Phantom of the forest: after 100 years in hiding, I rediscovered the rare cloaked bee in Australia


James B. Dorey, Flinders University

It’s not often you get to cast your eyes on a creature feared to be long-gone.

Perhaps that’s why my recent rediscovery of the native bee species Pharohylaeus lactiferus is so exciting — especially after it spent a century eluding researchers.

But how did it stay out of sight for so long?

A creature overshadowed

Australia is home to 1654 named species of native bee. Unfortunately, these are often overshadowed in the eyes of public by the widespread and invasive European honeybee.

Scientific research on Australian native bees is lagging, compared to many other nations.

With this in mind, it may not be surprising to learn some native species can go unnoticed for many years. Although, when it’s the only representative of a whole genus, one might start to worry about losing something special.

In this case the genus is Pharohylaeus, where “pharo” means “cloaked”, as these bees’ first three abdominal segments overlay the others to resemble a cloak.

I found the cloaked bee P. lactiferus during a major east coast sampling effort of more than 225 unique sites. The discovery, and what I learnt from it, helped me find more specimens at two additional sites.

It also made me wonder why P. lactiferus had been missing for so long. Is it naturally rare, hard to find, or perhaps threatened?




Read more:
We taught bees a simple number language – and they got it


Taxonomic trouble

Many Australian bees are very difficult to identify to a species level. In fact, some might be nearly impossible.

However, P. lactiferus is a relatively distinct black and white masked bee. Masked bees are those from the subfamily Hylaeinae, named so because they often have striking, bright facial patterns on an otherwise dark face.

With this distinctive appearance, identification issues weren’t a contributor to the mystery of P. lactiferus.

Seeing red

Still, despite having sampled extensively across sites and flowering plant species, I only found P. lactiferus on two types of plant: the firewheel tree and the Illawarra flame tree — both of which boast exuberant red flowers.

_Brachychiton acerifolius_ flowers.
The Illawarra flame tree (Brachychiton acerifolius).
James Dorey, Author provided

Bees generally don’t see shades of red, so such plants are usually pollinated by birds. It could be that bee researchers tend to avoid sampling these red flowering plant species for this reason.

Then again, bee vision and bee perception are not always the same. And bees are also guided by their keen sense of smell.

Habitat specialisation

So far, I’ve only found P. lactiferus within about 200 metres of one major vegetation subgroup, which is tropical or sub-tropical rainforest.

The first specimens I collected were in Atherton, Queensland. I later found more in Kuranda and Eungella. Some of these specimens are now stored in the South Australian Museum.

The habitat specialisation of P. lactiferus may suggest it has an above-average level of vulnerability to disturbances, particularly if it needs a strict set of requirements to make it through its entire life-cycle.

It is one of myriad bee species that nest in narrow, wooden hollows. Some bees such as Amphylaeus morosus dig these themselves and may require specific plant species to make their nest in.

Others such as Exoneurella tridentata need to use holes made by weevil larvae in two particular tree species: western myall and bullock bush.

Rainforests are also notoriously hard to sample. If a bee species spends much of its time in the high canopy, finding it would be difficult.

That said, two early collectors managed to find six specimens of P. lactiferus between 1900 and 1923. So its rarity doesn’t necessarily come down to it being a canopy-dweller.




Read more:
The mystery of the blue flower: nature’s rare colour owes its existence to bee vision


Potential threats

We know in the bioregions where P. lactiferus has been found that rainforests have undergone both habitat destruction and fragmentation since European colonisation. This threat hasn’t abated and Queensland is still a land-clearing hotspot.

We also know these rainforests burnt across Queensland every year between 1988 and 2016. The 2019-20 black summer megafires burnt nearly double the area of any previous year.

For some bee species this may not be a problem. But for a species that potentially requires specific foods, habitats and even other species, it could mean local extinction.

Only so many populations of a single species can disappear, before there are none left.

Where does this leave us?

P. lactiferus persists, which is wonderful. Unfortunately, we can’t yet say whether or not it is threatened.

To determine this confidently would require a robust, extensive and targeted survey regime.

