it should fly each fall.

an infographic showing the results of the experiment — monarchs released in the wild could re-orient themselves
Monarch butterflies hatched in captivity but released in the wild were found to join the southward migration.
(Wilcox, Newman, Raine, Mitchell and Norris), Author provided

Recalibration in natural light

Given this, our research team went one step further to determine if indoor-reared monarchs exposed to natural environmental conditions and sunlight after they were released could calibrate their internal compass and fly south.

To do so, our team attached tiny radio transmitters to a second group of indoor-reared monarchs and released the butterflies into the wild. The radio transmitters emit a signal during migration and, if a monarch flies close enough, can be received at one of several hundred automatic radio receiving towers scattered across North America, called the Motus telemetry array.

We detected 29 butterflies at the beginning of migration and found that, given some time outdoors, these butterflies were able to get their bearings and fly southward. This suggests that under certain controlled conditions, raising monarchs indoors may not affect their orientation and ability to start migration.

Indoor rearing offers a valuable tool for learning and fostering a connection to nature. Our results help curb concern that indoor rearing negatively impacts monarch orientation.

While more research needs to be conducted to determine how monarchs perform under different indoor conditions and at different rearing locations in North America, our research suggests that monarch enthusiasts may be able to continue enjoying the wonderful experience of raising these butterflies at home.The Conversation

Alana Wilcox, Researcher, Conservation biology, University of Guelph and Ryan Norris, Associate Professor, Member of the Royal Society of Canada’s College of New Scholars, Artists and Scientists, University of Guelph

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Next time you see a butterfly, treasure the memory: scientists raise alarm on these 26 species


The bulloak jewel (Hypochrysops piceatus)
Michael Braby, Author provided

Michael F. Braby, Australian National University; Hayley Geyle, Charles Darwin University; Jaana Dielenberg, Charles Darwin University; Phillip John Bell, University of Tasmania; Richard V Glatz; Roger Kitching, Griffith University, and Tim R New, La Trobe UniversityIt might sound like an 18th century fashion statement, but the “pale imperial hairstreak” is, actually, an extravagant butterfly. This pale blue (male) or white (female) butterfly was once widespread, found in old growth brigalow woodlands that covered 14 million hectares across Queensland and News South Wales.

But since the 1950s, over 90% of brigalow woodlands have been cleared, and much of the remainder is in small degraded and weed infested patches. And with it, the butterfly numbers have dropped dramatically.

In fact, our new study has found it has a 42% chance of extinction within 20 years.

It isn’t alone. Our team of 28 scientists identified the top 26 Australian butterfly species and subspecies at greatest risk of extinction. We also estimated the probability that they will be lost within 20-years.


Author provided, Author provided

Without concerted new conservation effort, we’ll not only lose unique elements of Australia’s nature, but also the important ecosystem services these butterflies provide, such as pollination.

Only six are protected under law

We are now sounding the alarm as most species identified as at risk have little or no management underway to conserve them, and only six of the 26 butterflies identified are currently listed for protection under Australian law.

The Ptunarra Xenica is one of three at risk butterflies identified in Tasmania.
Simon Grove/Tasmanian Museum and Art Gallery

The good news is there’s still a very good chance of recovery for most of these species, but only with new targeted conservation effort, such as protecting habitat from clearing and weeds, better fire management and establishing more of the right caterpillar food plants.

Let’s meet a few at-risk butterflies

The butterflies identified are delightful and fascinating creatures, with intriguing lifecycles, including fussy food preferences, subterranean accommodation and intimate relationships with “servant” ants.

The Australian fritillary

Our most imperilled butterfly is the Australian fritillary, with a 94% chance of extinction within 20 years. Like many of our butterfly species, a major threat facing the fritillary is habitat loss and habitat change.

The swamps where the fritillary occur have been drained for farming and urbanisation. At remaining swamps, weeds smother the native violets the larvae depend on for food.

This is one of the last known photos of the Australian fritillary. If you see a fritillary, immediately contact the NSW Department of Planning Industry and Environment.
Garry Sankowsky

No one has managed to collect or take a photo of a fritillary in two decades, although a butterfly expert observed a single individual flying near Port Macquarie in 2015.

It might already be extinct, but as it was once quite widespread at swampy areas along 700 kilometres of coastal Queensland and NSW, we have hope there are still some out there.

The fritillary has impressive jet black caterpillars with a vibrant orange racing stripe and large spikes along their back, which transform into stunning orange and black butterflies.

Black caterpillar
Australian fritillary caterpillars are black with a distinctive orange stripe and spikes.
Garry Sankowsky

Anyone who thinks they have seen a fritillary should record the location, try to photograph it and the site and immediately contact the NSW Department of Planning Industry and Environment.

The fritillary is among many butterflies with specific diets. And these preferences can make species vulnerable to environmental changes such as vegetation clearing, weed invasions and fires.




