An artist’s surreal view of Australia – created from satellite data captured 700km above Earth



File 20180827 75981 h6vbep.jpg?ixlib=rb 1.1
Infrared and visible light satellite data is recoloured to produce striking images of Australia.
Grayson Cooke , Author provided

Grayson Cooke, Southern Cross University

There are more than 4,800 satellites orbiting Earth. They bristle with sensors – trained towards Earth and into space – recording and transmitting many different wavelengths of electromagnetic radiation.

Governments and media corporations rely on the data these satellites collect. But artists use it too, as a new way to image and view the Earth.

I work with Geoscience Australia and the “Digital Earth Australia” platform to produce time-lapse images and video of Australian landforms using satellite data.

My Open Air project, produced through a collaboration with Australian painter Emma Walker and the music of The Necks, features macro-photography of Emma Walker’s paintings set against time-lapse satellite imagery of Australia.

Open Air will be launched in Canberra on September 20, 2018.

Trailer: Open Air – showing Lake Gairdner in South Australia with turquoise desert, red salt lakes and pink clouds (Grayson Cooke 2017).



Read more:
Curious Kids: How do satellites get back to Earth?


Open access to satellite data

We see satellites as moving pin-pricks in the night sky, or occasionally – as with the recent return to Earth of the Chinese Tiangong space station – as streaks of light. And most us would have heard about satellite data being used for surveillance, for GPS tracking and for media broadcasting.

But artists can divert satellite data away from a purely instrumental approach. They can apply it to produce new ways of seeing, understanding and feeling the Earth.

Of course satellites are expensive to launch and maintain. The main players are either powerful corporate providers like Intelsat, enormous public sector agencies like NASA and the European Space Agency (ESA), or private sector startups with links to these groups.

Luckily, many of these agencies make their data freely available to the public.

The NASA/US Geological Survey Landsat program makes 40 years of Earth imaging data available through Earth Explorer. The ESA provides data from their Sentinel satellites to users of the Copernicus Open Access Hub.

In Australia, Geoscience Australia‘s Digital Earth Australia platform provides researchers and the public with access to Australian satellite data from a range of agencies.

Landsat 8 image acquired in Australia in May 2013 over Cambridge Gulf and the Ord River estuary in Western Australia. Visible light bands highlight the different types of water within the estuary. Shortwave and near infrared bands highlight the mangroves and vegetation on the land.
Geoscience Australia, Author provided

Understanding and processing the data

Making satellite imaging data accessible, though, is not the same thing as making it usable. There is considerable technical know-how required to process satellite data.

The Landsat and Sentinel satellites are used by scientists and the private sector to monitor environmental change over time, using what is known as “remote sensing”. They travel in the low Earth orbit range, around 700km above the Earth and circle the Earth in around 90 minutes. After numerous orbits, they return to the exact same spot every 16 days.

Landsat and Sentinel satellites are equipped with sensors that record reflected electromagnetic radiation in a range of wavelengths. Some of these wavelengths fall within the visible light part of the spectrum (between 390-700 nanometers). In that sense, satellites image the Earth in a way comparable to a digital camera.

This image shows the percentage of time since 1987 that water was observed by the Landsat satellites on the floodplain around Burketown and Normanton in northern Queensland. The water frequency is shown in a colour scale from red to blue, with areas of persistent water observations shown in blue colouring, and areas of very infrequent water observation shown in red colouring.
Geoscience Australia, Author provided



Read more:
A sports car and a glitter ball are now in space – what does that say about us as humans?


But the satellites also record other wavelengths, particularly in the near and shortwave infrared range. Vegetation, water and geological formations reflect and absorb infrared light differently to visible light. Recording these wavelengths allows scientists to track, for instance, changes in vegetation density or surface water location that indicate drought, flood or fire.

A single satellite image is made up of numerous bands recording data in very specific wavelengths. Getting a full-colour image requires processing in a GIS application to combine them, and assign the bands to either red, green or blue in an output image.

Images collected over 12 months at the Gulf of Carpentaria – 2016.
Grayson Cooke, Author provided

Bringing creativity to the data

This is where creativity can enter the picture. Being able to create false colour images that combine infrared and visible light in different ways allows me to produce beautifully surreal images of Australian landforms.