We may not be able to undertake such a regime for all 1654 of the named bee species in Australia. But perhaps we could make that effort for the country’s only cloaked bee.The Conversation

James B. Dorey, PhD Candidate, Flinders University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisement

It’s bee season. To avoid getting stung, just stay calm and don’t swat



Shutterstock

Caitlyn Forster, University of Sydney and Tanya Latty, University of Sydney

This summer’s wetter conditions have created great conditions for flowering plants. Flowers provide sweet nectar and protein-rich pollen, attracting many insects, including bees.

Commercial honey bees are also thriving: the New South Wales population has reportedly bounced back after the drought and bushfires

While you may have seen a lot of bees around lately, there’s no reason to be afraid. Most bees are only aggressive when provoked, and some don’t sting at all. And some bee-like insects are actually flies.

We are experts on honey bee and other insect behaviour. So let’s look at which bees to watch out for, and how to avoid being stung this summer.

Blue banded bee
Most bees, like this native blue banded bee, are not very interested in people.
Shutterstock

Is it a bee, or a wanna-bee?

Bees in Australia comprise both introduced and native species.

Invasive bees found in Australia, all of which can sting, include the widespread European honeybees, bumble bees in Tasmania, and Asian honey bees in Queensland.




Read more:
The mystery of the blue flower: nature’s rare colour owes its existence to bee vision


Australia is also home to about 2,000 native bees, including 11 stingless species.

Stingless bees live in colonies and produce honey. Other native species, such as blue banded bees and leaf cutter bees, are capable of stinging but are rarely aggressive.

Some insects we see around flowers are actually harmless hoverflies. But their yellow and black stripes mean they are often mistaken for bees.

A hoverfly
Hoverflies have similar colouring to honeybees.
Caitlyn Forster

Bees out and about

Bees on flowers are usually more interested in the food they’re collecting than the people around them. However, if you’re concerned about encountering one on your morning walk or in the garden, there are simple ways to mitigate the risk.

Bees sting when they feel threatened. So when you see one, move slowly and keep your distance. If bees fly close to you, avoid sudden movements such as swatting them away.

And wear closed shoes where bees might fly close to the ground, such as around clover or fallen jacaranda flowers.

Bee approaching wattle flower
If you see a bee in the garden, avoid sudden movements.
Shutterstock

What if I see a swarm?

In spring and into summer, healthy honeybee colonies may reproduce by dividing into two. One part of the colony stays at the hive and the other goes looking for a new home.

Worker bees and the queen bee leave the hive in a swarm and find a spot to stay temporarily while scout bees find a new home. That’s when you might see a swarm on a tree, vehicle or building.

Once scout bees find a new home, they return to the swarm and communicate the location via the “waggle dance”. Once a sufficient number of scouts agree on a new nest site, the swarm lifts into the air and flies to its new home.




Read more:
Curious Kids: how do bees make honey?


Don’t panic if you encounter a stationary swarm of bees. The bees will sting only if threatened. But keep your distance.

Moving swarms can pose a higher sting risk, and should be avoided. If you encounter one, move a safe distance away, or indoors if possible. When moving away, avoid fast movements or swatting.

Swarms are usually present for a few hours or days before they move to a permanent location. If the bees are in a risky location (for example, near a footpath or other busy areas), call a beekeeper to safely remove them.

Stingless native bees swarm for two reasons: mating and fighting.

Mating swarms involve males congregating outside a hive to mate with the queen. Fighting swarms occur when a colony of stingless bees attempts to invade another colony. They do not usually pose a risk to humans.

Native bees capable of stinging are solitary, so don’t swarm. However, male solitary bees are known to group together on branches in the evening.

Bee swarm on a fence during a 2018 cricket match
Bee swarms, such as this on a fence during a 2018 cricket match, usually move on in a few days.
Brendon Thorne

When a bee sting happens

Death and serious injury from bee stings is rare. But in Australia, bees are responsible for more hospital visits than snakes or spiders. European honeybees are also responsible for more allergic reactions than any other insect.

Only female bees can sting. Honeybees can only sting once, and die shortly after. This is because their stinger is barbed – once it stings something, the bee can’t pull the stinger out. Instead the stinger pulls free from the bee’s abdomen and the bee dies.

