Australia is the runaway global leader in building new renewable energy


Matthew Stocks, Australian National University; Andrew Blakers, Australian National University, and Ken Baldwin, Australian National University

In Australia, renewable energy is growing at a per capita rate ten times faster than the world average. Between 2018 and 2020, Australia will install more than 16 gigawatts of wind and solar, an average rate of 220 watts per person per year.

This is nearly three times faster than the next fastest country, Germany. Australia is demonstrating to the world how rapidly an industrialised country with a fossil-fuel-dominated electricity system can transition towards low-carbon, renewable power generation.

Renewable energy capacity installations per capita.
International capacity data for 2018 from the International Renewable Energy Agency. Australian data from the Clean Energy Regulator., Author provided

When the Clean Energy Regulator accredited Tasmania’s 148.5 megawatt (MW) Cattle Hill Wind Farm in August, Australia met its Renewable Energy Target well ahead of schedule.




Read more:
Australia has met its renewable energy target. But don’t pop the champagne


We have analysed data from the regulator which tracks large- and small-scale renewable energy generation (including credible future projects), and found the record-high installation rates of 2018 will continue through 2019 and 2020.

Record renewable energy installation rates

While other analyses have pointed out that investment dollars in renewable energy fell in 2019, actual generation capacity has risen. Reductions in building costs may be contributing, as less investment will buy you more capacity.

Last year was a record year for renewable energy installations, with 5.1 gigawatts (GW) accredited in 2018, far exceeding the previous record of 2.2GW in 2017.

The increase was driven by the dramatic rise of large-scale solar farms, which comprised half of the new-build capacity accredited in 2018. There was a tenfold increase in solar farm construction from 2017.

We have projected the remaining builds for 2019 and those for 2020, based on data from the Clean Energy Regulator for public firm announcements for projects.

A project is considered firm if it has a power purchase agreement (PPA, a contract to sell the energy generated), has reached financial close, or is under construction. We assume six months for financial close and start of construction after a long-term supply contract is signed, and 12 or 18 months for solar farm or wind farm construction, respectively.

This year is on track to be another record year, with 6.5GW projected to be complete by the end of 2019.

The increase is largely attributable to a significant increase in the number of wind farms approaching completion. Rooftop solar has also increased, with current installation rates putting Australia on track for 1.9GW in 2019, also a new record.

This is attributed to the continued cost reductions in rooftop solar, with less than A$1,000 per kilowatt now considered routine and payback periods of the order of two to seven years.

Current (solid) and forecast (hashed) installations of renewable electricity capacity in Australia.
Author provided

Looking ahead to 2020, almost 6GW of large-scale projects are expected to be completed, comprising 2.5GW of solar farms and 3.5GW of wind. Around the end of 2020, this additional generation would deliver the old Renewable Energy Target of 41,000 gigawatt hours (GWh) per annum. That target was legislated in 2009 by the Rudd Labor government but reduced to 33,000GWh by the Abbott Coalition government in 2015.

Maintaining the pipeline

There are strong prospects for continued high installation rates of renewables. Currently available renewable energy contracts are routinely offering less than A$50 per MWh. Long-term contracts for future energy supply have an average price of more than A$58 per MWh. This is a very reasonable profit margin, suggesting a strong economic case for continued installations. Wind and solar prices are likely to decline further throughout the 2020s.

State governments programs are also supporting renewable electricity growth. The ACT has completed contracts for 100% renewable electricity. Victoria and Queensland both have renewable energy targets of 50% renewable electricity by 2030. South Australia is expecting to reach 100% by 2025.

The main impediment to continued renewables growth is transmission. Transmission constraints have resulted in bottlenecks in moving electricity from some wind and solar farms to cities.

Tasmania’s strong wind resource requires a new connection to the mainland to unlock more projects. The limitations of current planning frameworks for this transition were recognised in Chief Scientist Alan Finkel’s review of the National Electricity Market, with strong recommendations to overcome these problems and, in particular, to strengthen the role of the Australian Energy Market Operator.




Read more:
Here’s how a 100% renewable energy future can create jobs and even save the gas industry


Now we need state and federal governments to unlock or directly support transmission expansion. For example, the Queensland government has committed to supporting new transmission to unlock solar and wind projects in the far north, including the Genex/Kidston 250MW pumped hydro storage system. The New South Wales government will expedite planning approval for an interconnector between that state and South Australia, defining it as “critical infrastructure”.

