‘I didn’t mean to hurt you’: new research shows funnel webs don’t set out to kill humans



Shutterstock

Bryan Fry, The University of Queensland and Volker Herzig, University of the Sunshine Coast

Funnel webs are considered one of Australia’s most fearsome spiders, but their ability to kill humans is by accident rather than design, our new research shows.

In findings published today, we reveal how the highly toxic and quick-acting venom of male funnel-web spiders is likely to have developed as a defence against predators.

When male funnel-web spiders are young, their venom is potent mainly to insects, which they eat. But once males start searching for a female mate, they must leave the safety of their burrows. That’s when their venom becomes potent to vertebrates such as reptiles and mammals – including humans.

So while humans can theoretically die from a funnel web bite, this is just an evolutionary coincidence – our research suggests the spiders aren’t specifically out to get us.

A funnel web spider
Funnel webs are among Australia’s most feared spiders.
Shutterstock

Why so deadly?

About 15% of all animals use venom for reasons such as to kill or immobilise prey, self-defence or to gain advantage over competitors, such as during breeding season. As an animal matures and its activities change, so too can its venom.

Australian funnel webs are among a small group of spiders whose venom can kill humans. However all 13 recorded deaths occurred before anti-venom was introduced in 1981.

Funnel web venom is lethal because it contains a type of neurotoxin called “delta-hexatoxin”. This toxin can kill humans by attacking the nervous system, keeping nerves “turned on” and firing over and over again. In severe cases the venom can cause muscles to go into spasm, blood pressure to drop dangerously, coma and organ failure, and ultimately death – sometimes within a few hours.




Read more:
Don’t like spiders? Here are 10 reasons to change your mind


Scientists have long been puzzled by why these toxins are so deadly to humans, when we and other primates have never been funnel web prey or predator. Scientists were also perplexed as to why male funnel webs appeared to have much deadlier venom than females, and caused most human deaths.

However we did know most funnel web bites in humans occur during the spiders’ summer mating season, when the male spiders rarely feed. This suggested the venom played a defensive role.

Venom dripping from a funnel web's fang
Venom from a male funnel web spider can kill vertebrates, including humans.
David Wilson

Spider sleuthing

We set out to solve this mystery, using molecular analysis of the venom. Although 35 species of Australian funnel-web spiders were officially recognised, only nine delta-hexatoxins from four species had previously been identified. Our analysis increased the number of known delta-hexatoxins to 22, from the venom of ten funnel-web species.

Having this extra data helped us paint a much clearer picture of the venom’s story. It all comes down to natural selection – the process where organisms best adapted to their environment survive and procreate. The genes responsible for this success are preserved and carry on to the next generations, driving the process of evolution

Our data revealed how natural selection triggered a change in the venom of adult male funnel webs. When males sexually mature, they leave the safety of their burrow and wander considerable distances to find a female. This puts male funnel web spiders in the path of vertebrate predators. These can include reptiles (such as lizards or geckos), marsupials (such as antechinus and dunnarts), mammals (such as rats) and birds.




Read more:
Should I kill spiders in my home? An entomologist explains why not to


When funnel-web spiders evolved millions of years ago, toxins in its venom mainly targeted their natural prey: insects such as cockroaches and flies. We examined the genetic sequences of all delta-hexatoxins in funnel web venom. We found over time, the venom of adult males evolved to be potent to vertebrate predators. Unluckily for humans, who are vertebrate animals, we copped it in the process.

Female funnel webs stay safely in their burrows and let the males come to them. So the venom of females is thought to remain potent only against insects their entire lives.

A funnel web spider entering its burrow
Female funnel webs stay in their burrows, so are less likely to be eaten by predators.
Shutterstock

Take comfort

Now armed with a stronger understanding of how delta-hexatoxins evolved, we want to put that knowledge to use. The new genetic sequences we discovered will enable a better understanding of what funnel web spider venom does to the human body. This could be critical for improving existing anti-venoms, and for designing evidence-based treatment strategies for bite victims.

We’re not just looking at the venoms of sexually mature males. We’re also examining female funnel-web venom, hoping their insect-specific toxins will lead to new types of insecticides which are less harmful to non-target insects and the broader environment.

Funnel webs may be one of Australia’s most deadly spiders. But perhaps its some comfort to know their venom is not targeted against us, and the potential lethal effects are just a stroke of evolutionary bad luck.




Read more:
Curious Kids: why do spiders need so many eyes but we only need two?


The Conversation


Bryan Fry, Associate Professor, School of Biological Sciences, The University of Queensland and Volker Herzig, Associate Professor, University of the Sunshine Coast

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Morrison government wants to suck CO₂ out of the atmosphere. Here are 7 ways to do it



Shutterstock

Annette Cowie, University of New England; Han Weng, The University of Queensland; Lukas Van Zwieten, Southern Cross University; Stephen Joseph, UNSW, and Wolfram Buss, Australian National University

Federal Energy Minister Angus Taylor is on Tuesday expected to outline the Morrison government’s first Low Emissions Technology Statement, plotting Australia’s way forward on climate action. It’s likely to include “negative emissions” technologies, which remove carbon dioxide (CO₂) from the air.

The Intergovernmental Panel on Climate Change says negative emissions technologies will be needed to meet the Paris Agreement goal of limiting warming to well below 2℃. In other words, just cutting emissions is not enough – we must also take existing greenhouse gases from the air.

Last week, the government broadened the remit of the Australian Renewable Energy Agency (ARENA) and the Clean Energy Finance Corporation (CEFC). It flagged negative emissions technologies, such as soil carbon, as one avenue for investment.

Some negative emissions ventures are operating in Australia at a small scale, including carbon capture, reforestation and soil carbon management. Here, we examine seven ways to remove CO₂ from the atmosphere, including their pros and cons.

Graphic showing seven negative emissions technologies.
Graphic showing seven negative emissions technologies.
Anders Claassens

1. Managing soil carbon

Up to 150 billion tonnes of soil carbon has been lost globally since farming began to replace natural forests and grasslands. Improved land management could store or “sequester” up to nine billion tonnes of CO₂ each year. It could also improve soil health.