The image below shows the variance in environmental conditions over 12 months in 2016 at the Stirling Range National Park in WA.

A false colour image of Stirling Range National Park created by combining data relating to infrared and visible light.
Grayson Cooke, Author provided

Because geoscientists need clear images of the earth’s surface to analyse, they filter clouds from the data. I chose to take the opposite approach, highlighting the incredible array of meteorological conditions experienced by the country.

Clouds passing over the Eyre Peninsula in 2016.
Grayson Cooke, Author provided

There are many other artists working with satellite data. Clement Valla’s Postcards from Google Earth focuses on glitches in Google’s mapping algorithm, and bio-artist Suzanne Anker uses satellite imaging to produce extruded 3D environments in petri dishes.

Working with the Nevada Museum of Art, photographer Trevor Paglen will launch the Orbital Reflector satellite as an inflatable, visible sculpture, a prompt for wonder and reflection.

Artists place satellite data and usage in new contexts. They question surveillance practices and expose scientific tools and representations to new audiences outside science and the private sector.

The thousands of satellites winging their way around the Earth represent power and possibility, a chance to look again at the intersection between humankind and a changing planet.


“Open Air” will be officially launched at the National Film and Sound Archive in Canberra on September 20. It will also screen at the Spectra conference in Adelaide in October.The Conversation

Grayson Cooke, Associate Professor, Deputy Head of School (Research), Southern Cross University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

Explainer: why the rock art of Murujuga deserves World Heritage status



File 20180827 149487 1nrw8d2.png?ixlib=rb 1.1
Detail of a fish (likely black bream) on Enderby Island.
Photo Vic Anderson

Jo McDonald, University of Western Australia

The West Australian government has committed to pursuing a World Heritage listing for the rock art of Murujuga. Murujuga is the Aboriginal name for the Dampier Archipelago and the Burrup Peninsula in north west WA and is home to at least a million individual works of art.

Australia has some of the world’s richest and most diverse rock art. While rock art is found all around the globe, Australia is relatively unique because here there are still cultural connections between rock art and the people who created it.

At present, Australia has only three cultural World Heritage sites (of which only one – Kakadu – is listed for rock art). In contrast, France has over 30 World Heritage-listed rock art sites.

I and my colleague Peter Veth have argued that Murujuga rock art meets three criteria for outstanding universal value: because of the creative genius and skill of the artwork; the extraordinarily old and continuous engraving tradition; and the combined cultural landscapes of the area, including quarries, living sites, and shell middens.

These illustrate significant transitions in human history in the face of major changes in sea level and surrounding environment.

The boulders of Murujuga are home to more than a million works of rock art.
Shutterstock.com

Animals no longer found

When people first started using this landscape 50,000 years ago, it was located around 100 km from the coast. It was wetter and warmer than it is now – and the archaeological record of the coastal plain at this time demonstrates an entire group of animals no longer found in this part of Australia. Murujuga’s artists painted some of these animals, such as crocodiles.

Then, during the last ice age (between 30,000 and 18,000 years ago), the coastline was even further away (160 km). People were were living in the Murujuga Ranges at this time. There are a number of paintings of animals that are now extinct, such as thylacines and a fat-tailed species of kangaroo, which testify to the changing environment.

Speared fat-tailed kangaroo positioned on irregular boulder; Dolphin Island.
Photo J. McDonald.

Then, as the ice caps melted and the sea level rose, people became more concentrated on the new coastal landscape. Recent studies across the archipelago have demonstrated the scientific significance of the outer and inner islands of this cultural land and seascape.

Dugong, turtles and fish

Around 8,000 years ago, people began to construct houses. Art production at this time was in full swing. The most recent rock art includes dugong, turtles, fish as well as the small rock wallabies and quolls that now live on the islands.

Fish depiction (likely black bream), Enderby Island.
Photo Sarah de Koning.

As well as houses there are myriad stone arrangements, standing stones and terraces. This is a monumental hunter-gatherer-fisherperson landscape, which rivals the period in Europe when people were constructing stone monuments such as Stonehenge (except in Europe this occurred thousands of years later).

