Australia is at risk of taking the wrong tack at the Glasgow climate talks, and slamming China is only part of it


JoeLogan/Shutterstock

Peter Martin, Crawford School of Public Policy, Australian National UniversityBuried within the prime minister’s response to the latest report from the Intergovernmental Panel on Climate Change is just about everything we’re at risk of getting wrong at the Glasgow climate talks in October.

After slamming China — whose emissions per person are half of Australia’s — for not doing more to cut emissions, Scott Morrison said the Glasgow talks were the “biggest multilateral global negotiation the world has ever known”.

If he treats the talks as just another (big) negotiation, we’re in trouble.

The way the Department of Foreign Affairs and Trade usually treats negotiations is hold something back, hold out the prospect of “giving it up,” and then only make the concession if the other side gives something in return. Even if holding back damages Australia.

Cars are a case in point. From an economic point of view, there is no reason whatsoever to continue to impose tariffs (special taxes) on the import of cars — none, not even in the eyes of those who support the use of tariffs to protect Australian jobs. Australia no longer makes cars.

Yet the tariff remains, at 5%, making it perhaps A$1 billion harder than it should be for Australians to buy new cars (although nowhere near as hard as it was in the days when the tariff was 57.5%).

The tariff seems to be in place largely to give the Department of Foreign Affairs and Trade something to negotiate away in trade agreements: for use as what the Productivity Commission calls “negotiating coin”.

Australia removed tariffs on cars from Korea but kept them in place more broadly.
Tricky_Shark/Shutterstock

Here’s how it worked in the 2014 Australia-Korea Free Trade Agreement. Australia agreed to remove the remaining 5% tariff on Korean cars, “with consumers and businesses to benefit from downward pressure on import prices”.

But Australia didn’t remove the tariff on car imports altogether, which would have given us a much bigger benefit but denied the department negotiating coin.

The next year the department did it again, agreeing to give up the tariff on imported Japanese cars in the Japan-Australia Economic Partnership Agreement (but not on other cars) so Australians could “benefit from lower prices and/or greater availability of Japanese products”.

Two years later, it did it again, with cars from China.

When the UK and European agreements are negotiated, it’ll do it there too.

Australia holds back reforms

Eventually Australians will get what they are entitled to. But the point is that rather than advancing the cause of free trade, the department has held back, treating a win for the other side as a loss for us, when it wasn’t.

The Centre for International Economics believes the much bigger earlier set of tariff cuts lifted the living standard of the average Australian family by A$8,448.

Had our trade negotiators been in charge, we would still be waiting. Instead the Hawke and then the Keating governments pushed through unilateral reductions, asking for nothing in return.




Read more:
This is the most sobering report card yet on climate change and Earth’s future. Here’s what you need to know


As former Trade Minister Craig Emerson put it, this gave Australia “credibility in international trade negotiations way beyond the relative size of our economy”.

Does that sound like the sort of thing Australia might need at Glasgow, to have enough credibility to urge even bigger emitters to deliver the kind of cuts on which our futures and future temperatures depend?

It won’t work with China

The prime minister is right to say that China is the world’s biggest greenhouse gas emitter, even though its emissions per person are low. Its high population means it accounts for 28% of all the greenhouse gases pumped out each year. The next biggest emitter, the United States, accounts for 15%

But China’s status is new. Until 2006 it pumped out less per year than the United States. Because the US has had mega-factories and heating and so on for so much longer, it is responsible for by far the biggest chunk of the greenhouse gasses already in the atmosphere: 25%, followed by the European Union with 22%.



China might reasonably feel that countries like the US that have done the most to create the problem should do the most to fix it.

Like Australia, the US pumps out twice as much per person as China and has much more room to cut back.

On the bright side, China knows that being big means it is in a position to make a difference to global emissions in a way that other countries cannot on their own. And that’s a position that can benefit its citizens.

China’s latest five-year plan, adopted in March, commits it to cut its “carbon intensity” (emissions per unit of GDP) by 18%. If it beats that five-year target by just a bit (and it has beaten its previous five-year targets) its emissions will turn down from 2025.

It is aiming for net-zero emissions by 2060.

Australia needs China’s help

The Intergovernmental Panel on Climate Change finds that Australia is especially susceptible to global warming. We’re facing less rain in winter, longer heatwaves, drier rivers, more arid soil and worse droughts.

We are right to want China to do more, but the worst way to achieve it is to say “we won’t lift our ambition until you lift yours”.