Read more:
Photos from the field: zooming in on Australia’s hidden world of exquisite mites, snails and beetles


The small bronze azure

Caterpillars of the small bronze azure — found on Kangaroo Island (and a few other patches in South Australia and Victoria) — only eat common sourbush.

Following the extensive 2020 fires, the butterfly hasn’t been found in areas where the sourbush burnt. Luckily, it’s been found in small patches of unburnt vegetation, so for now it’s hanging in there.

The small bronze azure has not been re-found in parts of Kangaroo Island where common sourbush burnt in the January 2020 fires.
Richard Glatz

Like many butterflies, the lifecycle of the small bronze azure is enmeshed with a specific species of ant.

By day the butterfly larvae shelter underground in sugar ant (Camponotus terebrans) nests, then at night they’re escorted up by the ants to feed on the sourbush. For their care the ants are rewarded by a sugary secretion the caterpillars produce.

The eastern bronze azure

Some relationships with ants are even more unusual. Kangaroo Island’s other imperilled species — the eastern bronze azure — stays underground in sugar ant nests for 11 straight months. We don’t yet know what they eat.

Grey butterfly on a rock
An eastern bronze azure (Ogyris halmaturia) on Kangaroo Island. Their colouring is excellent camouflage on branches.
Michael Braby

In a macabre twist, they may be eating their hosts — the ants or the ant larvae. So why the ants carry them down and look after them is also a mystery.

It might be for sugary secretions, like with the small bronze azure, but the caterpillars could also be using chemical trickery, mimicking the scent of ant larvae to fool the ants.

Adults of the eastern bronze azure emerge only to flutter about for a few weeks in November, so at the time of the Kangaroo Island fires in January the entire population was safely underground in ant nests. And as the larvae don’t come up to feed on plants, they weren’t impacted by the loss of vegetation.

Orange and black butterfly on a green leaf
This is the black grass-dart, found near Coffs Harbour. The caterpillars eat Floyd’s grass (Alexfloydia repens) which is listed as endangered in NSW.
Mick Andren

It’s not too late to save them

By raising awareness of these butterflies and the risks they face, we aim to give governments, conservation groups and the community time to act to prevent their extinctions.

Local landowners and Landcare groups have already been playing a valuable role in recovery actions for several species, such as planting the right food plants for the Australian fritillary around Port Macquarie, and for the Bathurst copper.

Brown and green butterfly on a log
The Bathurst copper in NSW is benefiting from community planting of its food plant sweet bursaria.
Tessa Barratt

Indeed, most of the identified at-risk species occur across a mix of land types, including conservation, public and private land. In most cases, conservation reserves alone aren’t enough to ensure the long-term survival of the species.

Many landowners don’t realise they’re important custodians of such rare and threatened butterflies, and how important it is not to clear remaining patches of remnant native vegetation on their properties and adjoining road reserves.

People wanting to learn more about the butterfly species near them can use the free Butterflies Australia app to look up photos and information. You can also be a citizen scientist by recording and uploading sightings on the app.




Read more:
Curious Kids: Do butterflies remember being caterpillars?


The Conversation


Michael F. Braby, Associate Professor, Australian National University; Hayley Geyle, Research Assistant, Charles Darwin University; Jaana Dielenberg, University Fellow, Charles Darwin University; Phillip John Bell, University Associate, School of Natural Sciences, University of Tasmania; Richard V Glatz, Associate research scientist; Roger Kitching, Emeritus Professor, Griffith University, and Tim R New, Retired: Emeritus Professor in Zoology, La Trobe University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Monarch butterflies’ spectacular migration is at risk – an ambitious new plan aims to help save it



Monarch butterflies cover a tree at El Rosario Monarch Butterfly Sanctuary in Michoacán, Mexico.
D. André Green II, CC BY-ND

D. André Green II, University of Michigan

One of nature’s epic events is underway: Monarch butterflies’ fall migration. Departing from all across the United States and Canada, the butterflies travel up to 2,500 miles to cluster at the same locations in Mexico or along the Pacific Coast where their great-grandparents spent the previous winter.

Human activities have an outsized impact on monarchs’ ability to migrate yearly to these specific sites. Development, agriculture and logging have reduced monarch habitat. Climate change, drought and pesticide use also reduce the number of butterflies that complete the journey.

Map of North America showing monarch migration routes.
Monarch butterflies migrate south in fall and north in spring, traveling up to 2,500 miles.
MonarchWatch.org, CC BY-ND

Since 1993, the area of forest covered by monarchs at their overwintering sites in Mexico has fallen from a peak of 45 acres in 1996-1997 to as low as 1.66 acres in the winter of 2013-2014. A 2016 study warned that monarchs were dangerously close to a predicted “point of no return.” The 2019 count of monarchs in California was the lowest ever recorded for that group.

What was largely a bottom-up, citizen-powered effort to save the struggling monarch butterfly migration has shifted toward a top-down conversation between the federal government, private industry and large-tract landowners. As a biologist studying monarchs to understand the molecular and genetic aspects of migration, I believe this experiment has high stakes for monarchs and other imperiled species.