The artworks in Murujuga were made on the rocks using stone tools. Together they show how people have been living in the region for thousands of years, first as hunter-gatherers, and later with a focus on fishing.

Contemporary traditons

This rock art is still associated with contemporary traditions, ideas, and belief systems of traditional custodians. It is the widely-held belief that many Murujuga engravings represent and embody ancestral beings (Marga), while some of the standing stones are thalu sites, critical for the regeneration of key species such as a range of fish, birds and kangaroo, and even sandflies.

Five local Aboriginal groups hold native title in lands next to the archipelago – the Ngarluma, Yindjibarndi, Yaburara, Mardudhunera and Wong-gg-tt-too. Together, they are represented by Murujuga Aboriginal Corporation, which jointly manages Murujuga National Park with the WA state government. The peninsula and the islands are also listed as having National Heritage values. This listing excludes parts of the peninsula that have been previously damaged by industry.

Pelican, Murujuga.
Photo Sarah de Koning.



Read more:
Where art meets industry: protecting the spectacular rock art of the Burrup Peninsula


National Heritage listing paves the way for Murujuga to become a World Heritage site. Recently, traditional custodians and others came together for a summit in Karratha and concluded resoundingly that World Heritage listing would be appropriate for Murujuga, and that it would help protect this extraordinary place.

Author Tim Winton also joined the push for World Heritage status.

Yesterday’s announcement is a significant moment for WA – which doesn’t have any Aboriginal cultural sites listed as World Heritage. And for the traditional custodians, it is the next step in their quest for recognition and greater protection of this place’s special significance.

<!– Below is The Conversation's page counter tag. Please DO NOT REMOVE. –>
The Conversation

Placing Murujuga on the Tentative List is the beginning of the formal process to achieve World Heritage status. This will still take several years, but as the CEO of the Murujuga Aboriginal Corporation, Peter Jeffries, said yesterday, the traditional owners are now driving the process.

Jo McDonald, Director, Centre for Rock Art Research + Management, University of Western Australia

This article was originally published on The Conversation. Read the original article.

The science and art of reef restoration



File 20180715 27042 jlzpgh.jpg?ixlib=rb 1.1
Silent Evolution by Jason deCaires Taylor. Taylor makes sculptures and sinks them beneath the sea to create artificial reefs.
© Jason deCaires Taylor

Adam Smith, James Cook University and Ian McLeod, James Cook University

Coral reefs around the world are in crisis. Under pressure from climate change, overfishing, pollution, introduced species and apathy, coral colonies and fish communities are steadily deteriorating.

Coral cover in the Great Barrier reef has declined by an alarming 50% since the 1980s. Some leading scientists believe that the Great Barrier Reef is at a terminal stage.




Read more:
$500 million for the Great Barrier Reef is welcome, but we need a sea change in tactics too


One way to address this is through reef restoration. At its simplest, this involves the addition of coral or habitat to a reef. It’s generally undertaken on existing coral reefs, but can also be done on rocky reefs or bare sand.

We have looked back through the decades to celebrate the history of reef restoration, not just in science but also in art, business and politics.

Gardener, by Jason deCaires Taylor.
© Jason deCaires Taylor

Band-aid or reef revolution?

Just as there is no magic solution in human healthcare, there is likewise no magic solution in caring for corals. You do what you can with the resources you have.




Read more:
The surprising benefits of oysters (and no, it’s not what you’re thinking)


Some scientists have argued that reef restoration is a Band-Aid for the enormous problems that reefs face. We can agree with this point of view, but there are times when a band aid is very useful – and may prevent much more serious injuries.

Reef restoration makes an important local difference, as seen here at Koh Tao, Thailand.
Author provided

Earlier this year the federal government allotted an unprecedented A$500 million dollars to the Great Barrier Reef. This included A$100 million focused on restoration to improve the health of the reef.

Reef restoration science and projects complement community efforts. There is an increasing focus on addressing local issues such as water quality, overfishing, and outbreaks of crown-of-thorns starfish.




Read more:
Love connection: breakthrough fights crown-of-thorns starfish with pheromones


When scientists, industry and government work with local communities we can accelerate the recovery of local reefs.