Hardly ever a worthwhile strategy, it is particularly ineffective when we don’t have bargaining power.




Read more:
Climate change has already hit Australia. Unless we act now, a hotter, drier and more dangerous future awaits, IPCC warns


The only power we’ve got is to set an example, unilaterally, as we did with tariffs. And to ramp up our ambition.

If Australia said it would do more, and didn’t quibble, it might just count for something.

It’s all we can do, and it’s the very best we can do.The Conversation

Peter Martin, Visiting Fellow, Crawford School of Public Policy, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

The budget should have been a road to Australia’s low-emissions future. Instead, it’s a flight of fancy


Shutterstock

John Quiggin, The University of QueenslandLooking at other nations around the world, the path to cutting greenhouse gas emissions seems clear.

First, develop wind and solar energy and battery storage to replace coal- and gas-fired electricity. Then, replace petrol and diesel cars with electric vehicles running off carbon-free sources. Finally, replace traditionally made steel, cement and other industries with low-carbon alternatives.

In this global context, the climate policies announced in Tuesday’s federal budget are a long-odds bet on a radically different approach. In place of the approaches adopted elsewhere, the Morrison government is betting heavily on alternatives that have failed previous tests, such as carbon capture and storage. And it’s blatantly ignoring internationally proven technology, such as electric vehicles.

The government could have followed the lead of our international peers and backed Australia’s clean energy sector to create jobs and stimulate the post-pandemic economy. Instead, it’s sending the nation on a fool’s errand.

Prime Minister Scott Morrison, left, and Treasurer Josh Frydenberg shake hands
Prime Minister Scott Morrison, left, and Treasurer Josh Frydenberg should have used the budget to create jobs in the clean economy.
Mick Tsikas/AAP

Carbon-capture folly

The Morrison government is taking a “technology, not taxes” approach to emissions reduction. Rather than adopt a policy such as a carbon price – broadly considered the most effective and efficient way to cut emissions – the government has instead pinned its hopes on a low-emissions technology plan.

That means increased public spending on research and development, to accelerate the commercialisation of low emissions technologies. The problems with this approach are most obvious in relation to carbon capture and storage (CCS).

The budget contains A$263.7 million to fund new carbon capture and storage projects. This technology promises to capture some – but to date, not all – carbon dioxide at the point of emission, and then inject it underground. It would allow continued fossil fuel use with fewer emissions, but the process is complex and expensive.

In fact, recent research found of 39 carbon-capture projects examined in the United States, more than 80% ended in failure.




Read more:
The 1.5℃ global warming limit is not impossible – but without political action it soon will be


The government’s CCS funding is focused on capturing CO₂ from gas projects. This is despite the disappointing experience of Australia’s only CCS project so far, Chevron’s Gorgon gas field off Western Australia.

Some 80% of emissions from the operation were meant to be captured from 2016. But the process was delayed for three years, allowing millions of tonnes of CO₂ to enter the atmosphere. As of January this year, the project was still facing technical issues.

CCS from gas will be expensive even if it can be made to work. Santos, which has proposed a CCS project at its Moomba gas plant in South Australia, suggests a cost of $A30 per tonne of CO₂ captured.

This money would need to come from the government’s Climate Solutions Fund, currently allocated about A$2 billion over four years. If Moomba’s projected emissions reduction of 20 million tonnes a year were realised, this project alone would exhaust the fund.

two men stand over equipment
Plans to capture carbon from Chevron’s Gorgon gas project have not gone to plan.
Chevron Australia

What about electric vehicles?

There is a striking contrast between the Morrison government’s enthusiasm for carbon capture, and its neglect of electric vehicles.

It ought to be obvious that if Australia is to achieve a target of net-zero emissions by 2050 – which Treasurer Josh Frydenberg this week reiterated was his government’s preference – the road transport sector must be decarbonised by then.

The average age of Australian cars is about 10 years. This implies, given fairly steady sales, an average lifespan of 20 years. This in turn implies most petrol or diesel vehicles sold after 2030 will have to be taken off the road before the end of their useful life.

In any case, such vehicles will probably be very difficult to buy within 15 years. Manufacturers including General Motors and Volvo have announced plans to stop selling petrol and diesel vehicles by 2035 or earlier.

But the Morrison government has ruled out consumer incentives to encourage electric vehicle uptake – a policy at odds with many other nations, including the US.