Soil carbon can be built through methods such as:

  • no-till” farming, using techniques that don’t disturb soil
  • planting cover crops, which protect soil between normal cropping periods
  • grazing livestock on perennial pastures, which last longer than annual plants
  • applying lime to encourage plant growth
  • using compost and manure.

It’s important to remember though, that carbon can be hard to store in soils for long periods. This is because microbes consume organic matter, which releases carbon back to the atmosphere.

Tilled fields
Intensive farming has led to global loss of soil carbon.
Shutterstock

2. Biochar

Biochar is a charcoal-like material produced from organic matter such as green waste or straw. It is added to soil to boost carbon stores, by promoting microbial activity and aggregation (soil clumps) which prevents organic plant matter breaking down and releasing carbon.

Biochar has been used by indigenous people in the Amazon to increase food production. More than 14,000 biochar studies have been published since 2005. This includes work by Australian researchers showing how biochar reacts with soil minerals, microbes and plants to improve soil and stimulate plant growth.




Read more:
Earth may temporarily pass dangerous 1.5℃ warming limit by 2024, major new report says


On average, biochar increases crop yields by about 16% and halves emissions of nitrous oxide, a potent greenhouse gas. The production of biochar releases gases that can generate renewable heat and electricity. Research suggests that globally, biochar could store up to 4.6 billion tonnes of CO₂ each year.

However its potential depends on the availability of organic material and land on which to grow it. Also, the type of biochar used must be suitable for the site, or crop yields may fall.

A handful of biochar.
Added to soil, biochar increases carbon stores.
Shutterstock

3. Reforestation

Planting trees is the simplest way to take CO₂ from the atmosphere. Reforestation is limited only by land availability and environmental constraints to growth.

Reforestation could sequester up to ten billion tonnes a year of CO₂. However, carbon sequestered through reforestation is vulnerable to loss. For example, last summer’s devastating bushfires released around 830 million tonnes CO₂.

4. Bioenergy with carbon capture and storage (BECCS)

Plant material can be burned for energy – known as bioenergy. In a BECCS system, the resulting CO₂ is captured and stored deep underground.

Currently, carbon capture and storage (CCS) is only viable at large scale, and opportunities for storage are limited. Only a few CCS facilities operate internationally.

BECCS has the potential to sequester 11 billion tonnes annually. But this is limited by availability of material to burn – which in theory could come from forestry and crop waste, and purpose-grown plants.

The large-scale deployment of CCS will also have to overcome barriers such as high costs, challenges in dealing with leaks, and determining who takes long-term responsibility for the stored carbon.

A bioenergy facility
Bioenergy has big potential but is limited by the amount of material available to burn.
Shutterstock

5. Enhanced weathering of rocks

Silicate rocks naturally capture and store CO₂ from the atmosphere when they weather due to rain and other natural processes. This capturing can be accelerated through “enhanced weathering” – crushing rock and spreading it on land.

The preferred rock type for this method is basalt – nutrient-rich and abundant in Australia and elsewhere. A recent study estimated enhanced weathering could store up to four billion tonnes of CO₂ globally each year.

However low rainfall in many parts of Australia limits the rate of carbon capture via basalt weathering.

6. Direct air carbon capture and storage (DACCS)

Direct air carbon capture and storage (DACCS) uses chemicals that bond to ambient air to remove CO₂. After capture, the CO₂ can be injected underground or used in products such as building materials and plastics.

DACCS is in early stages of commercialisation, with few plants operating globally. In theory, its potential is unlimited. However major barriers include high costs, and the large amount of energy needed to operate large fans required in the process.

7. Ocean fertilisation and alkalinisation

The ocean absorbs around nine billion tonnes of CO₂ from the air each year.

The uptake can be enhanced by fertilisation – adding iron to stimulate growth of marine algae, similar to reforestation on land. The ocean can also take up more CO₂ if we add alkaline materials, such as silicate minerals or lime.

However ocean fertilisation is seen as a risk to marine life, and will be challenging to regulate in international waters.

Liddell coal-fired power station
Negative emissions technologies will be needed to address climate change, but deep emissions reductions are the highest priority.
Dan Himbrechts/AAP

Looking ahead to a zero-carbon world

The foreshadowed government investment in negative emissions technologies is a positive step, and will help to overcome some of the challenges we’ve described. Each of the technologies we outlined has the potential to help mitigate climate change, and some offer additional benefits.

But all have limitations, and alone they will not solve the climate crisis. Deep emissions reduction across the economy will also be required.

Correction: a previous version of this article said biochar could store up to 4.6 million tonnes of CO₂ each year. The correct figure is 4.6 billion tonnes.




Read more:
‘A dose of reality’: Morrison government’s new $1.9 billion techno-fix for climate change is a small step


The Conversation


Annette Cowie, Adjunct Professor, University of New England; Han Weng, Research academic, The University of Queensland; Lukas Van Zwieten, Adjunct Professor, Southern Cross University; Stephen Joseph, Visiting Professor, School of Material Science and Engineering, UNSW, and Wolfram Buss, Postdoctoral fellow, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Morrison government lays down five technologies for its clean energy investment


Michelle Grattan, University of Canberra

The Morrison government will tell its refocused clean energy agencies and the clean energy regulator to give priority to investment in five low emissions technologies and report how they are accelerating them.

The technologies are clean hydrogen, energy storage, low carbon steel and aluminium, carbon capture and storage, and soil carbon.

The government last week announced it would legislate to extend the remit of the Australian Renewable Energy Agency (ARENA) and the Clean Energy Finance Corporation (CEFC) beyond renewables.

On Tuesday it will indicate the “priority low emissions technologies” they, and the Clean Energy Regulator (CER) – which is responsible for administering the government’s emissions reduction fund – should concentrate on.

