How New Zealand’s well-being budget delivers for the environment



One of the government’s spending priorities is a transformation towards a low-emissions economy.
from http://www.shutterstock.com, CC BY-ND

Troy Baisden, University of Waikato

Internationally, the Ardern government is seen as a progressive beacon, and its recent budget was watched closely as a milestone in the “year of delivery” for Ardern’s well-being agenda.

The budget is a leap ahead of other Western democracies in that it replaces the gross domestic product (GDP) with a set of well-being measures and six focal areas to justify investment. Transforming the economy and society towards environmental sustainability is one of them.

The recently released state of the environment report highlighted deep concerns about trends in biodiversity conservation, greenhouse gas emissions and freshwater health. Budget 2019 signals a meaningful shift, but more in intention than sufficient funding.




Read more:
NZ has dethroned GDP as a measure of success, but will Ardern’s government be transformational?


Two tactics for delivery

Two very different tactics are at play in the well-being budget, and both can be seen in areas related to the environment. First, in conservation, government officials know where support is needed and can use the budget to address historic underinvestment.

Where the path for delivery isn’t clear, the government has budgeted a minimum credible investment over four years and is working through the complexity of directing that investment. This second tactic dominates climate change, freshwater, and their convergence in sustainable land use.

To better understand how these tactics play out, it helps to look at the way information is presented in New Zealand’s budgets, which are seen as a model for transparency. Announcements describe investment of new money, typically over four years, but not necessarily how the money will be spread out across the years. More detailed information that appears with the budget helps to clarify when spending will occur, as well as whether spending will really happen.

A budget includes main estimates, estimated actuals and actuals, listed over three years. These reveal useful insights, including a persistent pattern through the past decade of underspending compared to what was announced in budgets.

Conservation spending

The conservation budget provides a typical example, showing how significant the signalled increases in funding will be. Expenditure increases from steady budget estimates of less than NZ$450 million from 2008 to 2018 to NZ$600 million in 2020.

But from 2010 through to 2016, there was a persistent pattern of underspending by NZ$30–49 million each year, relative to the budget announcements. The pattern ended after becoming controversial, but resulted in a cumulative underinvestment of NZ$275 million, which the latest budget aims to redress.

Budget 2019 also highlights major investments in biosecurity. By 2020, this budget will be nearly double the NZ$205 million spent in 2017. Historically, funding for biosecurity has been stable but low compared to the benefits of maintaining New Zealand’s natural isolation from pests and disease. Such benefits are hard to measure until they are lost following an incursion of a new pest or disease.

Several such cases are a main driver of increased funding for biosecurity, including Mycoplasma bovis infecting cattle throughout much of New Zealand, the arrival of myrtle rust and the disease-causing Kauri dieback.

Climate change and freshwater

The budget includes a sustainable land use package of NZ$229 million over four years, including several components. It addresses the mounting environmental challenges facing agriculture. The sector generates excess nutrient flows to iconic lakes and rivers, and roughly half of New Zealand’s greenhouse gas emissions.




Read more:
New Zealand’s urban freshwater is improving, but a major report reveals huge gaps in our knowledge


The government has committed to transforming the economy toward sustainability, but the budget signals only the broad direction of investment. One clear signal in the budget is an end to government subsidies for intensifying agriculture, confirming last year’s decision to end support for large irrigation projects, on which the previous government spent NZ$13 million in 2017.

But most components in the new package will not reach full funding levels until the 2021 financial year. The amounts of funding signal a credible start, but are unlikely to be enough. On an annual basis, the new package is only about 0.14% of the NZ$40 billion value of land-based primary sector exports.

Past budgets show that complex expenditure that depends on further planning, reorganisation or new structures is often delayed beyond initial projections. This applies to this budget, too. A major freshwater taskforce is now underway but was delayed from its original plan, which means its work is not reflected in this budget. Reform of the software platform that links farm management to environmental regulations will receive NZ$30.5 million, but there are no clear objectives.

Overall, spending with an environmental classification increased 40% from NZ$0.92 billion in 2017 to NZ$1.28 billion last year. However, with a decrease to NZ$1.17 billion estimated for this year, it may make sense to ask whether the projected increase to NZ$1.55 billion for 2020 will be achieved.