Read more:
The US jumps on board the electric vehicle revolution, leaving Australia in the dust


Despite the “technology, not taxes” mantra, this week’s federal budget ignored electric vehicles. This includes a A$10 billion infrastructure spend which did not include charging stations as part of highway upgrades.

Unless the government takes action soon, Australian motorists will be faced with the choice between a limited range of second-rate petrol and diesel vehicles, or electric vehicles for which key infrastructure is missing.

It’s hard to work out why the government is so resistant to doing anything to help electric vehicles. Public support appears strong. There are no domestic carmakers left to protect.

The car retail industry is generally unenthusiastic about electric vehicles. Its business model is built on combining competitive sticker prices with a high-margin service and repair business, and electric vehicles don’t fit this model.

At the moment (although not for much longer), electric vehicles are more expensive than traditional cars to buy upfront. But they are cheaper to run and service.

There are fears of job losses in car maintenance as electric vehicle uptake increases. However, car dealers have adjusted to change in the past, and can do so in future.

electric vehicle on charge
The budget ignored electric vehicles.
Shutterstock

Wishful thinking

The Morrison government is still edging towards announcing a 2050 net-zero target in time for the United Nations Climate Change Conference in Glasgow this November. But as Prime Minister Scott Morrison himself has emphasised, there’s no point having a target without a strategy to get there.

Yet at this stage, the government’ emissions reduction strategy looks more like wishful thinking than a road map.




Read more:
Australia’s states are forging ahead with ambitious emissions reductions. Imagine if they worked together


The Conversation


John Quiggin, Professor, School of Economics, The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

A staggering 1.8 million hectares burned in ‘high-severity’ fires during Australia’s Black Summer


Shutterstock

Ross Bradstock, University of Wollongong; Hamish Clarke, University of Wollongong; Luke Collins, La Trobe University; Michael Clarke, La Trobe University; Rachael Helene Nolan, Western Sydney University, and Trent Penman, The University of MelbourneIn the aftermath of Australia’s devastating Black Summer fires, research has begun to clarify the role of climate change.

We already know climate change contributed to the record-breaking drought and fire weather conditions, leading to the bushfires’ unprecedented range across Australia.

Our new research looks at whether bushfires are becoming more “severe” (an indicator of how intensely the vegetation burned) as a result of climate change.

Our findings were unexpected, as we learned the proportion of high-severity fires generally hasn’t increased in recent decades. However, the sheer breadth of the Black Summer fires meant an unprecedented 1.8 million hectares across southeast Australia were exposed to high-severity fires. This has dire consequences for the people and wildlife who call the forests home.

What is fire severity?

Two measurements in fire science are pertinent to our research: fire severity and fire intensity.

Fire severity refers to how high the flames and the plume of hot air reach, as measured by the resulting damage to vegetation (vertical profile of scorch and consumption of leaves and twigs). Fire intensity refers to the energy released from the fire — how hot and destructive the flames are.

Scientists can estimate severity using using satellite imagery, by contrasting differences in the cover and condition of vegetation before and after fires.

In forests, “high-severity” fires occur when the crowns of dominant trees are fully burnt or scorched. High-severity fires are lethal to tree-dwelling mammals in forests, such as possums, gliders and koalas. They also pose a big risk to nearby homes and buildings.

“Low-severity” fires, on the other hand, may be confined to the leaf litter and ground cover plants beneath the forest canopy, and can even leave entirely unburnt patches in forests.

Are high severity fires becoming more common?

To determine if high-severity bushfires are becoming more common, we looked at satellite data for bushfires from 1988 to 2020. The data covered more than 130,000 square kilometres of forest, woodland and shrubland ecosystems in southeast Australia.

If fires were becoming more intense in recent decades, we would have expected the proportion of vegetation subjected to high-severity fire to have increased.

Instead, we found the average proportion of high-severity wildfire remained constant in dry forest — the dominant vegetation across this region. There was, however, evidence of an increase in the average proportion of high-severity fire in wet forests and rainforests, along with woodlands.




Read more:
5 remarkable stories of flora and fauna in the aftermath of Australia’s horror bushfire season


Nonetheless, the main conclusion was clear: across the bulk of the study area, the average proportion of high-severity fires has not changed in recent decades, despite an increase in the area burned during the Black Summer bushfires.

Why the Black Summer bushfires were exceptional

While the proportion of high-severity fires hasn’t changed, the enormous range of the 2019-2020 bushfires meant 44% of the total area burned by high-severity fire since 1988 occurred in that one summer alone.