Energy Minister Angus Taylor, in a Tuesday speech on low emissions technology, will say the government is putting technologies into four categories. Apart from the priority low emissions technologies, the other categories are emerging and enabling technologies, “watching brief” technologies, and mature technologies.

Priority technologies “are those expected to have transformational impacts here and globally and are not yet mature,” Taylor says in his speech, released ahead of delivery.

“They are priorities where government investments can make a difference in reducing costs and improving technology readiness.

“Technologies where we, as a government, will not only prioritise our investments but where we will streamline regulation and legislation to encourage investment.

“Investors will have confidence that identified priority technologies are of long-term strategic importance for the government.”

Emerging and enabling technologies, such as those for energy efficiency and infrastructure for electric and hydrogen vehicle charging/ refuelling, will also be included in the mandate of the government’s investment agencies.

In the “watching brief” category are those that are for the longer run or are longer odds, such as direct air capture and small nuclear modular reactors. (There is a moratorium on nuclear power in Australia at the moment but the government is watching developments in Europe and the United Kingdom.)

Notably, key renewables and key fossil fuels are in the “mature” category, which includes coal, gas, solar and wind.

The government says it will only invest in them where there is market failure or where such investments secure jobs in key industries.

Last week Scott Morrison threatened to build a gas power station in the Hunter region if private investors left a supply gap for when the Liddell coal-fired station closes, while he also indicated renewables could now stand on their own feet.

Taylor will release an overarching technology roadmap, which he says “arms the government with “four levers to enact change”: an investment lever, a legislative lever, a regulator lever, and international co-operation and collaboration.

“The roadmap will guide the deployment of the $18 billion that will be invested, including through the CEFC, ARENA, the Climate Solutions Fund [which will evolve from the Emissions Reduction Fund] and the CER.

“This will turn that into at least $50 billion through the private sector, state governments, research institutions and other publicly funded bodies. That will drive around 130 000 jobs to 2030,” Taylor says.

The legislative level “is about flexibility and accountability.

“We don’t currently have that. Our agencies are restricted by legislation and regulation to invest in the new technologies of 2010 not the emerging technologies of 2020.”

The regulator lever “is about enablement”.

Taylor says the government’s plan is not based on ideology but “balance and outcomes”.

The government is announcing several “stretch goals” (see table for details). Stretch goals are the point at which new technologies become competitive with existing alternatives. The government announced the hydrogen stretch goal earlier in the year.

“Getting these technologies right will strengthen our economy and create jobs,” Taylor says.

“This will significantly reduce global emissions, across sectors that emit 45 billion tonnes annually.

“Australia alone will avoid 250 million tonnes of emissions by 2040.”

He says “Australia can’t and shouldn’t damage its economy to reduce emissions”.

The Conversation

Michelle Grattan, Professorial Fellow, University of Canberra

This article is republished from The Conversation under a Creative Commons license. Read the original article.

‘A dose of reality’: Morrison government’s new $1.9 billion techno-fix for climate change is a small step



Dean Lewins/AAP

Frank Jotzo, Australian National University

The Morrison government today announced A$1.9 billion over ten years to develop clean technology in industry, agriculture and transport. In some ways it’s a step in the right direction, but a far cry from what’s needed to drive Australia’s shift to a low emissions economy.

The big change involves what the money is for. The new funding will enable the Australian Renewable Energy Agency (ARENA) to support technologies such as green steel production, industrial processes to reduce energy consumption and somewhat controversially, carbon-capture and storage and soil-carbon sequestration.

This is a big move away from ARENA’s current investment priorities. Importantly it means ARENA will continue to operate, as it is running out of money now.

However technology development alone is not enough to cut Australia’s emissions deeply and quickly – which is what’s needed to address the climate threat. Other policies and more money will be needed.

Interior of steelworks
Cutting emissions from industry will be a focus of the new spending.
Dean Lewins/AAP

New role for ARENA

ARENA will receive the lion’s share of the money: A$1.4 billion over ten years in guaranteed baseline funding. ARENA has spent A$1.6 billion since it was established in 2012. So the new funding is lower on an annual basis. It’s also far less than what’s needed to properly meet the challenge, in a country with a large industrial sector and huge opportunities for zero carbon production.

To date, ARENA’s investments have focused on renewable energy supply. Prime Minister Scott Morrison today said the renewables industry was enjoying a “world-leading boom” and no longer needs government subsidies. Critics may be dismayed to see ARENA steered away from its original purpose. But it is true solar parks and wind farms are now commercially viable, and technologies to integrate large amounts of renewables into the grid are available.

So it makes sense to spend new research and development (R&D) funding on the next generation of low-emissions technologies. But how to choose what to spend the money on?

A few simple principles should inform those choices. The spending should help develop new zero- or low-emissions technologies or make them cheaper. It should also enable the shift to a net-zero emissions future, rather than locking in structures that continue to emit. The investment choices should be made by independent bodies such as ARENA’s board, based on research and expert judgement, rather than politically determined priorities.

For the industrial sector, the case for supporting zero-emissions technologies is clear. A sizeable share of Australia’s total emissions stem from fossil fuel use in industry.




Read more:
Government targets emerging technologies with $1.9 billion, saying renewables can stand on own feet


In some cases, government-supported R&D could help lay the foundation for zero-emissions industries of the future. But in others, what’s needed is a financial incentive for businesses to switch to clean energy or zero-emissions production methods, or regulation to require cleaner processes.

Green steel is a perfect example of the positive change that is possible. Steel can be made using clean hydrogen and renewable electricity, and the long term possibility of a green steel industry in Australia is tantalising.

Steel being made
Steel could be made cleanly using hydrogen instead of coking coal.
Dean Lewins/AAP

A future for fossil fuels?

The government’s support for carbon capture and storage (CCS) will be highly contested, because it’s a way to continue using fossil fuels at reduced – though not zero – emissions. This is achieved by capturing carbon dioxide before it enters the atmosphere and storing it underground, a technically feasible but costly process.