To do this, we need people who want to make a difference. Once we recognise a degraded ecosystem, we work to reduce stress (like pollution in the water) and add new habitat or helpful species.

Artist Jason deCaires Taylor builds breathtaking underwater sculptures that double as artificial coral reefs.

The history of reef restoration

People have been restoring ecosystems and degraded land for thousands of years. Reef restoration, on the other hand, is relatively new and rarely documented.

Our research indicates that in the modern era there have been three major waves of reef restoration. The first wave started in the 1970s and ‘80s, as scientists were able to easily SCUBA dive and new protective legislation was introduced around the world. This largely involved the addition of new habitats. These could be coral transplants, or artificial constructs likes shipwrecks, concrete pipes, tyres and a purpose built structure called a reef ball.

The second wave from 2000-2010 was associated with scientists and conservationists responding to local concerns from cyclone damage, overfishing, introduced species and over-crowding at tourism sites, particularly in the Caribbean. Restoration methods at this point expanded to removing items as well as adding them, including algae, crown-of-thorns and lionfish.

Reef restoration has evolved over decades.
Author provided

The third wave, from 2016, has focused on new scientific technology such as micro-fragmentation: breaking coral into small pieces so it grows faster. It also emphasises partnerships between government-business-community to reduce threats and restore reefs.

This era also sees a huge increase in communication. Increasingly, we are influenced by social sciences and marketing rather than science and biology in our search for coral reef solutions. Organisations such as Rare, Citizens of the GBR and Reef Check are using citizen scientists, campaigns and pledges to reduce human impact and improve reefs’ health. As an example, the rapid phase out of plastic bags has been led by social media – not science.

Celebrating the Reef restoration Leaders

Documenting the history of reef restoration is important because it allows us to understand our past and be more informed and inspired to take action in the future.

Sculpture at the Underwater Museum at Lanzarote Rubicon.
© Jason deCaires Taylor

The great men and women in our history were innovators who responded to crisis and went against convention by restoring reefs.

We reviewed academic literature and conducted a global survey to find the pioneers who led reef restoration science, management, business and communication. These include Drs Austin Bowden-Kerby, David Vaughan, Todd Barber, Barach Rinkievich and Kristen Marhaver.




Read more:
Coral reefs work as nature’s sea walls – it pays to look after them


An idea without action is just a dream. Similarly, an idea that has not been communicated widely and is not known and adopted by the general community cannot result in changed behaviour. Increasingly we recognise that good science and management is not enough without community support and action.


The authors would like to acknowledge the valuable contribution of Nathan Cook, Senior Marine Scientist at Reef Ecologic, to this article.

A presentation on the history of Reef Restoration will occur at the Great Barrier Reef Restoration Symposium, July 16-19, Cairns.

Thanks to Jason deCaires Taylor for the use of images. See more at underwatersculpture.com.

The ConversationThis article was updated on July 25 to clarify the location of the reef pictured demonstrating the impact of restoration.

Adam Smith, Adjunct Associate Professor, James Cook University and Ian McLeod, Senior Research Scientist – Coastal Restoration, James Cook University

This article was originally published on The Conversation. Read the original article.

Building a ‘second nature’ into our cities: wildness, art and biophilic design



File 20180223 152379 17gdhrv.jpg?ixlib=rb 1.1
The plantings of New York’s High Line Park were inspired by plants that had naturally colonised the disused railway viaduct.
Beyond my Ken/Wikipedia, CC BY-SA

Jordan Lacey, RMIT University

Biophilic design is beginning to boom. Witness its recent incorporation into the Melbourne Metro project and Sydney’s award-winning One Central Park, Chippendale. Given the increasing popularity of this urban design technique, it’s time to take a closer look at the meaning of nature and its introduction into our cities.




Read more:
Why ‘green cities’ need to become a deeply lived experience


Biophilia

Nature is good for our mental well-being, numerous scientific studies tell us. This flood of research begins in 1984 with E.O. Wilson’s biophilia hypothesis, in which he hypothesises a gene that necessities our love of life and life-like processes. However, a genetic basis for biophilia has not been identified, and the value of a genetic argument for our attraction to nature has been questioned.