This means 1.8 million hectares of the forest and woodland regions of southeastern Australia — an enormous proportion — was exposed to intense and severe fire. In this regard, the Black Summer bushfires were exceptional.

As Australians remember all too clearly, this had a devastating effect on the environment. An estimated three billion animals were killed or displaced, vulnerable rainforests burned and 3,000 homes were destroyed.

A firefighter runs through a burning forest
Firestorms could become more common under a changing climate.
AAP Image/Dean Lewins

The 2019-20 fire season also involved a record number of “firestorms”, particularly during the latter part of the season in January and early February. This occurs when fires create their own weather.

These fires can burn at exceptional intensity. And research from 2019 indicates such firestorms could become more common under climate change.

This means we can’t rule out a future change in the proportion of bushfires that burn at the highest levels of intensity and severity.

Ecosystems in jeopardy

The results of our study underline one of the likely consequences of future climate change.

The sheer scale of the area burned in the 2019-20 fire season exceeded not only historical records for forested ecosystems of southern Australia, but also outstripped projections for the late 21st century under strong scenarios of climate change.




Read more:
3 billion animals were in the bushfires’ path. Here’s what the royal commission said (and should’ve said) about them


As bushfires become larger in the future, the area exposed to intense and severe fires is likely to increase commensurately. As a result, the future of our wetter forest types, which have not evolved to cope with frequent and severe fires, is in jeopardy.

So, as the area exposed to intense fires is likely to increase in the future, we’ll see major challenges to the long-term viability of our forested ecosystems, the services they provide and the people who reside in and around them.The Conversation

Ross Bradstock, Emeritus professor, University of Wollongong; Hamish Clarke, Research Fellow, University of Wollongong; Luke Collins, Research scientist, La Trobe University; Michael Clarke, Emeritus professor, La Trobe University; Rachael Helene Nolan, Postdoctoral research fellow, Western Sydney University, and Trent Penman, Professor, The University of Melbourne

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Look up! Your guide to some of the best meteor showers for 2021



Flickr/Mike Lewinski , CC BY

Jonti Horner, University of Southern Queensland and Tanya Hill, Museums Victoria

The best meteor showers are a spectacular sight but, unfortunately, 2021 starts with a whimper. Moonlight this January will wash out the first of the big three — the Quadrantids (seen above in 2020).

After that, the year just gets better and better, with the Perseids (another of the big three along with the Geminids) a particular highlight for northern hemisphere observers in August.




Read more:
Explainer: why meteors light up the night sky


In addition to the year’s other reliable performers we’ve included one wild card: the Aurigids, in late August. Most years, the Aurigids are a very, very minor shower, but they just might put on a show this year.

So here is our pick of the meteoric highlights for 2021.

For each meteor shower, we give you a finder chart showing the radiant (where the meteors appear to come from in the sky) and where best to look in the sky, the full period of activity and the forecast peak. Most meteor showers typically only yield their best rates for about a day around maximum, so the peak night is definitely the best to observe.

The Zenithal Hourly Rate ZHR is the maximum number of meteors you would expect to see under perfect observing conditions. The actual number you will see will likely be lower.

Most meteor showers can only really be observed from either the northern [N] or southern [S] hemisphere, but a few are visible from both [N/S].

Lyrids [N/S; N favoured]

Active: April 14–30

Maximum: April 22, 1pm UTC = 11pm AEST (Qld) = 7am CST = 3am Hawaii time

ZHR: 18

Parent: Comet C/1861 G1 Thatcher

The Lyrids are one of the meteor showers with the longest and most storied histories, with recorded observations spanning millenia. In the past, they were one of the year’s most active showers, with a history of producing spectacular meteor storms.

Flash of two meteors across a night sky.
A couple of Lyrids.
Flickr/DraconianRain, CC BY-NC

Nowadays, the Lyrids are more sedate, putting on a reliable show without matching the year’s stronger showers. They still throw up occasional surprises such as an outburst in excess of 90 meteors per hour in 1982.

This year’s peak Lyrid rates coincide with the first quarter Moon, which will set around midnight, local time, for most locations. The best time to observe will come in the early hours of the morning, after moonset.

For observers in the northern hemisphere, the Lyrid radiant will already be at a useful altitude by the time the Moon is low in the sky, so some brighter meteors might be visible despite the moonlight in the late evening (after around 10:30pm, local time).

Once the Moon sets the sky will darken and make the shower much easier to observe, yielding markedly higher rates.