CCS will not perpetuate fossil fuel use in the energy sector, because renewables combined with energy storage are now much cheaper. Rather, CCS can be an option in specific processes that do not have ready alternatives, such as the production of cement, chemicals and fertiliser.

One step further is so-called “carbon capture and use” (CCU), where carbon dioxide is not pumped underground but turned into products, such as building materials. One program announced is for pilot projects of that kind.




Read more:
Yes, carbon emissions fell during COVID-19. But it’s the shift away from coal that really matters


A different proposition is the idea of hydrogen produced from coal or gas, in which some resulting emissions are captured. This method competes with “green” hydrogen produced using renewable electricity. It seems the government for now intends to support fossil fuel-derived hydrogen.

Reducing fossil fuel use, and using CCS/CCU where it makes sense, will not get the world to net-zero emissions. Emissions from other sources must be cut by as much as technically possible, at justifiable cost. Remaining emissions must then be negated by drawing carbon dioxide from the atmosphere. Such “negative emissions” can be achieved through technological means, and also by permanently increasing the amount of carbon stored in plants and soil.

The new funding includes support for increasing the amount of soil carbon. This method may hold promise in principle, but in practice its effectiveness is uncertain, and hard to measure. At the same time, the large emissions from agriculture are not yet addressed.

Gas flaring from an industrial plant
Reducing the burning of fossil fuels is not enough to get to net-zero emissions.
Matt Black Productions

A piecemeal effort

The spending amounts to A$140 million per year for ARENA, plus about A$500 million all up through other programs. A dose of reality is needed about what this money can achieve. It will create better understanding of options, some technological progress across the board and surely the occasional highlight. But a much greater effort is likely needed to achieve fundamental technological breakthroughs. And crucially, new technologies must be widely deployed.

For a sense of scale, consider that the Snowy 2.0 scheme is costed at around A$5 billion, and a single 1 gigawatt gas power plant, as mooted by the government for the Hunter Valley, would cost in the order of A$1.5 billion to build.

As well as additional spending, policies will be needed to drive the uptake of low-emissions technologies. The shift to renewables is now happening in the energy sector without government help, though some hurdles remain. But we cannot expect the same across the economy.

Governments will need to help drive uptake through policy. The most efficient way is usually to ensure producers of emissions pay for the environmental damage caused. In other words, putting a price on carbon.

The funding announced today is merely one piece of a national long-term strategy to deeply cut emissions – and not a particularly big piece.




Read more:
Carbon pricing works: the largest-ever study puts it beyond doubt


The Conversation


Frank Jotzo, Director, Centre for Climate and Energy Policy, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

As bushfire season approaches, we need to take action to recruit more volunteer firefighters




Amanda Davies, University of Western Australia

Across rural Australia, volunteer-run bushfire brigades have long been a central part of the life of the towns. Volunteer brigades provide the frontline defence against bushfires, and also undertake bushfire prevention and mitigation activities.

These frontline volunteer firefighters are supported by many others, including those who step up to support the families and businesses of volunteer firefighters while they are away fighting fires.

With rural Australia already facing a major volunteer shortage, and bushfires projected to become increasingly frequent and prolonged, it is vital we consider new ways to support the rural volunteer labour force.

Volunteer saturation in rural Australia

Rural Australia has long relied on an army of volunteers. However, an increase in the demands on volunteers’ time has eroded the capacity for further work to be absorbed.

The increase in demand on volunteers has been driven, in part, by the consolidation of government services into larger cities and centres, meaning smaller communities need to provide more essential and social services through volunteer organisations. It has also been driven by an increase in regulation of volunteer activities, particularly essential service provision, with more time needed to be dedicated to training, reporting and compliance activities.




Read more:
Value beyond money: Australia’s special dependence on volunteer firefighters


Our research revealed that population change across rural Australia has also presented challenges. For some places, population decline and ageing have had the dual impact of increasing the need for volunteer services, while reducing the number of available volunteers.

For other places, particularly those experiencing people moving to the town for lifestyle reasons population growth has increased the pool of potential volunteers. But newer residents have been less likely to become involved in traditional volunteering organisations.

For volunteer bushfire brigades, our research revealed an intensification in centralised regulation and compliance requirements. This in turn increased the time volunteers needed to commit to their local bushfire brigade. This increased time commitment presented a barrier to volunteers either remaining involved or becoming involved in their local brigade.

Our research also found this greater regulation has come at a time when people are increasingly seeking to volunteer in less formal and more occasional ways. For volunteer bushfire brigades, where regular engagement is required, this preference for episodic volunteering is a concern.




Read more:
As bushfires intensify, we need to acknowledge the strain on our volunteers


Why do we rely on volunteers?

The collective volunteering effort put towards fighting bushfires in Australia is immense, and it would be too expensive to fully professionalise firefighting services. Australia’s volunteer firefighters contribute between A$1.2 billion and A$2 billion in labour per year.

This assessment is based only on reported incidents, and does not include time volunteers spend on small fires, mitigation activities, gear maintenance, fundraising and training. This assessment of value also does not include the efforts of those who support volunteers while they are on the front line.

Fire events are also sporadic, with the risk greatly increased in some years and much less in others. Given the geographic spread of Australia’s population, effectively distributing a professional volunteer fire service would be exceptionally challenging.

Being involved in volunteering is also important for well-being and social connections. For many, being a volunteer firefighter is a way of life and a part of who they are.

Could new volunteer firefighters be recruited from cities?

With rural volunteering at saturation, it might be time to look further afield for volunteer labour.

Australia’s devastating bushfires of 2019-20 thrust into broader public consciousness the crucial role of rural volunteer firefighters. This period saw huge bushfires burn up to the outskirts of the largest cities and population hubs – and on numerous fronts.

Just over 10% of Australia’s population faced a direct threat from the bushfires and more than 14 million people were impacted by bushfire smoke. With the fires burning more than 18 million hectares, volunteer and professional firefighters were spread thin across the extensive fronts. The Australian Defence Force was mobilised to assist, including evacuating trapped residents and holidaymakers.