Other species can sting multiple times because their stingers are not barbed.

When a bee’s stinger enters your skin, it injects venom from a sac on its abdomen. When this happens, you’re likely to experience temporary swelling and redness.

For most people, reactions to bee venom are shortlived. To limit the amount of venom injected by the bee, quickly remove the sting using the edge of your fingernail or credit card.

In some cases, stings can lead to severe allergic reactions, including anaphylaxis. If you think you may have an allergy to bee stings, speak to your doctor.

And seek medical advice if you are stung in the face or neck, if significant swelling occurs or if you develop symptoms such as wheezing, light-headedness or dizziness.

Person squeezing bee sting on arm
Many people develop swelling and redness after a bee sting.
Shutterstock

Learning to like bees

Bees and other insects play an important role in our food production, by moving pollen from one plant to another. They do a similar job in your garden, helping flowers and fruits to flourish.

But worldwide, bees and other pollinators face many threats, including climate change, misuse of pesticides and habitat loss. We must do what we can to keep pollinator populations healthy.

So if you’re out and about and see a bee, or even a swarm, try not to panic. The bees are probably focused on the job at hand, and not interested in you at all.




Read more:
‘Jewel of nature’: scientists fight to save a glittering green bee after the summer fires


The Conversation


Caitlyn Forster, PhD Candidate, School of Life and Environmental Sciences, University of Sydney and Tanya Latty, Associate professor, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

‘Jewel of nature’: scientists fight to save a glittering green bee after the summer fires



Remko Leijs, Author provided

Katja Hogendoorn, University of Adelaide; Remko Leijs, Flinders University, and Richard V Glatz, University of Adelaide

This article is a preview of Flora, Fauna, Fire, a multimedia project launching on Monday July 13. The project tracks the recovery of Australia’s native plants and animals after last summer’s bushfire tragedy. Sign up to The Conversation’s newsletter for updates.


The green carpenter bee (Xylocopa aerata) is an iconic, beautiful native species described as a “jewel of nature” for its metallic green and gold colouring. Carpenter bees are so named because they excavate their own nests in wood, as opposed to using existing holes.

With a body length of about 2 centimetres, it is among the largest native bees in southern Australia. While not used in honey farming, it is an important pollinator for several species of Australian native plants.

Last summer’s catastrophic bushfires significantly increased the risk of local extinctions of this magnificent species. We have studied the green carpenter bee for decades. For example, after the 2007 fires on Kangaroo Island, we bolstered the remaining population by providing nesting materials.

To see our efforts – and more importantly, most of the habitat these bees rely on – destroyed by the 2020 fire was utterly devastating.

Much of Kangaroo Island was incinerated by the summer bushfires.
Daniel Mariuz/AAP

A crucial pollinator on the brink

The green carpenter bee is a buzz-pollinating species. Buzz pollinators are specialist bees that vibrate the pollen out of the flowers of buzz-pollinated plants.

Many native plants, such as guinea flowers, velvet bushes, Senna, fringe, chocolate and flax lilies, rely completely on buzz-pollinating bees for seed production. Introduced honey bees do not pollinate these plants.




Read more:
Our field cameras melted in the bushfires. When we opened them, the results were startling


The green carpenter bee went extinct on mainland South Australia in 1906 and in Victoria in 1938. It still occurs on the relatively uncleared western half of Kangaroo Island in South Australia, in conservation areas around Sydney, and in the Great Dividing Range in New South Wales.

Local extinctions were probably due to habitat clearing and large, intense bushfires. The last time the green carpenter bee was seen in Victoria was early December 1938 in the Grampians, which burnt completely during the Black Friday fires of January 1939.

There are several reasons green carpenter bees are vulnerable to fire, including:

  • the species uses dead wood for nesting, which burns easily
  • if the nest burns before the offspring matures in late summer, the adult female might fly away but won’t live long enough to reproduce again, and
  • the bees need floral resources throughout the year.
A male green carpenter bee.
Remko Leijs, Author provided

Nowhere to nest

The bees mainly dig their nests in two types of soft wood: dry flowering stalks of grass trees and, crucially important, large dead Banksia trunks. The availability of both nesting materials is intricately connected with fire.