Across the US, the Lyrid radiant is high in the east before sunrise, above the Summer Triangle of Vega, Deneb and Altair. Low to the horizon, Jupiter and Saturn are rising. US around 4am local time.
Museums Victoria/Stellarium

For observers in the southern hemisphere, the Lyrid radiant reaches a useful altitude in the early hours of the morning, when the Moon will have set. If you’re a keen meteor observer, it could be worth setting your alarm early to get out and watch the show for a few hours before dawn.

The Boorong from north-western Victoria saw the Lyrids as Neilloan, the Mallee fowl, kicking up shooting stars while preparing her nest. Melbourne, 5am.
Museums Victoria/Stellarium

Lyrid meteors are fast and often quite bright so can be rewarding to observe, despite the relatively low rates (one every five or ten minutes, or so). Remember, this shower always has the potential to throw up an unexpected surprise.

Eta Aquariids [S]

Active: April 19–May 28

Maximum: May 6, 3am UTC = 1pm AEST (Qld/NSW/ACT/Vic/Tas) = 11am AWST (WA)

ZHR: 50+

Parent: Comet 1P/Halley

The Eta Aquariids are an autumn treat for southern hemisphere observers. While not one of the big three, they stand clear as the best of the rest of the annual showers, yielding a fine display in the two or three hours before dawn.

The Eta Aquariids are fast meteors and are often bright, with smoky trains. They are fragments of the most famous comet, 1P/Halley, which has been laying down debris around its current orbit of the Sun for tens of thousands of years.

Earth passes through that debris twice a year, with the Eta Aquariids the best of the two meteor showers that result. The other is the Orionids, in October.

Where most meteor showers have a relatively short, sharp peak, the Eta Aquariids remain close to their best for a whole week, centred on the maximum. Good rates (ZHR > 30 per hour) should be visible before sunrise on each morning between May 3–10.

The Moon will be a waning crescent when the Eta Aquariids are at their best. Its glare should not interfere badly with the shower, washing out only the faintest members.

Observers who brave the pre-dawn hours to observe the Eta Aquariids will have the chance to lie beneath a spectacular sky. The Milky Way will be high overhead, with Jupiter, Saturn and the Moon high to the east and bright, fast meteors streaking across the sky from an origin near the eastern horizon.

The crescent Moon, the two biggest planets, a couple of bright stars and the Eta Aquariids all in the east before sunrise on May 6. Australia, around 4am local time.
Museums Victoria/Stellarium

Perseids [N]

Active: July 17–August 24

Maximum: August 12, 7pm–10pm UTC = 8pm–11pm BST = August 13, 4am–7am JST

ZHR: 110

Parent: Comet 109P/Swift-Tuttle

The Perseids are the meteoric highlight of the northern summer and the most observed shower of the year. December’s Geminids offer better rates but the timing of the Perseid peak makes them an ideal holiday treat.

The Perseids are debris shed behind by comet 109P/Swift-Tuttle, which is the largest known object (diameter around 26km) whose orbit currently intersects that of Earth.

An asteroid streak across the sky with a volcano and telescope in the foreground.
A Perseid crosses the sky over the Teide volcano and Teide Observatory on Tenerife.
Flickr/StarryEarth, CC BY-NC

Perseid meteors are fast, crashing into Earth at a speed of about 216,000km/h, and often bright. While the shower is active, at low levels, for more than a month, the best rates are typically visible for at the three nights centred on the peak.

The Perseids radiate from the north-east, with the radiant rising high in the sky during the early hours of the morning. London, 11pm (left) and 4am (right)
Museums Victoria/Stellarium

For observers at European latitudes, the Perseid radiant rises by mid-evening, so the shower can be easily observed from 10pm local time, and remains high all through the night. The later in the night you look, the higher the radiant will be and the more meteors you’re likely to see.

Aurigids [N favoured]

Active: August 28–September 5

Maximum: Potential Outburst on August 31, peaking between 9:15pm–9:40pm UTC = 10:15pm–10:40pm BST = 11:15pm–11:40pm CEST = September 1, 1:15am–1:40am Gulf Standard Time = September 1, 5:15am–5:40am AWST (WA)

ZHR: 50–100 (?)

Parent: Comet C/1911 N1 Kiess

Where the other showers are reliable and relatively predictable, offering good rates every year, the Aurigids are an entirely different beast.

In most years, the shower is barely visible. Even at its peak, rates rarely exceed just a couple of meteors seen per hour. But occasionally the Aurigids bring a surprise with short and unexpected outbursts of 30-50 meteors an hour seen in 1935, 1986, 1994 and 2019.