To understand the challenges of funding complex environmental issues, we can look to the history of items in the budget – officially called appropriations – containing the words climate change. Budget projections went as high as NZ$64 million to be spent in 2009. But actual spending peaked at NZ$49 million in 2010. This spending bottomed out under NZ$12 million in 2014, and is estimated to be NZ$30 million this year. Estimated expenditure for 2020 exceeds the 2009–10 peak for the first time, at nearly NZ$70 million.

Estimates overshot actual spending by an average of NZ$7 million each year from 2010 through 2018. It makes sense to assume this signals a backlog of work to figure out what needs to be done on climate change issues.

Overall, for science and the environment, a first glance suggests this is hardly a “year of delivery”. Despite a focus on transformation in six areas of spending, including natural and social capital rather than GDP, the budget kicks any real plans for change down the road. But it prioritised achievable goals fairly well, given the big constraints posed by past underinvestment combined with a political commitment to fiscal responsibility.

If the budget succeeds in delivering for New Zealand’s environment, it will be by spending wisely to reverse past underinvestment in specific areas and ensuring that degradation stops and reverses in the relevant areas of environmental well-being. Success can only come through the latter, if groups like the climate change commission and freshwater task force forge clear paths through the political constraints that will guide investment in future budgets.The Conversation

Troy Baisden, Professor and Chair in Lake and Freshwater Sciences, University of Waikato

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Advertisements

Invasive ants: federal budget takes aim but will it be a lethal shot?



File 20190404 131415 1ag8r2w.jpg?ixlib=rb 1.1
Argentine ants are a fact of life in many parts of Australia, but can still potentially be banished from Norfolk Island.
Davefoc/Wikimedia Commons, CC BY-SA

Lori Lach, James Cook University

Amid all the usual items we expect to see in the federal budget was one that raised eyebrows: A$28.8 million for three ant eradication programs.

Yet amid the inevitable media puns about the government “upping the ant-e”, we should note that these funds are for the continuation of existing programs that have already attracted significant funding and made substantial progress. Stopping now would have meant previous funding was wasted.

The funds will go a long way towards protecting Australia’s economy and environment from the damage wrought by invasive ants. But despite the apparent cash splurge, it nevertheless falls short of what is really needed.

Of the $28.8 million, $18.3 million was for the National Red Imported Fire Ant Eradication Program. These funds are part of a $411 million, ten-year program begun in 2017 to eradicate red imported fire ants from southeast Queensland, the only place they are found in Australia.




Read more:
Cannibalism helps fire ants invade new territory


Removing these pests will avoid an estimated $1.65 billion in total costs to 19 different parts of the economy. With previous funding, the program eradicated these ants from 8,300 hectares near the Port of Brisbane, making it the world’s largest ant eradication to date.

The Yellow Crazy Ant Eradication Program was allocated $9.2 million over three years. Yellow crazy ants have caused a cascade of ecological effects on Christmas Island, and at their peak abundance temporarily blinded a Queensland cane farmer with their acid spray.

The Wet Tropics Management Authority, which runs the program, had requested $6 million per year for six years to continue removing the ant from in and around the Wet Tropics World Heritage Area. The federal funding is $3 million short of this, and the authority is still waiting to hear whether the Queensland government will provide the remainder.

Since 2013, the program has received $9.5 million from the federal government (and $3 million from the Queensland government). No yellow crazy ants have been observed in about half of the target area in more than a year. A yet-to-be published analysis estimates the benefit-cost ratio for the program as 178:1.

“It’s a mop-up operation… we’ve got our foot on the throat of this thing.”

A further $1.3 million was allocated to the Argentine Ant Eradication Strategy on Norfolk Island in the South Pacific. Argentine ants have invaded places with Mediterranean-type climates all over the world, including southwestern Western Australia and parts of southern Australia, and become firmly established. But unlike those areas, the population on Norfolk Island is still considered small enough to be eradicable, and federally funded efforts to remove them began in 2010.

Yellow crazy ants in Queensland and Argentine ants on Norfolk Island directly threaten World Heritage Areas. The ants can have significant impacts on native birds, mammals, insects, reptiles, amphibians, and plants. Getting rid of them is important for meeting Australia’s international obligations to protect World Heritage sites.

What is ant eradication?

Ant eradication means removing all individuals of a particular ant species from a given area.

The first step is to define the extent of that area. Depending on the species, this may involve visual searches and/or placing lures such as sausages, cat food, or jam to attract the ants. The public can help by notifying relevant authorities of unusual ants in their gardens, and by not transporting materials that have ants on them.