More recently, theorists have broadened the definition of biophilia to encompass the benefits of human-nature interaction. And it seems governments and industry are listening. Cities everywhere are embracing the change.




Read more:
Biophilic urbanism: how rooftop gardening soothes souls


Biophobia

I’ve spoken to numerous city dwellers over the years who tell me they find nature unsettling, if not terrifying. It’s mainly the isolation and silence they find overwhelming, particularly if they have spent their life in densely populated cities such as New York or Hong Kong. This sensation is captured by the term biophobia, a fear of nature.

While biophilia theorists acknowledge biophobia, it is rare to find this reflected in the work of biophilic designers whose work risks downplaying the complex ways in which we experience nature. After all, the feel-good message of biophilia is an easy sell. But if we can both love and fear nature we should ask ourselves: what is the source of these powerful emotional responses? And is the introduction of biota and abiota the only way we can elicit such experiences?

Art and nature

The philosopher Henri Lefebvre called the city a “second nature”. Given that every aspect of our cities, including ourselves, originated in what we refer to as nature this makes perfect sense. More obscurely, Lefebvre writes that in the creation of second nature we should produce “urban space, both as a product and as a work, in the sense in which art created works”.

To understand this we must consider the question: how does art make works? We might say that every artwork is unique in its making – no two artworks (assuming we don’t consider reproductions to be artworks) are the same. Similarly, nature’s creations are distinct: no two snowflakes are the same, every dawn is different etc.

In the creation of a second nature, Lefebvre challenges us to produce cities just as art produces work, so that our built environment might be as diverse as nature. Therefore, the production of a second nature is as much the responsibility of art as it is of design and architecture. If we are to create urban spaces rich in creative expression, then we should embrace this insight as much as possible.

There is scope for art in the expression of wildness.
pxhere.com

A challenge to the creation of a second nature is to contend with the rules, regulations and controls of city bureaucracies that struggle to make room for creativity. Under these conditions, nature as introduced by biophilic designers is more likely to be applied as a functional agent, manicured and arranged, utilised for the production of more efficient workers and stress-free urban dwellers. But is it the purpose of nature to service such functional needs?




Read more:
Green for wellbeing – science tells us how to design urban spaces that heal us


Celebrating wildness

Wildness – a derivative of wilderness – is a term familiar to biophilia theorists. For instance, Timothy Beatley talks about the wildness of nature bursting through the cracks of the urban. New York’s High Line self-seeded landscape is a rare celebration of such growth, usually considered unkempt areas of the urban. Even Wilson, an epitome of scientific reductionism and mechanistic thought, speaks of a “spirit” interwoven between nature and ourselves, which must be preserved.

So, what is this spirit, this wildness we crave when we speak of nature? I would speculate that this wildness, or spirit, celebrated by biophilic theorists is the very same experience that sometimes terrifies our city dweller. It is the uncontrollable force of nature – always striving to exist, enabling it to appear everywhere and stirring our senses into states of wonder and awe.

In the creation of second nature, we should acknowledge that art has an equally powerful role to play in producing wildness. For instance, well-executed public art can be a source of wonder, imagination, contemplation and transformation. These are all experiences valued by biophilic practitioners.

The Serpentine Gallery Pavilion in London integrates elements of public art and nature.
Groume/flickr, CC BY-SA



Read more:
Let cities speak: reclaiming a place for community with sounds


Towards second nature

We should encourage the growth of biophilic design in our cities. But if the nature we desire is, in fact, its expression as untamed wildness, then we should turn to art as much as we do to the elements of the natural world when designing and building our cities. Emerging infrastructure projects should consider the role of artists in directing human experience towards an urban wildness, which celebrates the creativity of nature.

The ConversationLet’s build cities that celebrate the wild, not just efficiency and productivity.

Jordan Lacey, Research Fellow, Architecture & Design, RMIT University

This article was originally published on The Conversation. Read the original article.

Australia: Wessel Islands – Aboriginal Art Work Discovered


The link below is to an article reporting on the discovery of some extremely important Aboriginal art work in the Wessel Islands of the Northern Territory, Australia.

For more visit:
http://www.australiangeographic.com.au/journal/aboriginal-rock-art-may-depict-first-ship-arrivals.htm