The parent comet of the Aurigids, C/1911 N1 Kiess, moves on an orbit with a period far longer than the parent of any other shower on our list.

It is thought the orbit takes between 1,800 and 2,000 years to complete, although our knowledge of it is very limited as it was only observed for a short period of time.

In late August every year, Earth passes through debris shed by the comet at a previous passage thousands of years into the past. In most years, the dust we encounter is very sparse.

But occasionally we intersect a denser, narrow stream of debris, material laid down at the comet’s previous passage. That dust has not yet had time to disperse so is more densely packed and hence gives enhanced rates: a meteor outburst.

Several independent research teams studying the past behaviour of the shower have all come to the same conclusion. On August 31, 2021, the Earth will once again intersect that narrow band of debris and an outburst may occur, with predictions it will peak around 21:17 UTC or 21:35 UTC.

Such an outburst would be short-lived. The dense core of the debris stream is so narrow it will take the Earth just ten or 20 minutes to traverse. So you’ll have to be lucky to see it.

The forecast outburst this year is timed such that observers in Eastern Europe and Asia will be the fortunate ones, with the radiant above the horizon. The waning Moon will light the sky when the radiant is above the horizon, washing out the fainter meteors from the shower.

From Europe, the expected peak of the Aurigids occurs just before Moonrise. Be sure to look for the Pleiades whilst watching for any Aurigids – they’re a spectacular cluster of bright stars, commonly known as the Seven Sisters. Vienna, 11:30pm.
Museums Victoria/Stellarium
The crescent Moon has risen in Asia at the time the Aurigids peak. Dubai, 1:30am.
Museums Victoria/Stellarium

The Aurigids tend to be fast and are often quite bright. Previous outbursts of the shower have featured large numbers of bright meteors. It may just be worth getting up and heading outside at the time of the predicted outburst, just in case the Aurigids give us a show to remember.

While waiting for the Aurigids, the morning sky in Perth is also packed with many famous constellations and bright stars. Perth, 5:30am.
Museums Victoria/Stellarium

Geminids [N/S]

Active: December 4–17

Maximum: December 14, 7am UTC = 6pm AEDT (NSW/ACT/Vic/Tas) = 3pm AWST (WA) = 2am EST

ZHR: 150

Parent: Asteroid 3200 Phaethon

The Geminid meteor shower is truly a case of saving the best until last. By far the best of the annual meteor showers, it graces our skies every December, yielding good numbers of spectacular, bright meteors.

The shower is so good it is always worth observing, even in 2021, when the Moon will be almost full.

Over the decades, the Geminids have gradually become stronger and stronger. They took the crown of the year’s best shower from the Perseids in the 1990s, and have continued to improve ever since.

For observers in the northern hemisphere, the Geminids are visible from relatively early in the evening, with their radiant rising shortly after sunset, and remaining above the horizon for all of the hours of darkness.

As the night progresses, the radiant gets very high in the sky and the shower can put on a truly spectacular show.

For those in the southern hemisphere, the situation is not quite as ideal. The further south you live, the later the radiant will rise, and so the later the show will begin.

When the radiant reaches its highest point in the sky (around 2am–3am local time), it sits closer to the horizon the further south you are, so the best meteor rates you observe will be reduced compared to those seen from more northerly locations.

At its highest point, the Geminids radiant sits higher from Brisbane (left) than from Hobart (right), which is why northern observers have a better chance of seeing more meteors.
Museums Victoria/Stellarium

Despite these apparent drawbacks, the Geminids are still by far the best meteor shower of the year for observers in Australia, and are well worth a look, even on the moonlit nights of 2021.

Peak Geminid rates last for around 24 hours, centred on the official peak time, before falling away relatively rapidly thereafter. This means that observers around the globe can enjoy the display.

The best rates come when the radiant is highest in the sky (around 2–3am) but it is well worth looking up at any time after the radiant has risen above the horizon.


The Geminid radiant rises at about the following times across Australia., Author provided

So wherever you are on the planet, if skies are clear for the peak of the Geminids, it is well worth going outside and looking up, to revel in the beauty of the greatest of the annual meteor showers.The Conversation

Jonti Horner, Professor (Astrophysics), University of Southern Queensland and Tanya Hill, Honorary Fellow of the University of Melbourne and Senior Curator (Astronomy), Museums Victoria

This article is republished from The Conversation under a Creative Commons license. Read the original article.