The second step is treatment. Currently, the only way to eradicate ants is with insecticidal baits. Ants’ social structure makes this particularly challenging: killing the queens is vital for eradication, but queens typically stay sheltered in the nest – the only ants we see out foraging are workers.

Some of the most problematic ant species can have hundreds of queens and tens of thousands of workers per nest. They can reach extraordinarily high densities, partly because invasive ant species, unlike most of our native ant species, do not fight one another for territories.

Yellow crazy ants, proving it is possible to feel sorry for a cockroach.
Bradley Rentz/Wikimedia Commons, CC BY-SA

Beating ants means turning their biology against them. Bait needs to be attractive enough for workers to bring back to the colony and share, but not so deadly that they die before they get there. (And yes, this means if you’re spraying foraging ants in your kitchen you won’t get rid them for good, because the queens are somewhere hidden, laying more eggs and making more ants.)

Most ant eradication programs take three to four years to fine-tune their baiting regime because of a multitude of factors that need to be considered, such as seasonal changes in ant foraging behaviour and food preference, and the desire to avoid harming non-target species. Typically, two to six treatments are required, depending on the ant species, the size of the area, and the habitat type.

Beating the 1%

The hardest part of ant eradication is the end-game. Getting rid of the final 1% requires first finding them. This may mean painstaking searches through hundreds of hectares of bushland and residential areas, and the placement of hundreds of thousands of lures. Detector dogs can be very helpful, but they cannot be used in all environments and also need substantial resources for training, handling, and maintenance.

Ironically, it is at this stage that public and political support for eradication programs is most likely to wane, because ant numbers are too low to be seen as a threat to the public, economy or environment. Yet it is vital not to stop now, or else the remaining 1% will simply build up their numbers again. Experienced staff are also lost when programs suffer cuts or delays in their funding.




Read more:
Eradicating fire ants is still possible, but we have to choose now


Disappointingly not mentioned in the budget was funding for eradicating electric ants. Like red imported fire ants, electric ants have a painful sting, and when left to multiply will eventually turn gardens and swimming pools into no-go zones. They also pose a significant threat to native animals such as the southern cassowary, and can blind animals as large as elephants.

They are currently only found in the Cairns region. The National Electric Ant Eradication Program, funded by federal and state governments, ran from 2006 until 2017 and had likely reduced numbers down to that last 1%. The program has been running on state funding with reduced staff since then, but several new detections in the past three months demonstrate the cost of the gap in funding.

In those inevitable “federal budget winners and losers” lists, invasive ants have found themselves firmly in the losers column for 2019. But it’s worth remembering that most of the world’s roughly 15,000 known ant species provide vital services for the functioning of our ecosystems.

They aerate soil and redistribute its nutrients, protect plants from herbivores, disperse seeds, and repurpose dead organisms. They may even help slow down the spread of those pesky invasive ants that are much less friendly.The Conversation

Lori Lach, Associate Professor, James Cook University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

‘Renewable energy breeding’ can stop Australia blowing the carbon budget – if we’re quick


Mark Diesendorf, UNSW

Moving to a future powered mainly by renewable energy will be crucial if we are to stay within the global warming limits set out by the Paris Agreement. But building all of this new renewable energy will initially require fossil fuels to help power all of the necessary mining, construction and decommissioning. This raises the question as to whether the energy transition itself will be pointless.

But new research by a group at UNSW (Bahareh Sara Howard, Nick Hamilton, Tommy Wiedmann and myself) shows that it is theoretically possible for Australia to move to a renewable energy future without blowing its share of the carbon budget.

Actually doing it will require two things: prompt, decisive action, and a reliance on “renewable energy breeding” – the process by which mining the raw materials and manufacturing technologies such as solar cells and wind turbines are themselves powered by renewables rather than fossil fuels.

Already under way

This renewable energy breeding is already under way in some places. Tesla’s solar panel factory in Nevada, known as Gigafactory 1, will itself run on solar power. In South Australia, Liberty OneSteel, the new owner of the Whyalla steelworks, is planning solar power, pumped hydro, batteries and demand management to reduce energy costs and greenhouse emissions. In Western Australia, Sandfire Resources’ DeGrussa gold and copper mine and Galaxy Resources’ lithium mine are both going solar.