Green carpenter bees sometimes nest n the dried flowering stalks of grass trees, also known as Xanthorrhoea.
Remko Leijs, Author provided

Grass trees flower prolifically after fire, but the dry stalks are only abundant between two and five years after fire. Banksia species don’t survive fire, and need to grow for at least 30 years to become large enough for the bees to use.

Bees nesting in an artificial stalk.
Remko Leijs, Author provided

With increasingly frequent and intense fires, there’s not enough time for Banksia trunks to grow big enough, before they’re wiped out by the next fire.

A helping hand after the 2007 fires

In 2007, Flinders Chase National Park on Kangaroo Island burnt almost entirely.

An artificial stalk nesting site installed in a Xanthorrea.
Remko Leijs, Author provided

However, in long-unburnt areas adjacent to the park, carpenter bee nests were still present. From there, they colonised the many dry grass tree stalks that resulted from the fire in the park.

In 2012, most flowering stalks had decayed. In an attempt to bolster population size, we successfully developed artificial nesting stalks to tide the bees over until new Banksia, suitable for nesting, would become available.

Since then, each year we’ve placed artificial nesting stalks in fire-affected areas where the bee still occurred. Almost 300 female carpenter bees have successfully used our stalks to raise their offspring.

Then came the January 2020 fires

At the time of the 2020 fires on Kangaroo Island, there were more than 150 nests containing mature brood in the stalks we had provided.

We’d placed these in 12 sites in and around Flinders Chase National Park, to spread risk – to no avail, as they all burnt.

We were horrified to see the intensity and speed of the fire that turned our efforts to ash, along with most of the remnant, long (more than 60 years) unburnt Banksia habitat the bees rely on. In New South Wales, much of the species’ natural range was also burnt.

The yellow dots represent known green carpenter bee nests. In red: the area burnt in 2020. Only a subset of the remaining green and yellow patches still have the right vegetation for the green carpenter bee.
Nature Maps SA/Remko Leijs, Author provided

What’s next for the green carpenter bee?

To fully appreciate the impact, we need to survey the remaining long unburnt areas on Kangaroo Island and in NSW.

Encouragingly, we have already found a few natural nests on Kangaroo Island, but the remaining suitable areas are small and isolated, and densities are likely to be low.

With funds raised through the Australian Entomological Society and the Wheen Bee Foundation, and with help of the Kingscote Men’s Shed, we are making new nesting stalks.

The Kingscote Men’s Shed on Kangaroo Island is helping build new nesting stalks.
Remko Leijs, Author provided

With permission of landholders, we’ll place these new stalks in areas with good floral support, to enhance reproduction and help the bees disperse into conservation areas once suitable.

As we have learnt, success is not guaranteed. Extensive and repeated bush fires, combined with asset protection and fuel reduction burns, are making longtime unburnt habitat increasingly rare. It is this lack of old, continuous, unburnt forest that severely threatens the green carpenter bees’ existence.

The future of fire-vulnerable biodiversity

The carpenter bee is not the only species facing this problem. Many Australian plants and animals are not resilient to high frequency fires, no matter their intensity or time of year.

The ecological importance of longtime unburnt forest needs urgent recognition, as increased fire frequency – both of natural and “managed” fires – is likely to drive a suite of species to extinction.

For Kangaroo Island, this could include several small mammals, glossy black cockatoos, and a range of invertebrate species, including the green carpenter bees.

Given the expected increase in fire frequency and intensity associated with global heating, it’s time we recognise fire-vulnerable species as a category that requires urgent habitat protection.




Read more:
After last summer’s fires, the bell tolls for Australia’s endangered mountain bells


The Conversation


Katja Hogendoorn, University of Adelaide; Remko Leijs, Researcher, Flinders University, and Richard V Glatz, Associate research scientist, University of Adelaide

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Catch the buzz: how a tropical holiday led us to find the world’s biggest bee



File 20190221 148523 qptvp2.jpg?ixlib=rb 1.1
Eli Wyman with the elusive Wallace’s Giant Bee.
Clay Bolt, Author provided

Simon KA Robson, University of Sydney

Many people on a tropical island getaway might take a jungle hike, or learn about the local wildlife. My colleagues and I went one better: we tracked down the world’s biggest bee species, which hadn’t been spotted for decades, while on holiday in Indonesia’s North Molucca islands.