During this period, many people sought ways to help not just those directly impacted by bushfires, but also those fighting the fires.




Read more:
Summer bushfires: how are the plant and animal survivors 6 months on? We mapped their recovery


However, firefighting is something that requires extensive training, and regular commitment. Past volunteers who sought to be involved in the firefighting effort had to be turned away as they did not have current training.

There is a need to expand the volunteer bushfire labour force. There is very little, or no more, capacity in rural communities. If we are going to turn to city populations to assist, then planning and preparation are needed.

We are now on the cusp of the next fire season. The Royal Commission into the National Natural Disaster Arrangements is set to deliver its findings on October 28. A huge volume of material has been submitted to its hearings, including more than 1,700 submissions from the public.

There seems an appetite for change. However, this summer we will again be looking to the same fire crews, the same volunteers, who spent last summer fighting fires on multiple fronts.The Conversation

Amanda Davies, Professor, University of Western Australia

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Environment Minister Sussan Ley faces a critical test: will she let a mine destroy koala breeding grounds?


Lachlan G. Howell, University of Newcastle and Ryan R. Witt, University of Newcastle

In the next few weeks, federal Environment Minister Sussan Ley will decide whether to approve a New South Wales quarry expansion that will destroy critical koala breeding grounds.

The case, involving the Brandy Hill Quarry at Port Stephens, is emblematic of how NSW environment laws are failing wildlife — particularly koalas. Efforts to erode koala protections hit the headlines last week when NSW Nationals leader John Barilaro threatened to detonate the Coalition over the issue.




Read more:
The NSW koala wars showed one thing: the Nationals appear ill-equipped to help rural Australia


Koala populations are already under huge pressure. A NSW parliamentary inquiry in June warned the koala faces extinction in the state by 2050 if the government doesn’t better control land clearing and habitat loss.

Ley could either continue these alarming trends, or set a welcome precedent for koala protection. Her decision is also the first big test of federal environment laws since an interim review found they were failing wildlife. So let’s take a closer look at what’s at stake in this latest controversy.

A koala clinging to a tree branch
This female koala is under threat from the Brandy Hill Quarry expansion.
Lachlan Howell, Author provided

The Brandy Hill Quarry expansion

The NSW government gave approval to Hanson Construction Materials, a subsidiary of Heidelberg Cement, to expand the existing Brandy Hill Quarry in Seaham in Port Stephens.

The project would provide concrete to meet Sydney’s growing construction demands, as the state fast-tracks infrastructure projects to help the economy recover from COVID-19.

The approval came despite the known presence of koalas in the area. A koala survey report, completed on behalf of the developer in 2019, determined the project would “result in a significant impact to the koala”.

The report recommended the quarry expansion be referred to the federal Environment Minister under the Environment Protection and Biodiversity Conservation (EPBC) Act 1999, for its potential impacts on “Matters of National Environmental Significance”.




Read more:
View from The Hill: Barilaro keeps Nationals in the tent; koalas stay in limbo


The expansion site intersects habitat with preferred high quality koala feed and shelter trees. This habitat is established forest containing various key mature Eucalyptus trees, including the forest red gum and swamp mahogany.

The survey report didn’t propose any mitigation strategies to sustain the habitat. Instead, it suggested minimisation measures, such as ecologists to be present during habitat clearing, low speed limits for vehicles on site, and education on koalas for workers.

A disaster for koalas

In support of a community grassroots campaign (Save Port Stephens Koalas), we produced an report on the effect of the quarry expansion on koalas. The report now sits with Ley ahead of her decision, which is due by October 13.

Male koalas will bellow during the breeding season to attract females.

The expansion will clear more than 50 hectares of koala habitat. We found koalas breeding within 1 kilometre of the current quarry boundary, which indicates the expansion site is likely to destroy critical koala breeding habitat.

During the breeding season, male koalas bellow to attract females. Within 1km of the boundary we observed a female koala and a bellowing male koala 96m apart. A second male was reported bellowing 227m from the quarry boundary.

What’s more, the site expansion occurs within a NSW government listed Area of Regional Koala Significance. The expansion site actually has higher average koala habitat suitability than all remaining habitat on the quarry property.

The Koala Habitat Suitability Model from our independent report. The red boundary represents the Quarry expansion site containing high habitat suitability.
Map produced by S. A. Ryan using the Koala Habitat Information Base and arcGIS 10.6., Author provided

CSIRO research from 2016 suggests koalas in Port Stephens can move hundreds of metres in a day and up to 5km in one month. Movement is highest during the breeding season. This potential for koalas to move away was a key reason the NSW government approved the expansion.

Koalas can move in to the remaining property to breed, or they can move away from it. But habitat outside the expansion site is, on average, lesser quality, and this is where the expansion would force the koalas to move to.




Read more:
Stopping koala extinction is agonisingly simple. But here’s why I’m not optimistic


This habitat fragmentation would not only result in lost access to potential breeding grounds, but also further restrict movement and expose koalas to threats such as predation or road traffic.

Lastly, the expansion would sever a crucial East–West corridor koalas likely use to move across the landscape and breed.

Approved under the state’s weak environmental protections

It may seem surprising this destructive project was approved by the NSW government. But it’s a common story under the state’s protections.

Alarm over the weaknesses of NSW environmental protections has been raised by NSW government agencies including the Natural Resources Commission and NSW Audit Office.




Read more:
Our laws failed these endangered flying-foxes at every turn. On Saturday, Cairns council will put another nail in the coffin


The expansion approval is an example of how the NSW government relaxed the regulatory requirements for land clearing between 2016 and 2017. This led to a 13-fold increase in land clearing approvals, and tipped the balance away from sustainable development.

Female and male koalas spotted 1 km from the quarry boundary. The male was observed bellowing 96 m from the female koala. Photo: Lachlan Howell.

The expansion shines another spotlight on NSW’s poor biodiversity offset laws.