These are encouraging developments. But will they be enough? The world has only a limited emissions budget left to keep global warming below the Paris Agreement’s 2℃ limit, and an even smaller budget for the agreement’s more ambitious 1.5℃ goal.

As Australia is responsible for about 1% of global emissions and its electricity industry is responsible for about one-third of that, we have assumed that the country’s carbon budget for electricity generation is about one-third of 1% of the global carbon budget. Overall, then, this gives us a total carbon budget for Australia’s electricity sector of 3.3 gigatonnes of carbon dioxide equivalent (post-2011) for the 2℃ target, and 1.3 gigatonnes for the 1.5℃ target. For comparison, Australia’s annual carbon dioxide equivalent emissions are over half a gigatonne (actually 0.55 gigatonnes), so we are only three years away from overshooting the 1.5℃ target.

Even these budgets are generous, because Australia is one of the biggest per capita carbon dioxide emitters in the world and has enormous renewable energy resources.

What’s more, electricity is the easiest part of the energy sector to move to renewable energy – heating and transport are more difficult prospects. This means that if we are to move to an entirely renewable energy future, most heating and transport will need to be electrified. Therefore, electricity should have a greater emissions reduction target than other sectors.

Making the transition

Our study, which builds on earlier research, looked at 22 possible scenarios for transitioning Australia’s electricity sector to predominantly renewable energy. Some were developed by us, and some by other research groups.

Crucially, our study factored in the “life-cycle” emissions of these energy generation technologies – that is, the total greenhouse emissions including those released during the manufacture of the technologies themselves. And we looked explicitly at renewable energy breeding as part of that analysis.

Our scenarios also assume that overall electricity demand will either stabilise or decline, despite the move towards electrifying transport and heating. This is because Australia is well placed to make huge improvements in energy efficiency.

Rapid action needed

The principal findings of our research include the good news that the life-cycle greenhouse emissions from manufacturing renewable energy technologies such as solar panels and wind turbines are tiny, compared with the emissions saved by using them as substitutes for fossil fuels.

With the help of renewable energy breeding, the overall life-cycle emissions savings can be substantial – more than 90%, in some of the scenarios we examined. Therefore, manufacturers of renewable energy systems should use renewable energy to power their production lines.

The bad news is that, in every scenario we investigated, Australia nevertheless fails to achieve its share of the ambitious emissions reductions needed to limit global warming to 1.5℃ with 66% probability. Furthermore, 9 of our 22 scenarios also fail the more lenient 2℃ target.

Cumulative emissions for 2011-50 for 22 different pathways for a renewable energy transition in Australia. Green shaded area represents pathways that are within Australia’s share of the global carbon budget for 2℃ of warming; red shaded area represents pathways that exceed it.
Howard et al., 2018

The main reason for this is the legacy of CO₂ emissions from fossil fuel use before the renewable energy transition. In most of our scenarios, the benefits of renewable energy breeding to the cumulative emissions become significant only beyond 2040.

The scenario (S8a, labelled V in the graph above) that comes closest to achieving the 1.5℃ target involves a 98% transition to renewable electricity and a 35% reduction in electricity demand by 2030 – a very rapid transition indeed!

The scenarios that deliver on the 2℃ target have rapid and high penetrations of renewable energy into the market, and high contributions from energy efficiency.




Read more:
Rapid transition to clean energy will take massive social change


While it may already be too late for Australia to make a fair contribution to keeping global warming at 1.5℃, our results show that we can stay within our share of the carbon budget for 2℃ – provided we have the political will to move fast.

What’s more, if we implement policies that incentivise renewable energy breeding, there is no reason to suppose that moving to 100% renewable energy would necessarily entail a large increase in emissions to produce the necessary technologies.

The ConversationBut the overriding message is that time is of the essence, if we want to come anywhere close to limiting dangerous climate change. Our various scenarios suggest that even if we implement a rapid, effective response, we are likely to have to take CO₂ back out of the atmosphere in the future, to compensate for the likely overshoot on our share of the global carbon budget.

Mark Diesendorf, Honorary Associate Professor, UNSW

This article was originally published on The Conversation. Read the original article.