Millions of people care about monarchs

I will never forget the sights and sounds the first time I visited monarchs’ overwintering sites in Mexico. Our guide pointed in the distance to what looked like hanging branches covered with dead leaves. But then I saw the leaves flash orange every so often, revealing what were actually thousands of tightly packed butterflies. The monarchs made their most striking sounds in the Sun, when they burst from the trees in massive fluttering plumes or landed on the ground in the tussle of mating.

Decades of educational outreach by teachers, researchers and hobbyists has cultivated a generation of monarch admirers who want to help preserve this phenomenon. This global network has helped restore not only monarchs’ summer breeding habitat by planting milkweed, but also general pollinator habitat by planting nectaring flowers across North America.

A monarch butterfly in a Toronto park on common milkweed, an important plant for its survival.
Colin McConnell/Toronto Star via Getty Images

Scientists have calculated that restoring the monarch population to a stable level of about 120 million butterflies will require planting 1.6 billion new milkweed stems. And they need them fast. This is too large a target to achieve through grassroots efforts alone. A new plan, announced in the spring of 2020, is designed to help fill the gap.

Pros and cons of regulation

The top-down strategy for saving monarchs gained energy in 2014, when the U.S. Fish and Wildlife Service proposed listing them as threatened under the Endangered Species Act. A decision is expected in December 2020.

Listing a species as endangered or threatened triggers restrictions on “taking” (hunting, collecting or killing), transporting or selling it, and on activities that negatively affect its habitat. Listing monarchs would impose restrictions on landowners in areas where monarchs are found, over vast swaths of land in the U.S.

In my opinion, this is not a reason to avoid a listing. However, a “threatened” listing might inadvertently threaten one of the best conservation tools that we have: public education.

It would severely restrict common practices, such as rearing monarchs in classrooms and back yards, as well as scientific research. Anyone who wants to take monarchs and milkweed for these purposes would have to apply for special permits. But these efforts have had a multigenerational educational impact, and they should be protected. Few public campaigns have been more successful at raising awareness of conservation issues.

University of Michigan biologist D. Andre Green studies monarch butterflies’ DNA to understand what drives their incredible migration.

The rescue attempt

To preempt the need for this kind of regulation, the U.S. Fish and Wildlife Service approved a Nationwide Candidate Conservation Agreement for Monarch Butterflies. Under this plan, “rights-of-way” landowners – energy and transportation companies and private owners – commit to restoring and creating millions of acres of pollinator habitat that have been decimated by land development and herbicide use in the past half-century.

The agreement was spearheaded by the Rights-of-Way Habitat Working Group, a collaboration between the University of Illinois Chicago’s Energy Resources Center, the Fish and Wildlife Service and over 40 organizations from the energy and transportation sectors. These sectors control “rights-of-way” corridors such as lands near power lines, oil pipelines, railroad tracks and interstates, all valuable to monarch habitat restoration.

Under the plan, partners voluntarily agree to commit a percentage of their land to host protected monarch habitat. In exchange, general operations on their land that might directly harm monarchs or destroy milkweed will not be subject to the enhanced regulation of the Endangered Species Act – protection that would last for 25 years if monarchs are listed as threatened. The agreement is expected to create up to 2.3 million acres of new protected habitat, which ideally would avoid the need for a “threatened” listing.

Many questions remain. Scientists are still learning about factors that cause monarch population decline, so it is likely that land management goals will need to change over the course of the agreement, and partner organizations will have to adjust to those changes.

Oversight of the plan will fall primarily to the University of Illinois, and ultimately to the U.S. Fish & Wildlife Service. But it’s not clear whether they will have the resources they need. And without effective oversight, the plan could allow parties to carry out destructive land management practices that would otherwise be barred under an Endangered Species Act listing.

A model for collaboration

This agreement could be one of the few specific interventions that is big enough to allow researchers to quantify its impact on the size of the monarch population. Even if the agreement produces only 20% of its 2.3 million acre goal, this would still yield nearly half a million acres of new protected habitat. This would provide a powerful test of the role of declining breeding and nectaring habitat compared to other challenges to monarchs, such as climate change or pollution.

[Deep knowledge, daily. Sign up for The Conversation’s newsletter.]

Scientists hope that data from this agreement will be made publicly available, like projects in the Monarch Conservation Database, which has tracked smaller on-the-ground conservation efforts since 2014. With this information we can continue to develop powerful new models with better accuracy for determining how different habitat factors, such as the number of milkweed stems or nectaring flowers on a landscape scale, affect the monarch population.

North America’s monarch butterfly migration is one of the most awe-inspiring feats in the natural world. If this rescue plan succeeds, it could become a model for bridging different interests to achieve a common conservation goal.The Conversation

D. André Green II, Assistant Professor of Ecology and Evolutionary Biology, University of Michigan

This article is republished from The Conversation under a Creative Commons license. Read the original article.