Biodiversity offsets involve compensating for environmental damage in one location by improving the environment elsewhere. Under the expansions approval, the developer was required to protect an estimated 450 hectares of habitat as offset.

But the recent parliamentary inquiry into NSW koalas recommended offsetting of prime koala habitat — such as that involved in the quarry expansion — be prohibited, which would mean not destroying the habitat in the first place.




Read more:
Let there be no doubt: blame for our failing environment laws lies squarely at the feet of government


The NSW decision also does not account for the Black Summer Bushfires which claimed 5,000 koalas and burned millions of hectares of koala habitat. The Port Stephens population was unburned but more than 75% of its habitat has been lost since colonial occupation. Securing this population is important for the overall security of koalas in the state.

The koalas are in Sussan Ley’s hands

Sussan Ley will now assess the expansion under the EPBC Act. A recent interim report into the laws said they’d allowed an “unsustainable state of decline” of Australia’s environment.

Rejections under these laws are rare; just 22 of 6,500 projects referred for approval under the act have been refused. However, it’s not impossible.

Earlier this year Ley rejected a wind-farm in Queensland which threatened unburned koala habitat. If Ley gives full consideration to the evidence in our report, she should make the same decision.




Read more:
Be worried when fossil fuel lobbyists support current environmental laws


The Conversation


Lachlan G. Howell, PhD Candidate | School of Environmental and Life Sciences, University of Newcastle and Ryan R. Witt, Conjoint Lecturer | School of Environmental and Life Sciences, University of Newcastle

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Australian stinging trees inject scorpion-like venom. The pain lasts for days



Fig B Dexcelsa.

Irina Vetter, The University of Queensland; Edward Kalani Gilding, The University of Queensland, and Thomas Durek, The University of Queensland

Australia is home to some of the world’s most dangerous wildlife. Anyone who spends time outdoors in eastern Australia is wise to keep an eye out for snakes, spiders, swooping birds, crocodiles, deadly cone snails and tiny toxic jellyfish.

But what not everybody knows is that even some of the trees will get you.

Our research on the venom of Australian stinging trees, found in the country’s northeast, shows these dangerous plants can inject unwary wanderers with chemicals much like those found in the stings of scorpions, spiders and cone snails.

The stinging trees

In the forests of eastern Australia there are a handful of nettle trees so noxious that signs are commonly placed where humans trample through their habitat. These trees are called gympie-gympie in the language of the Indigenous Gubbi Gubbi people, and Dendrocnide in botanical Latin (meaning “tree stinger”).

A casual split-second touch on an arm by a leaf or stem is enough to induce pain for hours or days. In some cases the pain has been reported to last for weeks.

A gympie-gympie sting feels like fire at first, then subsides over hours to a pain reminiscent of having the affected body part caught in a slammed car door. A final stage called allodynia occurs for days after the sting, during which innocuous activities such as taking a shower or scratching the affected skin reignites the pain.




Read more:
‘The worst kind of pain you can imagine’ – what it’s like to be stung by a stinging tree


How do the trees cause pain?

Pain is an important sensation that tells us something is wrong or that something should be avoided. Pain also creates an enormous health burden with serious impacts on our quality of life and the economy, including secondary issues such as the opiate crisis.

To control pain better, we need to understand it better. One way is to study new ways to induce pain, which is what we wanted to accomplish by better defining the pain-causing mechanism of gympie-gympie trees.

How does these plants cause pain? It turns out they have quite a bit in common with venomous animals.

The plant is covered in hollow needle-like hairs called trichomes, which are strengthened with silica. Like common nettles, these hairs contain noxious substances, but they must have something extra to deliver so much pain.

Earlier research on the species Dendrocnide moroides identified a molecule called moroidin that was thought to cause pain. However, experiments to inject human subjects with moroidin failed to induce the distinct series of painful symptoms seen with a full Dendrocnide sting.

Finding the culprits

We studied the stinging hairs from the giant Australian stinging tree, Dendrocnide excelsa. Taking extracts from these hairs, we separated them out into their individual molecular constituents.

One of these isolated fractions caused significant pain responses when tested in the laboratory. We found it contains a small family of related mini-proteins significantly larger in size than moroidin.

We then analysed all the genes expressed in the gympie-gympie leaves to determine which gene could produce something with the size and fingerprint of our mystery toxin. As a result, we discovered molecules that can reproduce the pain response even when made synthetically in the lab and applied in isolation.

The genome of Dendrocnide moroides also turned out to contain similar genes encoding toxins. These Dendrocnide peptides have been christened gympietides.

A plant with a straight narrow green stem covered in fine hairs and large flat leaves.
The most toxic of the stinging trees, gympie-gympie or Dendrocnide moroides.
Edward Gilding, Author provided

Gympietides

The gympietides have an intricate three-dimensional structure that is kept stable by a network of links within the molecule that form a knotted shape. This makes it highly stable, meaning it likely stays intact for a long time once injected into the victim. Indeed, there are anecdotes reporting even 100-year-old stinging tree specimens kept in herbariums can still produce painful stings.

What was surprising was the 3D structure of these gympietides resembles the shape of well-studied toxins from spider and cone snail venom. This was a big clue as to how these toxins might be working, as similar venom peptides from scorpions, spiders, and cone snails are known to affect structures called ion channels in nerve cells, which are important mediators of pain.

Specifically, the gympietides interfere with an important pathway for conducting pain signals in the body, called voltage-gated sodium ion channels. In a cell affected by gympietides, these channels do not close normally, which means the cell has difficulty turning off the pain signal.




Read more:
Explainer: what is pain and what is happening when we feel it?


Better understanding may bring new treatments

The Australian stinging trees make a neurotoxin that resembles a venom in both its molecular structure and how it is deployed by injection. Taking these two things together, it would seem two very different evolutionary processes have converged on similar solutions to win the endgame of inflicting pain.