By slashing environment spending, the government is slashing opportunities



File 20171217 17878 1ezx5hj.jpg?ixlib=rb 1.1
At a time of growing human impacts, spending on environmental protection is more important than ever.
Author provided

Don Driscoll, Deakin University

Australia’s native plants and animals are integral to the success of our society. We depend on wildlife to pollinate many of our crops. Most of our cities depend on effective water catchments to provide clean water. And medical scientists are making important breakthroughs in managing disease and health issues based on discoveries in nature.

The mental health benefits of a “dose of nature” are becoming more widely recognised, on top of our own experiences of having fun and enjoying the natural wonders of national parks. Our nature inspires us in all kinds of ways, and you can build major industries around that; the Great Barrier Reef is reportedly worth A$56 billion to the Australian economy.

It is therefore surprising, on one hand, to read the Australian Conservation Foundation and WWF Australia budget submission that the Australian government has slashed environmental spending by one third since 2013.

On the other hand, I’m not especially surprised because we ecologists have been living through the ongoing attack on the environment every day. We see how cuts to environmental budgets play out.


Read more: Why a walk in the woods really does help your body and your soul


Our native species and ecosystems are under growing pressure. Australia’s 1.6% annual population growth outstrips many other countries. This is compounded by rises in per-capita consumption and greenhouse emissions.

Escalating consumption translates into growing impacts on biodiversity as more land is released for housing and infrastructure, extractive industries such as mining, recreational and industrial fishing expand and agriculture intensifies.

Climate change further interacts with land clearing associated with producing more for a growing and greedier population. Many species are expected to have to shift their range as the environmental conditions they live in move, and if they can’t move because there is no habitat to move through, extinctions will result.


Read more: Land clearing isn’t just about trees – it’s an animal welfare issue too


State of the Environment reports document the extent of the problem.

For example, between 2011 and 2015, there was a 66% increase in the number of critically endangered animals (from 38 in 2011 to 63 in 2015), and a 28% increase in critically endangered plants (112 in 2011; 143 in 2015). By critically endangered, we mean that extinction is a real possibility in the short term for these species. Immediate action is needed if we are to avoid terminating millions of years of independent evolution, as these biological lineages die out.

Given the extraordinary value of biodiversity and the extreme and growing threats, it would make sense to maximise our spending on biodiversity conservation now, to protect our wildlife through this period of peak human.

Key areas for investment include creating an effective national reserve system, at least meeting the arbitrary international goals of 17% of the land and 10% of the sea area.

Funding is needed to manage the reserve system, containing threats and nurturing already threatened species. Meanwhile, outside of reserves where most of the people live and interact with nature, biodiversity needs to be provided for, and threats need to be managed. Biosecurity is a critical area for funding, particularly to more tightly regulate rogue industries, like horticulture.

Horticulture was recently responsible for introducing myrtle rust, a disease that is devastating many gum-tree relatives, in the family Myrtaceae. Finally, climate change demands a strong response, both in mitigation and adaptation.

Science and environment work needs funding

I’ve never seen so many fantastic, skilled, enthusiastic young ecologists struggling to get a job. At a time when ecologists and conservation scientists are needed more than ever to help solve the problems created by the growth economy, funding for ecology is at a low.


Read more: Vale ‘Gump’, the last known Christmas Island Forest Skink


Of course, beyond the people, we see conservation programs in desperate need of support that just isn’t forthcoming. Christmas Island is a case in point.

The island’s reptiles have been devastated by invasive pests, most likely the wolf snake and perhaps the giant centipede. Two endemic species (species that only lived on Christmas Island) are presumed extinct; the last known forest skink died in 2014.

This Christmas Island Forest Skink was the last known member of her species.
Director of National Parks/Supplied

Two other endemic species are extinct in the wild, but small populations of around 1,000 animals are kept in captivity on the island and at Taronga Zoo.

While ideally a population of at least 5,000 would be maintained to minimise loss of genetic diversity, funding is not available to house that many animals. And it’s rock-bottom budget accommodation; Lister’s geckos are housed in tents because the budget doesn’t stretch to building something permanent.

We’ve also seen important long term research programs defunded. Long-term data provides crucial insights into how our biodiversity responds to decadal changes in weather patterns as well as longer-term changes caused by the greenhouse effect. It is unimaginable that the government have slashed the Terrestrial Ecosystem Research Network’s funding so far that well-established long-term data series are now being compromised.

Ultimately, the environmental funding shortfall needs to be fixed. Our livelihoods and well-being depend on it.