Wallace’s giant bee, Megachile pluto, is fascinating for many reasons. It’s the largest of all known living bees, with a body length about that of a human thumb and a wingspan of more than 6cm. What’s more, its last confirmed sighting in the field was in 1981. After numerous efforts to rediscover it, it was unclear whether the species still remained in the wild.

Beenormous: M. pluto is roughly four times the size of a European honeybee.
Clay Bolt, Author provided

The bee also has a special place in scientific history. It was first collected by the British naturalist and explorer Alfred Russel Wallace in 1859, as part of his work in the Malay Archipelago. He described the female bee as “a large black wasp-like insect, with immense jaws like a stag-beetle”.

Wallace not only independently derived the theory of natural selection as an explanation for evolution alongside Charles Darwin, but his detailed studies of the distribution of animals gave rise to the famous Wallace Line, a boundary that splits Australia and Asia and helps to explain the distribution patterns of many plants and animals.




Read more:
Wallacea: a living laboratory of evolution


Holiday plans

How did four biologists from across the globe, two from Australia (myself and Glen Chilton) and two from the United States (Eli Wyman and Clay Bolt), end up on this journey?

My involvement started at the prompting of Glen, who although specialising in ornithology and writing was interested in both Wallace and the rediscovery of potentially extinct species. He became aware of the existence of the world’s largest bee, and after two years of cajoling I agreed that searching for the bee would represent an excellent holiday.

During the planning for our trip, we became aware that Eli and Clay were also, independently, planning to travel to the Moluccas to search for M. pluto. After a brief Skype call we decided it made sense to join forces and collaborate. So despite our two duos never having met in person, we were a team heading out into the field.

And what a great team it was: Eli’s expertise in all things bee-related; Clay’s fantastic photographic skills; Glen’s enthusiasm and knowledge of Wallace; and my own fascination with the evolution of insect behaviour.

On the ground

We converged on the island of Ternate and began our search across the North Molucca islands for termite mounds containing bee-sized holes, helped by two excellent local guides, Ekawati Ka’aba and Iswan Maujad.

M. pluto is a solitary bee species that forms communal nests inside termite mounds, using its mandibles to collect and apply tree resin to the inner walls of its nest. So we knew what to look out for.

After five fruitless days of searching termite mounds, we were about to call it quits and head for a late lunch when we spotted another mound near the edge of a path.

Inspection with a torch and binoculars revealed a hole that looked promising. Clay scaled the tree and reported that the hole looked to be lined with resin – very exciting. Our guides constructed a platform from branches, we inspected the hole in more detail, and there she was. Cue intense excitement and cries of jubilation as we all rushed to peer inside and catch a glimpse.

Now that we had the bee, we had to be able to prove it, so we put away our iPhone cameras in favour of better-quality (but riskier: the bee might escape!) footage with more professional photographic and video equipment. We gently coaxed her out of her nest and into a small flight chamber, and then eventually Clay got the magic shot, where we released the bee back onto her nest and photographed her at the entrance to her home. Mission accomplished.

Capturing the evidence.
Simon Robson, Author provided

Confirming that the world’s largest bee species is still alive is an enticing development for ecologists. We can learn a lot about the ecology, behaviour and ecological significance of this giant. Amid a global decline in many insects, it’s wonderful to discover this special species is still surviving.




Read more:
Ten years after the crisis, what is happening to the world’s bees?


We also hope our discovery will galvanise conservation movements in Indonesia, and we were inspired by the reception our journey met with many people in the conservation and forestry fields of the North Molucca islands.

We would love more work to be done to assess the bee’s current conservation status. Plans to produce a documentary about Wallace and the rediscovery of this bee are underway, and we hope that its rediscovery provides further impetus to conservation efforts generally.