These investments are key to Australia maintaining its renewable energy leadership into the next decade.The Conversation

Matthew Stocks, Research Fellow, ANU College of Engineering and Computer Science, Australian National University; Andrew Blakers, Professor of Engineering, Australian National University, and Ken Baldwin, Director, Energy Change Institute, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

We create 20m tons of construction industry waste each year. Here’s how to stop it going to landfill



Building construction and demolition create enormous amounts of waste and much of it goes into landfill.
Sytilin Pavel/Shutterstock

Salman Shooshtarian, RMIT University; Malik Khalfan, RMIT University; Peter S.P. Wong, RMIT University; Rebecca Yang, RMIT University, and Tayyab Maqsood, RMIT University

The Australian construction industry has grown significantly in the past two decades. Population growth has led to the need for extensive property development, better public transport and improved infrastructure. This means there has been a substantial increase in waste produced by construction and demolition.

In 2017, the industry generated 20.4 million tons (or megatonnes, MT) of waste from construction and demolition, such as for road and rail maintenance and land excavation. Typically, the waste from these activities include bricks, concrete, metal, timber, plasterboard, asphalt, rock and soil.

Between 2016 and 2017, more than 6.7MT of this waste went into landfills across Australia. The rest is either recycled, illegally dumped, reused, reprocessed or stockpiled.

But with high social, economic and environmental costs, sending waste to landfill is the worst strategy to manage this waste.




Read more:
With the right tools, we can mine cities


What’s more, China introduced its “National Sword Policy” and restricted waste imports, banning certain foreign waste materials and setting stricter limits on contamination. So Australia’s need for solutions to landfill waste has become urgent.

China has long been the main end-market for recycling materials from Australia and other countries. In 2016 alone, China imported US$18 billion worth of recyclables.

Their new policy has mixed meanings for Australia’s waste and resource recovery industry. While it has closed China’s market to some of our waste, it encourages the development of an Australian domestic market for salvaged and recycled waste.

But there are several issues standing in the way of effective management of Australia’s construction and demolition waste.




Read more:
A crisis too big to waste: China’s recycling ban calls for a long-term rethink in Australia


The producers should take more responsibility

In Australia, the main strategy to reduce the waste sent to landfill is the use of levies. But the effectiveness of levies has been questioned in recent years by experts who argue for smarter strategies to manage waste from construction and demolition. They say that imposing a landfill levy has not achieved the intended goals, such as a reduction in waste disposal or an increase in waste recovery activities.

One effective strategy Australia should expand is extended producer responsibility (EPR).

The idea originated in Germany in 1991 as a result of a landfill shortage. At the time, packaging made up 30% by weight and 50% by volume of Germany’s total municipal waste stream.

To slow down the filling of landfills, Germany introduced “the German Packaging Ordinance”. This law made manufacturers responsible for their own packaging waste. They either had to take back their packaging from consumers and distributors or pay the national packaging waste management organisation to collect it.

Australia has no specific EPR-driven legal instrument for the construction and demolition waste stream, nor any nationally adopted EPR regulations.

Waste piled at a demolition site at Little A’Beckett Street in Melbourne in April 2019.
Salman Shooshtarian, Author provided

But some largely voluntary approaches have had an impact. These include the national Product Stewardship Act 2011, New South Wales’ Extended Producer Responsibility Priority Statement 2010 and Western Australia’s 2008 Policy Statement on Extended Producer Responsibility.

These schemes have provided an impetus for industry engagement in national integrated management of some types of waste, such as e-waste, oil, batteries and fluorescent lights. Voluntary industry programs also cover materials such as PVC, gypsum, waffle pod and carpet.




Read more:
Indonesia has sent Australia’s recycling home – it’s time to clean up our act


For instance, since 2002, the Vinyl Council of Australia has voluntarily agreed to apply EPR principles. Armstrong Australia, the world’s largest manufacturer of resilient PVC flooring products, collects the offcuts and end-of-life flooring materials for recycling and processing into a new product. These materials would otherwise have been sent to landfill.

In another example, CSR Gyprock uses a take-back scheme to collect offcuts and demolition materials. After installation, the fixing contractor arranges collection with CSR Gyprock’s recycling contractor who charges the builder a reasonable fee.

Connecting industries

But extending producer responsibility in a sustainable way comes with a few challenges.

Everyone in the supply chain should be included: those who produce and supply materials, those involved in construction and demolition, and those who recover, recycle and dispose of waste.

The goal of our work is to connect organisations and industries across the country so waste can be traded instead of sent to landfill.




Read more:
The 20th century saw a 23-fold increase in natural resources used for building


But the lack of an efficient supply chain system can discourage stakeholders from taking part in such schemes. An inefficient supply chain increases the costs associated with labour and admin staff at construction sites, transport, storage, separation of waste and insurance premiums.

All of these are not only seen as a financial burden but also add complexities to an already complicated system.

Australia needs a system with a balanced involvement of producers, consumers and delivery services to extend producer responsibility.

How can research and development help?

In our research, we’re seeking to develop a national economic approach to deal with the barriers preventing the effective management of construction and demolition waste in Australia, such as implementing an extended producer responsibility.