The ConversationThe original version of this article incorrectly reported that the budget submission was made by the Australian Conservation Foundation and The Wilderness Foundation. It was in fact made by the Australian Conservation Foundation and WWF Australia.

Don Driscoll, Professor in Terrestrial Ecology, Deakin University

This article was originally published on The Conversation. Read the original article.

The 2017 budget has axed research to help Australia adapt to climate change


Tayanah O’Donnell, University of Canberra and Josephine Mummery, University of Canberra

The 2017 federal budget has axed funding for the National Climate Change Adaptation Research Facility (NCCARF), an agency that provides information to decision-makers on how best to manage the risks of climate change and sea level rise. The Conversation

The NCCARF received A$50 million in 2008 to coordinate Australia’s national research effort into climate adaptation measures. That was reduced in 2014 to just under A$9 million. For 2017-18, a mere A$600,000 will be spread between CSIRO and NCCARF to support existing online platforms only. From 2018, funding is axed entirely.

This decision follows on from the 2014 streamlining of CSIRO’s Climate Adaptation Flagship, and comes at a time when a national review of Australia’s climate policies is still underway.

Despite a growing global impetus to address the risks of climate change, there is evidence that Australia is being hampered by policy inertia. A review of 79 submissions to the Productivity Commission’s inquiry on Barriers to Effective Climate Change Adaptation, published in 2014, found that:

adaptation first and foremost requires clear governance, and appropriate policy and legislation to implement change.

Earlier this year the World Economic Forum listed “failure of climate change mitigation and adaptation” as one of the top five risks to the world, in terms of its potential impact. Meanwhile, in Australia, local governments, professionals and community groups have consistently called for more national policy guidance on how best to adapt to climate risks.

The government’s decision to slash funding for climate adaptation research is therefore at odds with the growing urgency of the problem. The Intergovernmental Panel on Climate Change, in its most recent major assessment report, pointed out that Australia can benefit significantly from taking adaptation action in highly vulnerable sectors.

These areas of vulnerability include: the risk of more frequent and intense floods; water shortages in southern regions; deaths and infrastructure damage caused by heatwaves; bushfires; and impacts on low-lying coastal communities.

To put it simply, lives and money will be saved by strong climate adaptation measures.

Australia needs a coherent policy approach that goes beyond the current focus on energy policy, although climate adaptation is indeed an important issue for our electricity grid as well as for many other elements of our infrastructure. A coherent, whole-of-government, approach to climate risk is the economical and sensible approach in the long term.

Like it or not, the federal government has to take a leading role in climate adaptation. This includes the ongoing need to address existing knowledge gaps through well-funded research.

The federal government is the major funder of leading research in Australia, delivered through CSIRO, the National Health and Medical Research Council, the Cooperative Reserach Centres, the Australian Research Council and universities. This role should not be divested. Without climate adaptation research, Australia can expect significantly higher infrastructure damage and repair costs, more death and disease, and more frequent disruption to services – much of which would be avoidable with the right knowledge and preparation.

The damage bill from the 2010-11 Queensland floods alone exceeded A$6 billion. Since 2009, natural disasters have cost the Australian government more than A$12 billion, and the private sector has begun trying in earnest to reduce its risk exposure.

In response to these known risks, there is demand for robust policy guidance. Effective partnerships between government, industry and the community are crucial. One such example led by the NCCARF is CoastAdapt, an online tool that collates details of climate risks and potential costs in coastal areas.

For projects like this, success hinges on full engagement with all relevant spheres of government, industry, research, and the community. There is more to be done, and it needs leadership at the highest level.

Tayanah O’Donnell, Research Fellow, University of Canberra and Josephine Mummery, Research Fellow and PhD Candidate, climate change policy, University of Canberra

This article was originally published on The Conversation. Read the original article.

CSIRO cuts: climate science really does need to shift its focus towards adaptation


Peter Tangney, Flinders University

Climate scientists have recently been outraged by job losses within CSIRO. Sixty climate jobs are likely to be lost. Chief executive Larry Marshall has said the reaction to the cuts from scientists has been “more like religion that science”.

Well, in certain respects, he has a point. In reaction to the cuts, scientists are making claims about their ability to predict the future, and are failing to consider the politics of climate science.

We know it’s happening, now let’s do something

In Senate estimates on Thursday, Marshall stated that while CSIRO would not withdraw from monitoring and measuring climate change, there would be a reduction in monitoring and measurement in favour of “mitigation”.