Not a bad outcome for a holiday!The Conversation

Simon KA Robson, Honorary Professor, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Bee aware, but not alarmed: here’s what you need to know about honey bee stings



File 20171116 11028 z8x2g2.jpg?ixlib=rb 1.1
Bees don’t attack unless they feel threatened.
Shutterstock

Ronelle Welton, University of Melbourne and Kymble Spriggs, University of Melbourne

A Victorian man died yesterday after being stung by several bees. While bee sting deaths are rare (bees claim around two Australian lives each year), bees cause more hospitalisations than any venomous creature.

Bee stings cause nearly the same number of deaths each year as snake bites.
The University of Melbourne’s Pursuit/Internal Medicine Journal

Around 60% of Australians have been stung by a honey bee; and with a population of more than 20 million, that’s a lot of us who have just experienced pain and some swelling.

So what happens when we’re stung by a bee, and what determines whether we’ll have a severe reaction?


Further reading: Ants, bees and wasps: the venomous Australians with a sting in their tails


How do bees sting?

Honey bees work as collective group that live as a hive. The group protects the queen, who produces new bees, with worker bees flying out to collect nectar or pollen to bring back to the hive.

Bees have a venom sac and a barbed stinger at the end of their abdomen. This apparatus is a defensive mechanism that is used if they feel under attack; to defend the hive from destruction. The barb from a bee sting pierces the skin to inject the venom, with the bee releasing pheromones that can incite other nearby bees to join the defensive attack.

Honey bees work as a collective.
Shutterstock

The venom is a complex mixture of proteins and organic molecules, that when injected into our body can cause pain, local swelling, itching and irritation that may last for hours. The specific activity of some bee venom components have also been used to treat cancer.


Further reading: Curious Kids: Do bees ever accidentally sting other bees?


A single bee sting is almost always limited to these local effects. Some people, however, develop an allergy to some of these venom proteins. Anaphylaxis, a severe allergic reaction that is potentially life-threatening, is the most serious reaction our body’s immune system can launch to defend against the venom.

It is our body’s allergy to the bee venom, rather than the venom itself, that usually causes life-threatening issues and hospitalisation.

How do I know if I am allergic?

If you have not been stung by a bee before you are unlikely to be allergic to the venom. However, if you have been stung by a bee, there is the potential to develop an allergy. We do not know why some people become allergic and others don’t, but how often you are stung seems to play a role.

If you have experienced very large local reactions from a bee sting, or symptoms separate from the sting site (such as swelling, rashes and itchy skin elsewhere, dizziness or difficulty breathing) you may have an allergic sensitivity. Your doctor can assess you by taking a full history of reactions. Skin testing or blood allergy testing can help confirm or exclude potential allergy triggers.

An allergy specialist is key to assess people’s risk of severe allergic reactions (anaphylaxis).

There is an effective treatment for severe honey bee allergies, called immunotherapy. This involves the regular administration of venom extracts with doses gradually increased over a period of three to five years. This aims to desensitise the body’s immune system, essentially to “switch off” the allergic reaction to the venom.

Venom immunotherapy is very effective at preventing severe reactions and is available on the Pharmaceutical Benefit Scheme, whereas other immunotherapy treatments in Australia cost an average of A$1,200 per year.

First aid for a bee sting

Bees usually leave their barbed sting in the skin and then die. Remove the sting as soon as possible (within 30 seconds) to limit the amount of venom injected. Use a hard surface such as the edge of a credit card, car key or fingernail to flick/scratch out the barb.

For a minor reaction such as pain and local swelling, a cold pack may help relieve these symptoms.

If a bee stings you around your neck, or you find it difficult to breathe, or experience any wheezing, dizziness or light-headedness, seek medical advice urgently.

Prevention

Despite being a species introduced by European settlers, the honey bee (Apis mellifera) plays an essential role within Australian agriculture. We need to appreciate their essential functions, and try to prevent stings.


Read more: Losing bees will sting more than just our taste for honey


If you see a bee let it be (sorry); don’t swat it or step on them. Our bees don’t attack unless they feel they need to defend their hive.

Do not attempt to locate a hive, call an expert.

The ConversationFor more information on allergies go to the ASCIA website. Local bee keeping groups are a good source of knowledge about local bee populations.

Ronelle Welton, , University of Melbourne and Kymble Spriggs, Clinical Associate Professor, University of Melbourne

This article was originally published on The Conversation. Read the original article.