In the process, evolution has also presented us with an invaluable tool to understand how pain is caused. The precise mechanisms by which gympietides affect ion channels and nerve cells are currently under investigation. During that investigation, we may find new avenues to bring pain under control.The Conversation

Irina Vetter, Australian Research Council Future Fellow, The University of Queensland; Edward Kalani Gilding, Postdoctoral Research Officer, The University of Queensland, and Thomas Durek, Senior Research Fellow, The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

New Zealand invests in growing its domestic recycling industry to create jobs and dump less rubbish at landfills



Shutterstock/corners74

Jeff Seadon, Auckland University of Technology

New Zealand’s government recently put more than NZ$160 million towards developing a domestic recycling sector to create jobs as part of its economic recovery from the COVID-19 pandemic.

New Zealanders recycle 1.3 million tonnes of materials each year, but 70% is currently exported. A recent NZ$36.7 million funding boost to upgrade recycling plants throughout the country followed a NZ$124 million injection into recycling infrastructure to grow processing capacity onshore. The investment signals a focus on supporting services that create employment and increase efficiency or reduce waste.

The potential for expansion in onshore processing of recyclable waste is enormous – and it could lead to 3.1 million tonnes of waste being diverted from landfills. But it will only work if it is part of a strategy with clear and measurable targets.

COVID-19 impacts

During New Zealand’s level 4 lockdown between March and May, general rubbish collection was classed as an essential service and continued to operate. But recycling was sporadic.

Whether or not recycling services continued depended on storage space and the ability to separate recyclables under lockdown conditions. Facilities that relied on manual sorting could not meet those requirements and their recycling was sent to landfill. Only recycling plants with automated sorting could operate.

New Zealand’s reliance on international markets showed a lack of resilience in the waste management system. Any changes in international prices were duplicated in New Zealand and while exports could continue under tighter border controls, it was no longer economically viable to do so for certain recyclable materials.

International cardboard and paper markets collapsed and operators without sufficient storage space sent materials to landfill. Most plastics became uneconomic to recycle.

Recycling and rubbish bins
New Zealanders recycle 1.3 million tonnes each year.
Shutterstock/Josie Garner

In contrast, for materials processed in New Zealand — including glass, metals and some plastics — recycling remains viable. Many local authorities are now limiting their plastic collections to those types that have expanding onshore processing capacity.

Soft packaging plastics are also being collected again, but only in some places and in smaller quantities than at the height of the soft plastics recycling scheme, to be turned into fence posts and other farm materials.




Read more:
What happens to the plastic you recycle? Researchers lift the lid


The investment in onshore processing facilities is part of a move towards a circular economy. The government provided the capital for plants to recycle PET plastics, used to make most drink bottles and food trays. PET plastics can be reprocessed several times.

This means items such as meat trays previously made from polystyrene, which is not recyclable from households, could be made from fully recyclable PET. Some of the most recent funding goes towards providing automatic optical sorters to allow recycling plants to keep operating under lockdown conditions.

Regulation changes

The government also announced an expansion of the landfill levy to cover more types of landfills and for those that accept household wastea progressive increase from NZ$10 to NZ$60 per tonne of waste.

This will provide more money for the Waste Minimisation Fund, which in turn funds projects that lead to more onshore processing and jobs.

Last year’s ban on single-use plastic bags took more than a billion bags out of circulation, which represents about 180 tonnes of plastic that is not landfilled. But this is a small portion of the 3.7 million tonnes of waste that go to landfill each year.

More substantial diversion schemes include mandatory product stewardship schemes currently being implemented for tyres, electrical and electronic products, agrichemicals and their containers, refrigerants and other synthetic greenhouse gases, farm plastics and packaging.

An example of the potential gains for product stewardship schemes is e-waste. Currently New Zealand produces about 80,000 tonnes of e-waste per year, but recycles only about 2% (1,600 tonnes), most of which goes offshore for processing. Under the scheme, e-waste will be brought to collection depots and more will be processed onshore.

Landfilling New Zealand’s total annual e-waste provides about 50 jobs. Recycling it could create 200 jobs and reusing it is estimated to provide work for 6,400 people.




Read more:
Waste not, want not: Morrison government’s $1b recycling plan must include avoiding waste in the first place


But all these initiatives are not enough. We need a coordinated strategy with clear targets.

The current Waste Strategy has only two goals: to reduce the harmful effects of waste and improve resource use efficiency. Such vague goals have resulted in a 37% increase in waste disposal to landfill in the last decade.

An earlier 2002 strategy achieved significantly better progress. The challenge is clear. A government strategy with measurable targets for waste diversion from landfill can lead us to better resource use and more jobs.The Conversation

Jeff Seadon, Senior Lecturer, Auckland University of Technology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Government targets emerging technologies with $1.9 billion, saying renewables can stand on own feet


Michelle Grattan, University of Canberra

The government has unveiled a $1.9 billion package of investments in new and emerging energy and emission-reducing technologies, and reinforced its message that it is time to move on from assisting now commercially-viable renewables.

The package will be controversial, given its planned broadening of the remit of the government’s clean energy investment vehicles, currently focused on renewables, and the attention given to carbon capture and storage, which has many critics.

The latest announcement follows the “gas-fired recovery” energy plan earlier this week, which included the threat the government would build its own gas-fired power station if the electricity sector failed to fill the gap left by the scheduled closure of the coal-fired Liddell power plant in 2023.




Read more:
Morrison government threatens to use Snowy Hydro to build gas generator, as it outlines ‘gas-fired recovery’ plan


Unveiling the latest policy, Scott Morrison said solar panels and wind farms were commercially viable “and have graduated from the need for government subsidies”.

The government was now looking to unlock new technologies “to help drive down costs, create jobs, improve reliability and reduce emissions. This will support our traditional industries – manufacturing, agriculture, transport – while positioning our economy for the future.”

An extra $1.62 billion will be provided for the Australian Renewable Energy Agency (ARENA) to invest.

The government will expand the focus of ARENA and the Clean Energy Finance Corporation (CEFC) to back new technologies that would reduce emissions in agriculture, manufacturing, industry and transport.