And a project aimed to find ways to integrate supply chain systems in the construction and demolition waste and resource recovery industry is supporting our efforts.

The goal is to ensure well-established connections between all parts in the construction supply chain. A more seamless system will boost markets for these materials, making waste recovery more economically viable. And that in turn will benefit society, economy and the environment.The Conversation

Salman Shooshtarian, Research Fellow, RMIT University; Malik Khalfan, Associate Professor, Property, Construction and Project Management, RMIT University; Peter S.P. Wong, Associate Professor and Associate Dean, School of Property, Construction and Project Management, RMIT University; Rebecca Yang, Senior Lecturer, Property, Construction and Project Management, RMIT University, and Tayyab Maqsood, Associate Professor in Project Management, RMIT University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Scientists create new building material out of fungus, rice and glass


File 20180619 38811 1vp4mqp.jpg?ixlib=rb 1.1
Fungal bricks have the potential to create safer and more sustainable buildings.
V Anisimov / Shutterstock

Tien Huynh, RMIT University and Mitchell Jones, RMIT University

Would you live in a house made of fungus? It’s not just a rhetorical question: fungi are the key to a new low-carbon, fire-resistant and termite-deterring building material.

This type of material, known as a mycelium composite, uses the Trametes versicolor fungus to combine agricultural and industrial waste to create lightweight but strong bricks. It’s cheaper than synthetic plastics or engineered wood, and reduces the amount of waste that goes to landfill.




Read more:
Affordable, sustainable, high-quality urban housing? It’s not an impossible dream


What a fun guy

Fungal brick prototypes made from rice hulls and glass fines waste.
Tien Huynh, Author provided

Working with our colleagues, we used fungus to bind rice hulls (the thin covering that protects rice grains) and glass fines (discarded, small or contaminated glass). We then baked the mixture to produce a new, natural building material.

Making these fungal bricks is a low-energy and zero-carbon process. Their structure means they can be moulded into many shapes. They are therefore suited to a variety of uses, particularly in the packaging and construction industries.

A staple crop for more than half the world’s population, rice has an annual global consumption of more than 480 million metric tonnes and 20% of this is comprised of rice hulls. In Australia alone, we generate about 600,000 tonnes of glass waste a year. Usually these rice hulls and glass fines are incinerated or sent to landfill. So our new material offers a cost-effective way to reduce waste.

Fire fighter

Fungal bricks make ideal fire-resistant insulation or panelling. The material is more thermally stable than synthetic construction materials such as polystyrene and particleboard, which are derived from petroleum or natural gas.

Rice hulls, glass fines and the mixture of rice, glass and fungus, before baking.
Wikipedia/Tien Huynh, Author provided

This means that fungal bricks burn more slowly and with less heat, and release less smoke and carbon dioxide than their synthetic counterparts. Their widespread use in construction would therefore improve fire safety.

Thousands of fires occur every year and the main causes of fatalities are smoke inhalation and carbon monoxide poisoning. By reducing smoke release, fungal bricks could allow more time for escape or rescue in the event of a fire, thus potentially saving lives.




Read more:
How can we build houses that better withstand bushfires?


Bug battler

Termites are a big issue: more than half of Australia is highly susceptible to termite infestations. These cost homeowners more than A$1.5 billion a year.

Our construction material could provide a solution for combating infestations, as the silica content of rice and glass would make buildings less appetising to termites.




Read more:
Hidden housemates: the termites that eat our homes


The use of these fire-and-termite-resistant materials could simultaneously revolutionise the building industry and improve waste recycling.

Figure 3. Termite infestation zones in Australia.
termitesonline.com.au, Author provided

This is an exciting time to get creative about our waste. With China no longer buying Australia’s recycling – and new rules reducing plastic use in Australian supermarkets – we have the chance to move in line with communities in Japan, Sweden and Scotland that have near-zero waste.

Fungal bricks could be just one example of the creative thinking that will help us get there.


The Conversation


Read more:
The next step in sustainable design: Bringing the weather indoors


Tien Huynh, Senior Lecturer in the School of Sciences, RMIT University and Mitchell Jones, PhD Student, RMIT University

This article was originally published on The Conversation. Read the original article.

China: Seeks Australia’s Help Building Emissions Trading Scheme


The link below is to an article reporting on China seeking Australia’s assistance in building an emissions trading scheme.

For more visit:
http://www.theage.com.au/federal-politics/political-news/china-seeks-australias-help-building-emissions-trading-scheme-20130711-2prjh.html

Netherlands: Building the World’s Largest Electric Vehicle Charging Network


The link below is to an article reporting on the Netherlands’ plans to build the world’s largest network of electric vehicle charging stations.

For more visit:
http://inhabitat.com/abb-to-build-worlds-largest-network-of-electric-vehicle-fast-charging-stations-in-the-netherlands/