It is unclear what he means by mitigation (whether he’s talking about reducing greenhouse gases and adapting to climate change, or just the former) but I believe that in order to justify itself, climate science should be urgently re-branded as “adaptation science”.

When scientists talk about climate science, they often speak as if it’s a homogenous research activity. But, there are different types of climate research.

This matters because some research questions are more important to policymakers than others. For simplicity, let’s distinguish between two types of climate research.

The first type involves the development of increasingly sophisticated projections of future climate change. Scientists do this using global models, which are downscaled to make projections for local and regional areas.

Ideally, this research would allow us to make specific predictions about what will happen when and where. For instance, it might tell us how the climate in 2050 will be affected by El Niño.

The second type of research looks at the vulnerabilities and tries to make communities, ecosystems, infrastructure and economies more resilient to climate extremes and climate change. For instance, we understand that planting trees at strategic locations along a river bank can enhance the resilience of fish populations that are vulnerable to heat stress

In many cases, this research does not require absolutely specific predictions of how the climate will change. What it does need is the expertise of many other environmental scientists, geographers, urban planners, engineers and social scientists.

I propose that by far the most important research agenda at this point in time is this second research question. This is not to say climate modelling is not important. Modelling is part of the picture, but the focus should be on the ultimate goal: adapting to climate change.

The problem of uncertainty

Over ten years ago, climate scientist Stephen Schneider warned that we should be careful about relying on climate models because they cannot fully account for the abrupt changes possible in the Earth’s climate systems.

For much of the 2000s, as a climate change adaptation advisor working in the UK, I listened to climate scientists make encouraging noises about improving climate change forecasts.

Even so, in 2009 when the UK’s Climate Impacts Programme (UKCIP) released its state-of-the-art projections, it loudly and repeatedly warned users that they should not be used to predict future outcomes. (As an aside, these outputs have also been very problematic for many potential users). UKCIP warned these projections should only be used to understand a range of potential future climates.

More recently, a team of mathematicians from the London School of Economics and Oxford University has provided eloquent reasoning for why this is so, no matter how good the models seem, especially at regional and local scales.

In Australia, a simpler and more user-friendly set of projections have been developed by CSIRO and the Bureau of Meteorology.

Importantly, these are projections of possibilities, not predictions.

The problem of policy

Policy-makers don’t necessarily care about the specifics of how the climate will change at a certain point in the future. They know that no one can predict exactly how the climate will change, not to mind where a bushfire will strike at a specific time in the future.

Investment decisions are based on relatively more certain knowledge of the imminent future (say, five to 20 years, at most). They assume the future will be similar to the present. Depending on their political leanings, only then will they consider climate change.

For instance, the Queensland Reconstruction Authority (QRA), was established by the state government to rebuild infrastructure after the floods in 2011.

Their mantra is “build it back better”. But the precise terms of their federal funding mean that they usually only replace infrastructure on a like-for-like basis. The funding rules require the QRA to make a special request to federal government to build anything that accounts for future climate change. In fact, their strategic plan doesn’t even mention climate change.

Elsewhere, the Thames Estuary 2100 project in the UK delays crucial pre-emptive decisions on flood defences until they absolutely have to be made and in ways that will be resilient to a range of futures.

In this article on The Conversation, Andy Pitman made the case that desalination plants in Perth were constructed following knowledge of a long-term climate shift. This was part of it, but, crucially, the desalination plants provide benefits to the electorate under a range of possible future climates.

The core message should be that vulnerabilities already exist and can be fixed, providing benefits both today and under the increasing risks of climate disaster.

For instance, to build flood defences, policymakers often only want to know how high they can afford to build them to protect the highest number of people possible. Increasingly detailed projections won’t be particularly helpful because policymakers are fundamentally unwilling to build something optimised to one specific climate future.

The key for policymakers is to avoid putting all their eggs in one basket. That way they avoid getting egg on their face by not investing in solutions that may not actually be needed. The key here for scientists, therefore, is how to frame and focus their research accordingly. This means tailoring their science and its communication to policymakers’ priorities.

The climate science community is playing a political game, whether they know it or not. If they want to participate on the same terms as political decision-makers, they need to speak their language.

The Conversation

Peter Tangney, Lecturer | Course Coordinator – Science Policy & Communication, Flinders University

This article was originally published on The Conversation. Read the original article.