At present ARENA can only support renewable energy and the CEFC can only invest in clean energy technologies (although it can support some types of gas projects).

The changes to ARENA and the CEFC will need legislation.

The government says it will cut the time taken to develop new Emissions Reduction Fund (ERF) methods from two years or more to under a year, involving industry in a co-design process.

This follows a review of the fund, which is a centrepiece of the Coalition’s emissions reduction policy. The cost of the changes is put at $24.6 million. The fund has had trouble attracting proposals from some sectors because of its complex administrative requirements.

Other measures in the policy include a new $95.4 million Technology Co-Investment Fund to support businesses in the agriculture, manufacturing, industrial and transport sectors to take up technologies to boost productivity and reduce emissions.

A $50 million Carbon Capture Use and Storage Development Fund will pilot carbon capture projects. This technology buries carbon but has run into many problems over the years and its opponents point to it being expensive, risky and encouraging rather than discouraging the use of fossil fuels.

Businesses and regional communities will be encouraged to use hydrogen, electric, and bio-fuelled vehicles, supported by a new $74.5 million Future Fuels Fund.

A hydrogen export hub will be set up, with $70.2 million. Chief Scientist Alan Finkel has been a strong advocate for the potential of hydrogen, saying Australia has competitive advantages as a future hydrogen exporter.

Some $67 million will back new microgrids in regional and remote communities to deliver affordable and reliable power.

There will be $52.2 million to increase the energy productivity of homes and businesses. This will include grants for hotels’ upgrades.

The government says $1.8 billion of the package is new money.

Here are the details of the package:

The Conversation

Michelle Grattan, Professorial Fellow, University of Canberra

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Super funds are feeling the financial heat from climate change


Amandine Denis, Monash University

The wild fires that have ravaged the US west coast, turning skies orange, are a lurid reminder that climate change looms ever larger as an economic threat.

This week has seen a flurry of announcements reflecting that reality.




Read more:
Coping with Western wildfires: 5 essential reads


New Zealand’s government has declared it will become the world’s first country to require its financial sector to report on climate risks.

A collaboration between Australian banks, insurers and climate scientists – the Climate Measurement Standards Initiative – has issued the nation’s first comprehensive framework to assess climate-related risks to buildings and critical infrastructure.

And another of Australia’s largest superannuation funds, UniSuper, has committed to achieving net zero carbon emissions from its investment portfolio by 2050.

UniSuper, the industry fund for university workers, is the third major Australian super fund to make such a commitment.




Read more:
UniSuper take note: there’s no retirement on a dead planet


The first was HESTA, the industry super fund for health and community sector workers, in June. The second was CBus, the construction and mining industry super fund, last month. “The reality is that things are coalescing fast around us,” said Kristian Fok, CBus’ chief investment officer at the time.

While the superannuation industry remains very much in transition, analysis by ClimateWorks Australia and the Monash Sustainable Development Institute indicates a new determination among Australia’s 20 largest Registrable Superannuation Entity licensees to act on climate change risks.

These 20 licensees represent about 55% of all superannuation investments in Australia, worth a total of about A$2.7 trillion.

Along with the 2050 commitments by HESTA, CBus and UniSuper, another 13 funds are actively looking to reduce their portfolio’s emissions intensity. For example, Aware Super (formerly First State Super) announced in July it would divest from thermal coal miners and reduce emissions in its listed equities portfolio by at least 30% by 2023.

Only four of the 20 – Colonial First State, IOOF, Nulis and OnePath – still have no emissions reduction targets or activities.

Managing risk

This flurry of announcements reflects a changing context.

In the past, fund managers sometimes argued that, in a heavily regulated industry, their legal responsibilities prevented them from committing to emissions reductions. They were tasked, they said, with protecting their members’ finances, not guarding the environment.

Until about 2017, super funds tended to limit action to asking companies in which they owned shares to disclose their climate risks and to offering voluntary sustainable investment options to their members.

But since the Paris climate agreement in 2015, targets of net zero emissions by 2050 (or earlier) have been adopted by governments, businesses and investors. More than 100 countries and all Australian states and territories have net zero targets in place. So do some major companies, such as BHP and Qantas.

Many businesses now recognise the financial implications of global warming.
ANZ, for example, this month announced it expected the 100 biggest-emitting customers to have a plan to adapt to a low-carbon economy – something the bank’s chief executive, Shayne Elliot, said was simply “good old-fashioned risk management”.

This accords with the perspective of regulators, with Australian Prudential Regulation Authority regarding global warming not as a moral issue but one “distinctly financial in nature”.

Charred remains at a home destroyed by fire in Berry Creek, California, September 10 2020.
Climate change is now an issue ‘distinctly financial in nature’.
Peter Dasilva/EPA

This means asset managers are increasingly thinking about how more frequent and extreme weather events will devalue property and infrastructure. They are also thinking about the future worth of companies rusted to fossil fuels as the global economy shifts to net zero emissions.

Investors must also consider the possibility of litigation. For example, 24-year-old Brisbane council worker Mark McVeigh has taken the Retail Employees Superannuation Trust to court on the basis it has failed to protect his savings from the financial consequences of ruinous climate change.

Creating the new normal

Understandably, many funds are hesitant to commit to net zero emission portfolio targets without knowing how those targets might be achieved.

But by setting targets, super funds can create a norm that spurs investment in the ways and means to achieve those goals.

With the manifestations of that warming becoming ever more apparent, pressure will grow on super funds to make net zero pledges across their entire portfolios – and then to back these pledges with both interim commitments and detailed transition strategies.




Read more:
California is on fire. From across the Pacific, Australians watch on and buckle up


As Kristian Fok says, change is coalescing fast. We’re seeing promising signs of the super funds responding. But we’ll need to see more yet.The Conversation

Amandine Denis, Head of Research, ClimateWorks Australia, Monash University

This article is republished from The Conversation under a Creative Commons license. Read the original article.